PHY294H

Professor: Joey Huston email:huston@msu.edu office: BPS3230 textbook: Knight, Physics for Scientists and Engineers: A Strategic Approach, Vol. 4 (Chs 25-36), 3/E + MasteringPhysics 0321844297 MasteringPhysics (complete ebook) access card stand alone 0321753054 Homework will be with Mastering Physics (and an average of 1 hand-written problem per week) first MP assignment due Wed Jan. 20; first hand-written problem as well Quizzes by iclicker (sometimes hand-written) ш Lectures: MTWTh 11:30-12:20 Course website: www.pa.msu.edu/~huston/phy294h/index.html lectures will be posted frequently, mostly every day if I can remember to do so

Electric field from a point charge

I put my (imaginary) test charge q_o at some point in space, and I measure the force

I can then determine the electric field from the point charge q

$$\vec{E}_{g}(\vec{r}) = \frac{\vec{\beta}}{q_{0}} = \frac{1}{mr} \frac{g}{r^{2}} \hat{r}$$

The electric field that I measure has nothing to do with the test charge q_0

it's there whether or not I use a test charge to measure it

© 2003 Thomson - Brooks Cole

Electric field from a point charge

☐ Thus,

the electric field from the point charge q is

© 2003 Thomson - Brooks Cole

The unit vector, **r**-hat

Define a unit vector $\hat{\mathbf{r}}$ which points *away from* the charge.

$$\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \hat{r}$$
 (electric field of a point charge) (25.15)

Note that

E field
vectors are
drawn larger
at points
closer to
the charge
(because |E|
is larger)

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

so electric field points away from + charge

and towards – charge

Shape of the electric field function

$$|\mathbf{E}_{q}| = \frac{1}{4\pi \, \epsilon_{0}} \frac{q}{r^{2}}$$

The electric field from a point charge goes to infinity as $r\rightarrow 0$; and it goes to 0 as $r\rightarrow \infty$

At which point is the electric field stronger?

- A. Point A.
- B. Point B.
- C. Not enough information to tell.

At which point is the electric field stronger?

A. Point A.

- B. Point B.
- C. Not enough information to tell.

What is the direction of the electric field at the black dot?

- A. A.
- B. B.
- C. C.
- D. D.
- E. None of these.

What is the direction of the electric field at the black dot?

■ What is the electric field at the center of the square?

$$E = E_1 + E_2 + E_3 + E_4$$

■ Note that this is a vector addition of the electric fields from all 4 charges.

Suppose

•
$$q_1 = +2 \mu C$$

•
$$q_2 = +3 \mu C$$

•
$$q_2 = +3 \mu C$$

• $q_3 = -3 \mu C$

•
$$q_a = +2 \mu C$$

Now put a charge q (+1 μ C) at the center of the square?

What is the force acting on the charge?

$$\mathbf{F} = \mathbf{q} \mathbf{E}$$

$$|E| = 108,000 \text{ N/C}$$

$$|F| = 0.108 \text{ N}$$

What if I put a charge q $(-1 \mu C)$ at the center of the square?

What is the force acting on the charge?

The electric field from the charges on the square has not changed.

The force on q is in the opposite direction as the electric field since q is negative; same magnitude as before, though.

• What if I change the value of q_3 ?

- $q_4 = + 2 \mu C$
- What is the value of **E** at the center?
- What is the value of **F** on a charge q that I put at the center?

Electric fields to know and love

- Four different situations shown to the right will often be encountered in the problems you'll be solving for this course (and even in real life)
- ...or even if the problem doesn't quite look like one of these, you can make some approximations
- For example, if I get very far away from a (finite) charge distribution, I should find an electric field that looks like that due to a point charge
 - this is a good limiting circumstance to take to see if you've done a calculation correctly

A point charge An infinitely long charged wire An infinitely wide charged plane A charged sphere

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

All these cases have a lot of symmetry. Remember that when we get to Gauss' Law.

Electrical dipoles

- We've encountered electric dipoles before, either induced or permanent.
- Now we can calculate the electric field from a dipole

This dipole is *induced*, or stretched, by the electric field acting on the + and - charges.

A water molecule is a *permanent* dipole because the negative electrons spend more time with the oxygen atom.

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

...let's set it up on the blackboard

Dipole moments

$$\mathbf{p} = \mathbf{q} \mathbf{s}$$

- ☐ Define the *dipole moment p*
 - see the figure
 - **p** is a vector
 - $|\mathbf{p}| = q s$
- Then we can write the formula for the electric field of a dipole on the axis of the dipole as

$$\mathbf{E}_{\text{dipole}} \approx \frac{1}{4\pi \, \epsilon_0} \, \frac{2 \, \mathbf{p}}{r^3}$$

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

Note that the dipole electric field drops off as $1/r^3$ rather than the $1/r^2$ of a point charge.

Electric dipole

 Along the x axis, the general formula for the electric field from a dipole is

$$\mathbf{E}_{\text{dipole}} \approx -\frac{1}{4\pi \, \epsilon_0} \, \frac{\mathbf{p}}{r^3}$$

 This is opposite the direction of the dipole moment, and half of the magnitude of the field along the y-axis

Copyright @ 2004 Pearson Education, Inc., publishing as Addison Wesley

☐ Remember the demo/calculation with the water

- In the water molecule there is an effective separation of + and − charge by 3.9 X 10⁻¹¹ m
- So now we can say it has a dipole moment $p = (1.6 \times 10^{-19} \text{ C}) (3.9 \times 10^{-11} \text{ m})$

$$= 6.2 \times 10^{-30} \, \text{C} \cdot \text{m}$$

■ We can calculate the electric field on the dipole axis according to the formula on the previous page

$$\mathbf{E}_{\text{dipole}} \approx \frac{1}{4\pi \, \varepsilon_0} \, \frac{2 \, \mathbf{p}}{r^3}$$

2 cm away from the molecule, the E field

Suppose we transferred 1E9 electrons from the rod by rubbing it with the silk.

This dipole is *induced*, or stretched, by the electric field acting on the + and – charges.

A water molecule is a *permanent* dipole because the negative electrons spend more time with the oxygen atom.

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

There are equal but opposite forces on the glass rod and on the molecule.

F(on the rod) =
$$q_{rod} E_{dipole}$$

= $(1.6 \times 10^{-10} \text{ C}) (1.4 \times 10^{-14} \text{ N/C})$
= $2.24 \times 10^{-24} \text{ N}$

Electric field from 3 equal + point charges

- \Box In general, $\mathbf{E}_{net} = \mathbf{E}_1 + \mathbf{E}_2 + \mathbf{E}_3$
- ☐ I can start by simplifying (for this problem)
 - no component along z direction so E_z=0
 - (E₃)_y and (E₁)_y will cancel each other out so there is only a component along the x direction
 - $\Box (E_{\text{net}})_{x} = (E_{1})_{x} + (E_{2})_{x} + (E_{3})_{x} = 2$ $(E_{1})_{x} + (E_{2})_{x}$

$$\mathbf{E}_{\text{net}} = \frac{q}{4\pi \, \epsilon} \left[\frac{1}{x^2} + \frac{2x}{(x^2 + d^2)^{3/2}} \right] \hat{\mathbf{i}}$$

$$\Rightarrow \text{Far from the charges}$$

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

Limiting cases

$$E_{net} = \frac{q}{4\pi \epsilon_0} \left[\frac{1}{x^2} + \frac{2x}{(x^2 + d^2)^{3/2}} \right] \hat{i}$$

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

Electric Field Lines ...

... indicate the direction and magnitude of the electric field in a region of space

Can we actually **see** the field lines? No, but ...

Single Point Charge

Electric Dipole

© 2003 Thomson - Brooks Cole

2 equal positive charges

© 2003 Thomson - Brooks Cole

Drawing and interpreting electric field lines

- Pretty useful idea but we need some guidelines
- electric field lines point in direction of field at that point in space
- → the total number of electric field lines is proportional to the size of the charge
- close to an electric charge, the field lines look like that due to the point charge alone
- → the density of field lines is proportional to the strength of the electric field
- electric field lines originate on + charges and terminate on - charges
- → no 2 field lines can cross in free space
 - don't cross the streams

The electric field is stronger where the electric field vectors are longer and where the electric field lines are closer together.

26