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1. INTRODUCTION

The processe+e− → 3 jets is of particular interest for the measurement of the strong couplingαs.
Three-jet events are well suited for this task because the leading term in a perturbative calculation of
three-jet observables is already proportional to the strong coupling. For a precise extraction of the strong
coupling one needs in addition to a precise measurement of three-jet observables in the experiment a
precise prediction for this process from theory. This implies the calculation of higher order corrections.
The processe+e− → 3 jets has been been calculated recently at next-to-next-to-leading order (NNLO)
in QCD [1–7]. This was a very challenging calculation and I will report on some of the complications
which occurred during this computation. The lessons we learned from this process have implications to
other processes which will be calculated at NNLO. The two processes closest related toe+e− → 3 jets
aree−p → e− + 2 jets andpp → Z/W + jet. These are obtained from crossing final and initial state
particles. But also for processes likepp → 2 jets andpp → tt̄ many techniques can be transferred.

2. THE CALCULATION

The master formula for the calculation of a three-jet observable at an electron-positron collider is

〈O〉 =
1

8s

∑

n≥3

∫

dφnOn (p1, ..., pn, q1, q2)
∑

helicity

|An|
2 , (1)

whereq1 andq2 are the momenta of the initial-state particles and1/(8s) corresponds to the flux factor
and the average over the spins of the initial state particles. The observable has to be infrared safe, in
particular this implies that in single and double unresolved limits we must have

O4(p1, ..., p4, q1, q2) → O3(p
′
1, ..., p

′
3, q1, q2) for single unresolved limits,

O5(p1, ..., p5, q1, q2) → O3(p
′
1, ..., p

′
3, q1, q2) for double unresolved limits. (2)

An is the amplitude withn final-state partons. At NNLO we need the following perturbative expansions
of the amplitudes:
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HereA(l)
n denotes an amplitude withn final-state partons andl loops. We can rewrite symbolically the

LO, NLO and NNLO contribution as

〈O〉LO =

∫

O3 dσ
(0)
3 ,

〈O〉NLO =

∫
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(0)
4 +

∫

O3 dσ
(1)
3 ,

〈O〉NNLO =

∫
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∫
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O3 dσ
(2)
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The computation of the NNLO correction for the processe+e− → 3 jets requires the knowledge of
the amplitudes for the three-parton final statee+e− → q̄qg up to two-loops [8, 9], the amplitudes of



the four-parton final statese+e− → q̄qgg ande+e− → q̄qq̄′q′ up to one-loop [10–13] and the five-
parton final statese+e− → q̄qggg ande+e− → q̄qq̄′q′g at tree level [14–16]. The most complicated
amplitude is of course the two-loop amplitude. For the calculation of the two-loop amplitude special
integration techniques have been invented [17–22]. The analytic result can be expressed in terms of
multiple polylogarithms, which in turn requires routines for the numerical evaluation of these functions
[23–25].

3. SUBTRACTION AND SLICING

Is is well known that the individual pieces in the NLO and in the NNLO contribution of eq. (4) are
infrared divergent. To render them finite, a mixture of subtraction and slicing is employed. The NNLO
contribution is written as
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dαsingle
4 is the NLO subtraction term for4-parton configurations,dα

(0,2)
3 anddα

(1,1)
3 are generic NNLO

subtraction terms, which can be further decomposed into

dα
(0,2)
3 = dαdouble

3 + dαalmost
3 + dαsoft

3 − dαiterated
3 ,

dα
(1,1)
3 = dαloop

3 + dαproduct
3 − dαalmost

3 − dαsoft
3 + dαiterated

3 . (6)

In a hybrid scheme of subtraction and slicing the subtraction terms have to satisfy weaker conditions as
compared to a strict subtraction scheme. It is just requiredthat

(a) the explicit poles in the dimensional regularisation parameterε in the second line of eq. (5) cancel
after integration over unresolved phase spaces for each point of the resolved phase space.

(b) the phase space singularities in the first and in the second line of eq. (5) cancel after azimuthal
averaging has been performed.

Point (b) allows the determination of the subtraction termsfrom spin-averaged matrix elements. The
subtraction terms can be found in [26–28]. The subtraction termdα

(0,2)
3 without dαsoft

3 would approxi-
mate all singularities except a soft single unresolved singularity. The subtraction termdαsoft

3 takes care
of this last piece [5,29]. The azimuthal average is not performed in the Monte Carlo integration. Instead
a slicing parameterη is introduced to regulate the phase space singularities related to spin-dependent
terms. It is important to note that there are no numerically large contributions proportional to a power of
ln η which cancel between the 5-, 4- or 3-parton contributions. Each contribution itself is independent of
η in the limit η → 0.

4. MONTE CARLO INTEGRATION

The integration over the phase space is performed numerically with Monte Carlo techniques. Efficiency
of the Monte Carlo integration is an important issue, especially for the first moments of the event shape
observables. Some of these moments receive sizable contributions from the close-to-two-jet region.
In the 5-parton configuration this corresponds to (almost) three unresolved partons. The generation of
the phase space is done sequentially, starting from a 2-parton configuration. In each step an additional
particle is inserted. In going fromn partons ton + 1 partons, then + 1-parton phase space is partitioned
into different channels. Within one channel, the phase space is generated iteratively according to

dφn+1 = dφndφunresolved i,j,k (7)



The indicesi, j andk indicate that the new particlej is inserted between the hard radiatorsi andk.
For each channel we require that the product of invariantssijsjk is the smallest among all considered
channels. For the unresolved phase space measure we have

dφunresolved i,j,k =
sijk

32π3

1
∫

0

dx1

1
∫

0

dx2

2π
∫

0

dϕ Θ(1 − x1 − x2) (8)

We are not interested in generating invariants smaller than(ηs), these configurations will be rejected by
the slicing procedure. Instead we are interested in generating invariants with values larger than(ηs) with
a distribution which mimics the one of a typical matrix element. We therefore generate the(n+1)-parton
configuration from then-parton configuration by using three random numbersu1, u2, u3 uniformly
distributed in[0, 1] and by setting

x1 = ηu1

PS , x2 = ηu2

PS ϕ = 2πu3. (9)

The phase space parameterηPS is an adjustable parameter of the order of the slicing parameter η. The
invariants are defined as

sij = x1sijk, sjk = x2sijk, sik = (1 − x1 − x2)sijk. (10)

From these invariants and the value ofϕ we can reconstruct the four-momenta of the(n + 1)-parton
configuration [30]. The additional phase space weight due tothe insertion of the(n + 1)-th particle is

w =
1

16π2

sijsjk

sijk

ln2 ηPS. (11)

Note that the phase space weight compensates the typical eikonal factorsijk/(sijsjk) of a single emis-
sion. As mentioned above, the full phase space is constructed iteratively from these single emissions.
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