
!
!

Reflections from a thin film 
l  Part of the wave reflects 

from the top surface and 
part from the bottom 
surface 

l  The part that reflects 
from the top surface has 
a 180o phase change 
while the part that 
reflects from the  bottom 
does not 

l  When will there be 
constructive interference 
between the two 
reflected waves? 
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Reflections from a thin film 
l  Wave #2 has to travel further by a 

distance 2t (ignore any angle) 
l  So you might think that if 2t = 

mλ(where m is an integer) that 
you would get constructive 
interference 

l  But…ahh…the phase shift…so I 
get constructive interference 
when 2t = (m+1/2)λ	



l  But…ahh…I remember that the 
wavelength changes inside the 
film to λn=λ/n 

l  …so, finally,  I get constructive 
interference when  
◆  2t = (m+1/2) λn 
◆  or 2nt = (m+1/2)λ	
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Reflections from a thin film 
l  So I get destructive interference 

when  
◆  2t = m λn 
◆  or 2nt = mλ	



l  Two things influence whether I 
have constructive or destructive 
interference (or somewhere in 
between) 
◆  difference in path length 

traveled 
◆  any phase changes on 

reflection 
▲  in this example, I have 

one 180o phase shift 
because I’m going from 
air to a film with an index 
n back to air	



If this was	


a material 	


with an 	


index > n, then I’d	


have a 2nd  180o	


phase shift	
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Thin film coatings 
l  There’s a phase shift of 
π at each of the surfaces 
(assume that nglass>nfilm) 

l  Reflections for a given 
wavelength from a glass 
surface can be 
eliminated by choosing 
the thickness of the thin 
film to be one-quarter of 
the wavelength of the 
light in  the film 
◆  tfilm=λfilm/4=λair/(4n) 



!
!

As for example 

non-reflective	


coating for a 	


solar cell	
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Example 

l A very thin oil film 
(n=1.25) floats on 
water (n=1.33). What 
is the thinnest film 
that produces a 
strong reflection for 
green light with a 
wavelength of 500 
nm?  

…similar to	
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Thin film interference 
l Green cast of a cat’s 

eyes in a flash 
photograph caused 
by constructive thin 
film interference (for 
~500 nm) 
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Newton’s rings  
l  When a curved piece of glass is 

placed on a flat piece of glass 
and illuminated from above, 
observation reveals rings of color 

l  These are known as Newton’s 
rings (because he studied them) 

If the light source is monochromatic,	


then light and dark rings can be	


observed.	
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Newton’s rings 
l  A curved piece of glass sits on 

a flat piece of glass 
l  Both have indices of refraction 

n 
l  An incident ray of light reflects 

off of point P1 and point P2 
l  Ray 2 has to travel an extra 

distance 2P1P2 
l  As we get closer to point C, 

the path length difference 
decreases 
◆  how fast depends on the 

radius of curvature of the 
glass 
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Newton’s rings 
l  There’s an 180o phase 

shift on reflection from 
P2, but not from P1 

l  Expect constructive 
interference for 

◆  m=0,+/-1,+/-2,… 
l  Expect to have a dark 

spot in the middle 
◆  180o phase shift and 

no path length 
difference 

ΔL = 2P1P2 = (m +
1
2
λ)
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Newton’s rings 
l  Newton’s rings give a practical 

way of testing the flatness of a 
glass surface 

l  Place the surface to be tested on 
top of an optical flat (a glass 
surface known to be flat to within 
a fraction of a wavelength) then 
no regions of constructive 
interference should appear if the 
tested piece is flat and parallel to 
the optical flat 

l  If the test piece is flat but not 
parallel to the optical flat, the 
interference fringes are straight 
lines 

l  With this test, a surface  can be 
polished until no curved 
interference fringes appear 

optical flat	



test surface	



Have to be careful; if the surfaces	


are too flat, they will bond together.	
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Example 
l  Suppose I have two flat glass 

plates of length L=10 cm 
touching at one end, but 
separated by a wire of 
diameter d=0.01 mm at the 
other end 

l  Light shines down almost 
perpendicularly on the glass 
and is reflected up to the eye 

l  What is the distance x 
between the observed 
maxima if the incident (blue) 
light has a wavelength of 420 
nm?  

L	



d	


x	
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Example 
l  Here both pieces of glass are flat 
l  Only the ray reflected from the 

second plate undergoes a phase 
change of 180o 

l  If the distance between the plates 
is given by y, then the phase 
difference between the two waves 
is determined by ΔL=2y 

l  The phase difference is given by 

l  The total phase difference is 

l  For constructive interference, the 
total phase difference must be 

◆  where m is an integer  

L	



d	


x	



φΔL = 2π
2y
λ
=
4π y
λ

φ = φref + φΔL = π +
4π y
λ

2mπ = π + 4π y
λ

y	
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Example 
l  Solve this equation for y 

l  Use geometrical relation 
between similar triangles 

l  Difference in x from one 
maximum to another 
corresponds to a change in m 
of 1 

L	



d	


x	



y	



y = λ
4
2m −1( )

y
d
=
x
L

x =
L
d
y =

L
d
λ
4
2m −1( )

Δx =
L
d
y =

L
d
λ
4
2

Δx =
10X10−2m( ) 420X10−9m( )2

0.01X10−3m( )4
≈ 2mm

For glass plates 10 cm long, there will 
 be about 50 bands of constructive interference 
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Interferometers 
l  Optical interferometers are 

devices that utilize the 
interference between light 
waves to measure quantities 
such as wavelength, small 
path-length differences, wave 
speeds and indices of 
refraction 

l  A light source is split by a 
beam splitter (a half-silvered 
mirror) into two coherent 
waves that may travel different 
distances or through different 
media before they rejoin and 
interfere 



!
!

Michaelson interferometer 
l  We’ve already 

encountered the 
Michaelson 
interferometer, intended 
to measure the ether drift 
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Michaelson interferometer 
l  Mirror M2 can be moved 

forward or backward by 
turning a precision screw 

l  The waves travel 
distances r1=2L1 and 
r2=2L2 

l  The path length 
difference is Δr=2L2-2L1 

l  Constructive interference 
for Δr=mλ 

l  Destructive interference 
for Δr=(m+1/2)λ	
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Michaelson interferometer 
l  The technology of wavelength 

measurements using a Michelson 
interferometer became so good 
that in 1960 an international 
scientific committee decided to 
use it as the definition of a meter 

l  They defined the meter to be 
exactly 1,650,763.73 wavelengths 
of a particular orange color of 
light emitted by the Krypton 
isotope 86Kr 

l  Aim this light at a Michelson 
interferometer, then move the 
mirror M2 while counting out a 
pre-determined number of bright 
spots (corresponding to 
constructive interference) 

l  This then is defined to be a given 
distance (some fraction of a m)	
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LIGO interferometer 
l  Gravitational waves are ripples in the 

fabric of space-time. When they pass 
through LIGO's L-shaped detector 
they will decrease the distance 
between the test masses in one arm 
of the L, while increasing it in the 
other. These changes are minute: just 
10-16 centimeters, or one-hundred-
millionth the diameter of a hydrogen 
atom over the 4 kilometer length of 
the arm. Such tiny changes can be 
detected only by isolating the test 
masses from all other disturbances, 
such as seismic vibrations of the earth 
and gas molecules in the air. The 
measurement is performed by 
bouncing high-power laser light 
beams back and forth between the 
test masses in each arm, and then 
interfering the two arms' beams with 
each other. The slight changes in 
test-mass distances throw the two 
arms' laser beams out of phase with 
each other, thereby disturbing their 
interference and revealing the form of 
the passing gravitational wave. 

artist’s conception	
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2 LIGO sites 
l One in Washington, 

one in Lousiana 

black hole merger detected by	


LIGO this year	
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Neutron star collisions 
l  Kind of event that LIGO 

is looking for 
l  Where did all of the gold 

(and other heavy 
elements) in the solar 
system originate? 

l  Too much for production 
in early universe, stars, 
supernova explosions 

l  Maybe in the collision of 
neutron stars  
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Einstein@Home 

l  According to Albert Einstein, we 
live in a universe full of 
gravitational waves. He 
suggested that the movements of 
heavy objects, such as black 
holes and dense stars, create 
waves that change space and 
time. We have a chance to detect 
these waves, but they need your 
help to do it! Einstein@Home 
uses computer time donated by 
computer owners all over the 
world to process data from 
gravitational wave detectors. 
Participants in Einstein@Home 
download software to their 
computers, which process 
gravitational wave data when not 
being used for other computer 
applications, like word processors 
or games or PHY294H 
homework. 
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Measuring the index of refraction 
l  A Michelson interferometer can be 

used to measure indices of refraction, 
especially of gases 

l  First gas is pumped out of cell  
l  Number of wavelengths inside the cell 

is  

l  Then cell is filled with gas to be 
measured at 1 atm. Number of 
wavelengths inside the cell is  

l  Physical distance has not changed 
but number of wavelengths along the 
path has 

l  Each increase of one wavelength 
causes one bright-dark-bright fringe 
shift at the output, so index of 
refraction can be determined by 
counting fringe shifts as cell is filled 

Δm = m2 − m1 = (n −1)
2d
λvac

m1 =
2d
λvac

m2 =
2d
λ

=
2d

λvac / n
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Example 
l  A Michelson interferometer 

uses a helium-neon laser with 
a wavelength (in vacuum) of 
633.0 nm 

l  As a 4.0 cm thick cell is slowly 
filled with a gas, 43 bright-
dark-bright fringes shifts are 
seen and counted. What is the 
index of refraction of the gas 
(at this wavelength)?  

Δm = m2 − m1 = (n −1)
2d
λvac

n = 1+ λvacΔm
2d

= 1+ (6.330X10
−7m)(43)

2(0.0400m)
= 1.00034



!
!

Examples of interference: Holography 

l  A beam splitter divides a laser 
beam into two waves 

l  One wave illuminates the object 
of interest 

l  The light scattered by object is a 
complex wave but it is the wave 
you would see if you looked at the 
object from the position of the film 

l  The other wave is called the 
reference beam and is reflected 
directly towards the film 

l  The scattered light and reference 
light meet at the film and interfere 
with the film recording the 
interference pattern 

l  The interference pattern will be 
quite complex 
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Holography 
l  The hologram is played by 

sending just the reference 
beam through  it 

l  The reference beam diffracts 
through the transparent parts 
of a hologram 

l  The diffracted wave is exactly 
the same as the light wave 
that had been scattered by the 
object 

l  The diffracted reference beam 
reconstructs the original 
scattered wave 

l  The view is 3-dimensional 
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Diffraction 
l  Diffraction occurs when a 

wave passes through a small 
opening not so different in 
size from the wavelength of 
the wave 

l  The wave spreads out as we 
saw previously 

l  So instead of a bright spot just 
in the middle we see a 
spread-out distribution of light 
◆  but with some structure to 

it 
l  Type of diffraction we’re 

studying is called Fraunhofer 
diffraction 
◆  screen is far away from slit 
◆  …or there’s a converging 

lens just after the slit 
◆  Demo 

Don’t worry about the lens;	


Just think of the screen as far away	
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Where are the dark spots? 
l  Here’s where Huygen’s principle 

comes in handy 
l  As the wave travels through the 

slit, treat each point in the slit as a 
source of waves 

l  Light from one part of the slit can 
interfere with light from another 
part  

l  Let’s divide the slit into halves 
and consider the wavelets coming 
from point 1 and from point 3 

l  Wavelet 1 has to travel further 
l  IF the additional distance, a/2sinθ 

is equal to λ/2, then the wavelets 
from points 1 and 3 are exactly 
half of a wavelength out of phase 
◆  destructive interference 

l  Also true for 3 and 5, 2 and 4, any 
two points in the top and bottom 
of the slit separated by a/2 Can go through the same exercise	



dividing the screen in 4 parts, 6 parts,…	




