PHY294H - Professor: Joey Huston - email:huston@msu.edu - office: BPS3230 - Homework will be with Mastering Physics (and an average of 1 handwritten problem per week) - → Help-room hours: 12:40-2:40 Tues; 3:00-4:00 PM Friday - Quizzes by iclicker (sometimes hand-written) - Average on exam is around 65; will pass back tomorrow - Course website: www.pa.msu.edu/~huston/phy294h/index.html - lectures will be posted frequently, mostly every day if I can remember to do so # Conductivity and resistivity **TABLE 30.2** Resistivity and conductivity of conducting materials | Material | Resistivity (Ω m) | Conductivity $(\Omega^{-1} m^{-1})$ | | |-----------|----------------------|-------------------------------------|--| | Aluminum | 2.8×10^{-8} | 3.5×10^{7} | | | Copper | 1.7×10^{-8} | 6.0×10^{7} | | | Gold | 2.4×10^{-8} | 4.1×10^{7} | | | Iron | 9.7×10^{-8} | 1.0×10^{7} | | | Silver | 1.6×10^{-8} | 6.2×10^{7} | | | Tungsten | 5.6×10^{-8} | 1.8×10^{7} | | | Nichrome* | 1.5×10^{-6} | 6.7×10^{5} | | | Carbon | 3.5×10^{-5} | 2.9×10^{4} | | ^{*}Nickel-chromium alloy used for heating wires. ### Temperature dependence of resistivity - Before we just quoted a value of resistivity for each material - However, the resistivity has a temperature dependence, with most materials obeying the formula | | | - 4 | | /- | | _ \ | ъ. | |--------|----------------|-----|-------------|----|--|----------------|----| | \cap | \cap | 11 | $+\alpha$ (| | | $\binom{1}{0}$ | Ш | | ν | ν_{\wedge} | | ı 'Wı | | | | " | | | | _ | • | • | | \mathbf{u} | | - ...where ρ_o is the resistivity at T_o (room temperature), and α is the temperature coefficient. - Note that α is positive, i.e. the resisitivity increases as the temperature increases and decreases as the temperature decreases - At some point, it looks like the resistivity would go to zero | Material | Resistivity ρ at 20°C $\mu\Omega$ · cm | Temperature coefficient α at 20°C, °C ⁻¹ | |------------|---|--| | Aluminum | 2.83 | 0.0039 | | Brass | 6.4-8.4 | 0.0020 | | Copper | | | | Hard-drawn | 1.77 | 0.00382 | | Annealed | 1.72 | 0.00393 | | Iron | 10.0 | 0.0050 | | Silver | 1.59 | 0.0038 | | Steel | 12-88 | 0.001-0.005 | ### Rules Potential decreases in going from + terminal to terminal - And increases in going from - terminal to + terminal - Potential decreases in going across resistor in direction of current flow And increases when going across resistor against the direction of current flow Potential decreases ## Simple circuit current is opposite direction of what we drew ## **Energy considerations** When charge +q goes from terminal of battery to + terminal it gains a potential energy of ΔU=qε The rate at which energy is gained is given by P=ΔU/ dt=dq/dt(ε) = Iε with units of J/ s=W(atts) Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley ## Energy gained is energy lost - Energy added by battery is lost by electrons during their collisions with atoms and eventually ends up as heat - i.e. the resistor gets warm - Consider the work done by the electric field for an electron travelling a distance d $$W = F\Delta s = qEd$$ The energy transferred to the lattice when the electron collides with an atom then is $$\Delta E_{collision} = \Delta K = qEd$$ The electric field causes electrons to speed up. The energy transformation is $U \rightarrow K$. Collisions transfer energy to the lattice. The energy transformation is $K \rightarrow E_{th}$. - •In a length L, the energy transferred is $\Delta E = qEL = q\Delta V_R$ - The power dissipated in the resistor then can be written as $$P_R = \frac{dE}{dt} = \frac{dq}{dt} \Delta V_R = I \Delta V_R = P_{battery}$$ #### Power in electrical circuits Can write the power in the following forms $$P = I\Delta V_R = I^2 R = \frac{\Delta V_R^2}{R}$$ - If I integrate power over time, I have units of energy - kW-hr - ◆ 1000 J/s*3600s =3.6X10⁶ J/kW-hr ## Example • A 100 W (120V) lightbulb contains a 7.0 cm long tungsten filament. The high-temperature resistivity of tungsten is 9.0X10⁻⁷ Ωm. What is the diameter of the filament? #### Resistors in series - Consider two (or more) resistors in series - The same current passes through both resistors - The total voltage drop across the two resistors is the sum of the voltage drops across each resistor - We'd like to find an equivalent resistance for which the current would be the same given the same voltage drop