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1. INTRODUCTION

The process™e~ — 3 jets is of particular interest for the measurement of thengtrcouplingas.
Three-jet events are well suited for this task because tdirlg term in a perturbative calculation of
three-jet observables is already proportional to the gtomupling. For a precise extraction of the strong
coupling one needs in addition to a precise measurementrad-fbt observables in the experiment a
precise prediction for this process from theory. This i@plihe calculation of higher order corrections.
The process™ e~ — 3 jets has been been calculated recently at next-to-ndetatting order (NNLO)

in QCD [1-7]. This was a very challenging calculation and Il véport on some of the complications
which occurred during this computation. The lessons wenkhfrom this process have implications to
other processes which will be calculated at NNLO. The twapsses closest relateddbe™ — 3 jets
aree p — e~ + 2jetsandvp — Z/W + jet. These are obtained from crossing final and initial state
particles. But also for processes likg — 2 jets andvp — ¢t many techniques can be transferred.

2. THE CALCULATION
The master formula for the calculation of a three-jet oleleler at an electron-positron collider is

(0) = %Z/d¢non(plv--~7pn7Q17QZ) Z Anl?, 1)

n>3 helicity

whereq; andge are the momenta of the initial-state particles ar¢Bs) corresponds to the flux factor
and the average over the spins of the initial state particlé®we observable has to be infrared safe, in
particular this implies that in single and double unresglimnits we must have

Ou(p1, s pa,q1,q2) —  O3(p),....p5,q1,q2)  for single unresolved limits
Os5(p1,.sp5,q1,q2) —  Os(pl,...,p5,q1,q2)  for double unresolved limits (2)

A, is the amplitude with: final-state partons. At NNLO we need the following pertunaexpansions
of the amplitudes:

|A3|2: A:(J,O)*A;(J,O)+ («4;(»,0)*./4;(),1)4'-'4;(),1)*./4;(),0)) + (A;(),O)*A;?)JrA§2)*A§O)+A§1)*A§1)),
A = AP AL 4+ (AP AL AP AP),
A2 = AQT 4O, (3)

HereAg) denotes an amplitude with final-state partons andoops. We can rewrite symbolically the
LO, NLO and NNLO contribution as

<O>LO _ /03 dO’éO),
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The computation of the NNLO correction for the process~ — 3 jets requires the knowledge of
the amplitudes for the three-parton final statee~ — ggg up to two-loops [8, 9], the amplitudes of



the four-parton final states' e~ — gggg ande™e™ — Gqq'q’ up to one-loop [10-13] and the five-

parton final states™e~ — gqggg andete™ — §qq'q’ g at tree level [14-16]. The most complicated
amplitude is of course the two-loop amplitude. For the dalion of the two-loop amplitude special

integration techniques have been invented [17-22]. Thé/tmaesult can be expressed in terms of
multiple polylogarithms, which in turn requires routines the numerical evaluation of these functions
[23-25].

3. SUBTRACTION AND SLICING

Is is well known that the individual pieces in the NLO and i tNNLO contribution of eq. (4) are
infrared divergent. To render them finite, a mixture of sattion and slicing is employed. The NNLO
contribution is written as

(OYNNLO /(05 doéO) — 0, Odaimgle — 0, odago,z))
+/ ((94 dafll) + 040 daimgle — O30 dagl’l))
+ / (03 do? + O30 da? + O3 0 daf™V). (5)

daff"gle is the NLO subtraction term fat-parton configurationsiago’Q) anddagl’l) are generic NNLO

subtraction terms, which can be further decomposed into

0,2 )
dag ) d double d glmost d go ft l éterated ’
1,1 oop prod; ;
doz3( 1) = do/3 + d()é3r uet _ d(la3lm03t — d(lggﬁ + dwzsterated. (6)

In a hybrid scheme of subtraction and slicing the subtradéoms have to satisfy weaker conditions as
compared to a strict subtraction scheme. It is just requhatd

(a) the explicit poles in the dimensional regularisationapaeters in the second line of eq. (5) cancel
after integration over unresolved phase spaces for eaoh g@idihe resolved phase space.

(b) the phase space singularities in the first and in the sketina of eq. (5) cancel after azimuthal
averaging has been performed.

Point (b) allows the determination of the subtraction tefrosn spin-averaged matrix elements. The

subtraction terms can be found in [26—28]. The subtractom dago’Q) without da?,f’f * would approxi-

mate all singularities except a soft single unresolvedudar@y. The subtraction temjag"f ! takes care

of this last piece [5,29]. The azimuthal average is not perél in the Monte Carlo integration. Instead
a slicing parameten is introduced to regulate the phase space singularitiesectko spin-dependent
terms. It is important to note that there are no numericaltgé contributions proportional to a power of
Inn which cancel between the 5-, 4- or 3-parton contributiorechEcontribution itself is independent of

n in the limitn — 0.

4. MONTE CARLOINTEGRATION

The integration over the phase space is performed numlgrigith Monte Carlo techniques. Efficiency
of the Monte Carlo integration is an important issue, esglgcior the first moments of the event shape
observables. Some of these moments receive sizable adigrnb from the close-to-two-jet region.
In the 5-parton configuration this corresponds to (almds®gd unresolved partons. The generation of
the phase space is done sequentially, starting from a 2fpadnfiguration. In each step an additional
particle is inserted. In going from partons tan + 1 partons, the: + 1-parton phase space is partitioned
into different channels. Within one channel, the phaseemagenerated iteratively according to

d(bn—i—l = d¢nd¢unresolvedi,j,k (7)



The indicesi, j and k indicate that the new particlg is inserted between the hard radiatérand k.
For each channel we require that the product of invariats;;, is the smallest among all considered
channels. For the unresolved phase space measure we have

1 1 21
Siq
d(bunresolvedi,j,k = 32?3 /dxl/de/dSO @(1 — I —.%'2) (8)
0 0 0

We are not interested in generating invariants smaller tha) these configurations will be rejected by
the slicing procedure. Instead we are interested in gengriavariants with values larger thans) with

a distribution which mimics the one of a typical matrix elethéNe therefore generate ttwe+ 1)-parton
configuration from then-parton configuration by using three random numbersus, us uniformly
distributed in[0, 1] and by setting

T =1Npg, T2 =Tpg ©=2mus. 9)

The phase space parameters is an adjustable parameter of the order of the slicing pateme The
invariants are defined as

Sij = T1Sijk,  Sjk = T2Sijk, Sik = (1 — 1 — X2)8;jk- (10)

From these invariants and the valueyfve can reconstruct the four-momenta of the+ 1)-parton
configuration [30]. The additional phase space weight dubdansertion of thén + 1)-th particle is

L sijSjk ., o

= — . 11
w 1672 s n”nps (11)

Note that the phase space weight compensates the typiomladitactors; ;i /(s;;s;,) of a single emis-
sion. As mentioned above, the full phase space is constritetatively from these single emissions.
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