Name:	Student #:	

Show work for <u>all</u> problems involving numerical answers. Include units in answer where appropriate.

Some physical constants:

 $c=3X10^8 \text{ m/s}$

- 1) The special theory of relativity predicts that there is an upper limit to the speed of a particle. It therefore follows that there is also an upper limit on the following properties of a particle.
- A) the kinetic energy
- B) the total energy
- C) the linear momentum
- D) more than one of these
- (E) none of these
- 2) Three spaceships A, B, and C are in motion, as shown in the figure. The commander on ship B observes ship C approaching with a relative velocity of 0.78c. The commander also observes ship A, advancing in the rear, with a relative velocity of 0.31c. What is the velocity of ship C, relative to an observer on ship A?

3) Assume that a certain city consumes electrical energy at an average rate of 2.0×10^9 W. What would be the mass change in producing enough energy to keep this city running for 21 weeks?

$$E = mc^2$$
 $m = E/c^2$
 $E = 2 + 10^9 J/5 \times 3600 S / mm^2 \times 24 hours/day$
 $\times 7 days | week \times 21 weeks = 2.54 \times 10^{16} J$
 $E/c^2 = \frac{2.54 \times 10^{16} J}{(3 + 10^5 m/5)^2} = 0.28 kg$

4) A fiber optic cable (n=1.50) is submerged in water (n=1.33). What is the critical angle for light to stay inside the cable?

$$N_1 Sin \Theta_1 = N_2 Sin \Theta_2$$

$$Sin \Theta_c = \frac{1.33}{1.50} = 0.89$$

$$\Theta_c = 62.5^{\circ}$$

- 5) An object is placed 100 cm in front of a diverging lens with a focal length of magnitude 25 cm. A converging lens having a focal length of magnitude 33.33 cm is placed 30 cm past the first lens. Where is the final image formed?
- A) 30 cm after the second lens
- B) 20 cm in front of the first lens

image 2 $q = -20 \, \text{cm}$ I image of first lens is object V of second $\frac{1}{2}$ \frac

6) A spherical mirror is to be used to form an image five times the size of an object on a screen located 5 m from the object. What type of mirror is required? Where should the mirror be positioned relative to the object?

Peal Image

-0 has to be

concave minor

$$m = -5 = -\frac{9}{P}$$
 $p+5 = 5$
 $p = 5m p = 1.25$

- 7) As an electromagnetic wave travels through free space, its speed can be increased by
 - a) increasing its frequency
 - b) increasing its energy
 - c) increasing both its energy and momentum
 - d) all of the above will increase its speed
 - (e) none of the above will increase its speed
- 8) Monochromatic laser light of frequency 5.20×10^{14} Hz is shown on a pair of thin parallel slits, and the pattern is viewed on a screen 1.20 m away. The fifth bright fringes (not counting the central fringe) occur at ± 2.12 cm on either side of the central bright fringe. The entire apparatus is now immersed in a transparent liquid. When the experiment is repeated, the fifth bright fringes now occur at ± 1.43 cm from the central bright fringe. ($c = 3.00 \times 108 \text{ m/s}$)
- (a) How far apart are the slits?
- (b) What is the index of refraction of the liquid?

(b) What is the index of refraction of the liquid?

$$\frac{1}{4} = \frac{1}{4} = \frac$$

- refraction
- A) its speed, wavelength, and frequency all decrease.
- (B) its speed and wavelength decrease, but its frequency stays the same.
- C) its speed decreases but its wavelength and frequency both increase.
- D) its speed decreases but its frequency and wavelength stay the same.
- E) its speed increases, its wavelength decreases, and its frequency stays the same.
- 10) An object is placed in front of a lens which forms an image of the object.
- A) If the lens is convex, the image cannot be virtual.
- (B) If the image is real, then it is also inverted.
- C) If the image is real, then it is also upright.
- D) If the image is virtual, then it is also inverted.
- E) If the image is virtual, the lens must be a diverging lens.

11) A cube has a density of 2000 kg/m³ while at rest in the laboratory. What is the cube's density as measured by an experimenter in the laboratory as the cube moves through the laboratory at 90% of of the speed of light perpendicular to one of the faces.

 $Volume = L^3 (from cube's perspective)$ $Volume = L^2 * \frac{L}{2.29} = 0.436 L^3 (from lab perspective)$ $Volume = L^2 * \frac{L}{2.29} = 0.436 L^3 (from lab perspective)$ $So density = 2.29 \times 2000 \text{ kg/m}^3$ $= 4588 \text{ kg/m}^3$ $= 4588 \text{ kg/m}^3$ also relativistic increase of energy

also relativistic increase of energy but we want worry about that 12) A double-concave lens has equal radii of curvature of 15.1 cm. An object placed 14.2

12) A double-concave lens has equal radii of curvature of 15.1 cm. An object placed 14.2 cm from the lens forms a virtual image 5.29 cm from the lens. What is the index of refraction of the lens material?

A)1.90

B) 1.98

C) 1.82

D) 1.77

E) 1.67

$$\frac{1}{p} + \frac{1}{q} = \frac{1}{4}$$

$$\frac{1}{14.2 \text{ cm}} + \frac{1}{-5.29 \text{ cm}} = \frac{1}{4}$$

$$f = -8.43 \text{ cm} \quad (\frac{1}{2} + \frac{1}{2} + \frac{1$$