PHY294H

- Professor: Joey Huston
- email:huston@msu.edu
- office: BPS3230
- Homework will be with Mastering Physics (and an average of 1 handwritten problem per week)
 - ◆ Added problem 28.68 for 3rd MP assignment due Wed Feb. 3 as a hand-in problem
 - Help-room hours: 12:40-2:40 Tues; 3:00-4:00 PM Friday
- Quizzes by iclicker (sometimes hand-written)
- Course website: www.pa.msu.edu/~huston/phy294h/index.html
 - lectures will be posted frequently, mostly every day if I can remember to do so

Another example before we leave this chapter

What is:

- the potential at points a and b
- the potential difference between a and b
- the potential energy of a proton at a and b
- the speed at point b of a proton that was moving to the right at point a with a speed of 4 X 10⁵ m/s
- the speed at point a of a proton that was moving to the left at point b with a speed of 5.3 X 10⁵ m/s

Another example before we leave this chapter

- Suppose the proton isn't heading towards the positive charge head-on, but at a small angle
- Then the path travelled will look like that on the right
- Suppose the proton's speed at point b is 5.3 X 10⁵ /ms
- What is the speed at point a?

→ 3 cm

Electric potential and electric field

- We've talked so far about the connections between force and potential energy, between force and the electric field, and between the potential and the potential energy
- Now in this chapter, we'll study the relationship between the electric field and the electric potential

Potential

 We can write the change in potential enegy in terms of the work done by the field

$$\Delta U = -W(i - > f) = -\int_{s_i}^{s_f} \vec{F} d\vec{s}$$

- But we can also write the potential energy as U=qV and the force as F=qE
- Thus, we can write the potential difference in terms of an integral over the electric field

$$\Delta V = V(s_f) - V(s_i) = -\int_{s_i}^{s_f} E ds = -\int_{s_i}^{s_f} E_s ds$$

Because electrostatic forces are conservative, the potential difference is independent of the path taken

For a uniform electric field, we can write simply $\Delta V = -E_s \Delta s$

 The electric field is the negative of the area given in green (the integral of the electric field over x)

$$\Delta V = V(s_f) - V(s_i) = -\int_{s_i}^{s_f} E ds = -\int_{s_i}^{s_f} E_s ds$$

This is a graph of the *x*-component of

the electric field along the x-axis. The potential is zero at the origin. What is the potential at x = 1m?

This is a graph of the *x*-component of

the electric field along the x-axis. The potential is zero at the origin. What is the potential at x = 1m?

C. 0 V.

E. -2000 V.

Potential of a point charge

- Let's first define the reference potential to be 0 at r=infinity
- And then write

$$\Delta V = V(infinity) - V(r) = - \int E_r dr$$

 We know the electric field from a point charge

$$E_r = \frac{1}{4\pi\varepsilon_o} \frac{q}{r^2} \mathring{r}$$

Let's go back to the charged disk

We found that the electric field had the form $_{\mathrm{charge}\;Q}^{\mathrm{Disk\;of}}$ of

$$E = \frac{Q}{2\pi R^{2} \varepsilon_{o}} [1 - \frac{z}{(z^{2} + R^{2})^{1/2}}]$$

Can we calculate the potential from the field?

$$V(z) = V(\infty) + \int_{z}^{\infty} E_{z}(z)dz$$

$$= 0 + \frac{Q}{2\pi R^{2} \varepsilon_{o}} \int_{z}^{\infty} \left[1 - \frac{z}{\left(z^{2} + R^{2}\right)^{1/2}} \right]$$

$$= 0 + \frac{Q}{2\pi R^{2} \varepsilon_{o}} \left[1 - \frac{z}{\left(z^{2} + R^{2}\right)^{1/2}} \right]$$

let
$$u=z^2+R^2$$

$$= 0 + \frac{Q}{2\pi R^{2} \varepsilon_{o}} \int_{z}^{\infty} \left[1 - \frac{z}{\left(z^{2} + R^{2}\right)^{1/2}} \right]$$

$$= \frac{Q}{2\pi R^{2} \varepsilon_{o}} \left[\sqrt{z^{2} + R^{2}} - z \right]$$

$$= \frac{Q}{2\pi R^{2} \varepsilon_{o}} \left[\sqrt{z^{2} + R^{2}} - z \right]$$

$$= \frac{Q}{2\pi R^{2} \varepsilon_{o}} \left[\sqrt{z^{2} + R^{2}} - z \right]$$

Potential from a uniform line of charge

- What is the potential from an infinite line of charge with charge density λ as a function of R, the distance perpendicular to the line of charge?
- We know the electric field from an infinite line of charge; it has only a radial component

$$E = \frac{\lambda}{2\pi\varepsilon_{o}R}$$

$$\Delta V = -\int E_{r}dr = -\frac{\lambda}{2\pi\varepsilon_{o}}\int \frac{dr}{r}$$

$$\Delta V = -\frac{\lambda}{2\pi\varepsilon_{o}}\int_{a}^{R} \frac{dr}{r} = -\frac{\lambda}{2\pi\varepsilon_{o}}\ln r \Big|_{a}^{R}$$

$$\Delta V = -\frac{\lambda}{2\pi\varepsilon_{o}}\ln \frac{R}{a}$$

y

Let me choose the potential to be zero at r=a

Note that I can't set V to be zero at infinity since the log of infinity is infinite

Since the line is infinite, we can't get far away from it

Electric field from the potential

- We saw earlier that
 - $\Delta V = -E_s \Delta s$
 - Thus, $E_s = -\Delta V/\Delta s$
 - ...in the s direction
- In the limit that ∆s goes to zero, we can write
 - \bullet E_s = dV/ds
 - so for s = r, we can write for a point charge

A very small displacement of charge *q*

 E_s , the component of \vec{E} in the direction of motion, is essentially constant over the small distance Δs .

$$E_r = -\frac{dV}{dr} = -\frac{d}{dr} \left(\frac{1}{4\pi\varepsilon_o} \frac{q}{r} \right) = \frac{1}{4\pi\varepsilon_o} \frac{q}{r^2}$$

Electric field from the potential

In general...

$$d\vec{s} = dx\vec{i} + dy\vec{j} + dz\vec{k}$$

$$dV = -Eds = -E_x dx - E_y dy - E_z dz$$
 of charge q

A very small displacement of charge *q*

 E_s , the component of \vec{E} in the direction of motion, is essentially constant over the small distance Δs .

So we can write

$$dV = \frac{\partial V}{\partial x}dx + \frac{\partial V}{\partial y}dy + \frac{\partial V}{\partial z}dz$$

and

$$E_x = -\frac{\partial V}{\partial x}, E_y = -\frac{\partial V}{\partial y}, E_z = -\frac{\partial V}{\partial z}$$

In three dimensions, we can find the electric field from the electric potential as:

$$\vec{E} = E_x \hat{\imath} + E_y \hat{\jmath} + E_z \hat{k} = -\left(\frac{\partial V}{\partial x} \hat{\imath} + \frac{\partial V}{\partial y} \hat{\jmath} + \frac{\partial V}{\partial z} \hat{k}\right)$$

Example

- Suppose V = Axy² Byz
- What is E?

Electric field from a charged ring

We know the potential is

$$V_{ring} = \frac{1}{4\pi\varepsilon_o} \frac{Q}{\sqrt{z^2 + R^2}}$$

$$E = E_z = -\frac{dV}{dz} = -\frac{d}{dz} \left(\frac{1}{4\pi\varepsilon_o} \frac{Q}{\sqrt{z^2 + R^2}} \right)$$

$$E_{ring} = \frac{1}{4\pi\varepsilon_o} \frac{zQ}{(z^2 + R^2)^{3/2}}$$

Example

- \bullet E_s = dV/ds
- ...or in this case
- \bullet E_x = dV/dx

Useful table

Charge Configuration	Magnitude of Electric Field	Electric Potential	of Zero Potential
Point charge	$\frac{q}{4\pi\epsilon_0 r^2}$	$\frac{q}{4\pi\epsilon_0 r}$	œ
Infinite line of uniform charge density λ	$\frac{\lambda}{2\pi\epsilon_0 r}$	$-\frac{\lambda}{2\pi\epsilon_0} \ln \frac{r}{a}$	r = a
Parallel, oppositely charged plates of uniform charge density σ, separation d	$\frac{\sigma}{\epsilon_0}$	$\Delta V = - E d = - \frac{\sigma d}{\epsilon_0}$	Anywhere
Charged disk of radius R , along axis at distance x	$\frac{Q}{2\pi\epsilon_0} \bigg(\!\frac{\sqrt{R^2+x^2}-x}{\sqrt{R^2+x^2}}\!\bigg)$	$\frac{Q}{2\pi\epsilon_0 R^2} (\sqrt{R^2+x^2}-x)$	00)
Charged spherical shell of radius R	$r \ge R$: $\frac{Q}{4\pi\epsilon_0 r^2}$	$r > R$: $\frac{Q}{4\pi\epsilon_0 r}$	00
	r < R: 0	$r \le R$: $\frac{Q}{4\pi\epsilon_0 R}$	00
Electric dipole	Along bisecting axis only, far away: $\frac{p}{4\pi\epsilon_0 r^3}$	Everywhere, far away: $\frac{\rho \cos \theta}{4\pi\epsilon_0 r^2}$	œ
Charged ring of radius R, along axis	$\frac{Qx}{4\pi\epsilon_0(R^2+x^2)^{3/2}}$	$\frac{Q}{4\pi\epsilon_0\sqrt{R^2+x^2}}$	00
Uniformly charged nonconducting solid sphere of radius R	$r \ge R$: $\frac{Q}{4\pi\epsilon_0 r^2}$	$r \geq R : \frac{Q}{4\pi\epsilon_0 r}$	00
	$r < R$: $\frac{Qr}{4\pi\epsilon_0 R^3}$	$r < R$: $\frac{Q}{8\pi\epsilon_0} \left(3 - \frac{r^2}{R^2} \right)$	00

Equipotential surfaces

- Suppose I have the equipotential surfaces shown to the right
- Let me label some points
- What are the E field directions?
- Is $E_a = E_b$?
- What about E_c and E_d ?

Equipotential surface

- E_a and E_c look to be about the same magnitude
- E_b < E_{a,c}E_b > E_d

At which point is the electric field stronger?

- A. At x_A .
- B. At x_B .
- C. The field is the same strength at both.
- D. There's not enough information to tell.

At which point is the electric field stronger?

- **A.** At x_A . |E| = slope of potential graph
 - B. At $x_{\rm B}$.
 - C. The field is the same strength at both.
 - D. There's not enough information to tell.

