PHY294H

- Professor: Joey Huston
- email:huston@msu.edu
- office: BPS3230
- Homework will be with Mastering Physics (and an average of 1 handwritten problem per week)
 - → Help-room hours: 12:40-2:40 Tues; 3:00-4:00 PM Friday
- Quizzes by iclicker (sometimes hand-written)
- Average on exam is around 65; will pass back tomorrow
- Course website: www.pa.msu.edu/~huston/phy294h/index.html
 - lectures will be posted frequently, mostly every day if I can remember to do so

Conductivity and resistivity

TABLE 30.2 Resistivity and conductivity of conducting materials

Material	Resistivity (Ω m)	Conductivity $(\Omega^{-1} m^{-1})$	
Aluminum	2.8×10^{-8}	3.5×10^{7}	
Copper	1.7×10^{-8}	6.0×10^{7}	
Gold	2.4×10^{-8}	4.1×10^{7}	
Iron	9.7×10^{-8}	1.0×10^{7}	
Silver	1.6×10^{-8}	6.2×10^{7}	
Tungsten	5.6×10^{-8}	1.8×10^{7}	
Nichrome*	1.5×10^{-6}	6.7×10^{5}	
Carbon	3.5×10^{-5}	2.9×10^{4}	

^{*}Nickel-chromium alloy used for heating wires.

Temperature dependence of resistivity

- Before we just quoted a value of resistivity for each material
- However, the resistivity has a temperature dependence, with most materials obeying the formula

		- 4		/-		_ \	ъ.
\cap	\cap	11	$+\alpha$ ($\binom{1}{0}$	Ш
ν	ν_{\wedge}		ı 'Wı				"
		_	•	•		\mathbf{u}	

- ...where ρ_o is the resistivity at T_o (room temperature), and α is the temperature coefficient.
- Note that α is positive, i.e. the resisitivity increases as the temperature increases and decreases as the temperature decreases
- At some point, it looks like the resistivity would go to zero

Material	Resistivity ρ at 20°C $\mu\Omega$ · cm	Temperature coefficient α at 20°C, °C ⁻¹
Aluminum	2.83	0.0039
Brass	6.4-8.4	0.0020
Copper		
Hard-drawn	1.77	0.00382
Annealed	1.72	0.00393
Iron	10.0	0.0050
Silver	1.59	0.0038
Steel	12-88	0.001-0.005

Rules

 Potential decreases in going from + terminal to terminal

- And increases in going from - terminal to + terminal
- Potential decreases in going across resistor in direction of current flow

 And increases when going across resistor against the direction of current flow

Potential decreases

Simple circuit

current is opposite direction of what we drew

Energy considerations

 When charge +q goes from terminal of battery to + terminal it gains a potential energy of ΔU=qε

 The rate at which energy is gained is given by P=ΔU/ dt=dq/dt(ε) = Iε with units of J/

s=W(atts)

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

Energy gained is energy lost

- Energy added by battery is lost by electrons during their collisions with atoms and eventually ends up as heat
 - i.e. the resistor gets warm
- Consider the work done by the electric field for an electron travelling a distance d

$$W = F\Delta s = qEd$$

 The energy transferred to the lattice when the electron collides with an atom then is

$$\Delta E_{collision} = \Delta K = qEd$$

The electric field causes electrons to speed up. The energy transformation is $U \rightarrow K$.

Collisions transfer energy to the lattice. The energy transformation is $K \rightarrow E_{th}$.

- •In a length L, the energy transferred is $\Delta E = qEL = q\Delta V_R$
- The power dissipated in the resistor then can be written as

$$P_R = \frac{dE}{dt} = \frac{dq}{dt} \Delta V_R = I \Delta V_R = P_{battery}$$

Power in electrical circuits

 Can write the power in the following forms

$$P = I\Delta V_R = I^2 R = \frac{\Delta V_R^2}{R}$$

- If I integrate power over time, I have units of energy
 - kW-hr
 - ◆ 1000 J/s*3600s =3.6X10⁶ J/kW-hr

Example

• A 100 W (120V) lightbulb contains a 7.0 cm long tungsten filament. The high-temperature resistivity of tungsten is 9.0X10⁻⁷ Ωm. What is the diameter of the filament?

Resistors in series

- Consider two (or more) resistors in series
- The same current passes through both resistors
- The total voltage drop across the two resistors is the sum of the voltage drops across each resistor
- We'd like to find an equivalent resistance for which the current would be the same given the same voltage drop

