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PHY294H 
l  Professor: Joey Huston  
l  email:huston@msu.edu 
l  office: BPS3230 
l  Homework will be with Mastering Physics (and an average of 1 hand-

written problem per week) 
◆  2nd MP assignment due Wed Jan. 27; second hand-written 

problem (27.51) as well; I added it on to the MP assignment 
for convenience, but it still needs to be turned in with a 
complete solution 

◆  Help-room hours: 12:40-2:40 Tues; 3:00-4:00 PM Friday 
l  Quizzes by iclicker (sometimes hand-written) 
l  Course website: www.pa.msu.edu/~huston/phy294h/index.html 

◆  lectures will be posted frequently, mostly every day if I can 
remember to do so 
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Gauss’ law 
l  Caveats 

◆  Gauss’ law applies only to 
a closed surface 

◆  Gaussian surface is not a 
physical surface, just a 
mathematical construct 

◆  can’t find the electric field 
from Gauss’ law alone; 
need to apply it in 
situations where we can 
already guess at the 
shape  of the field 

l  Let’s start with the field 
outside of a spherical 
charge distribution 



!
!

Gauss’ law applications 
l Now consider the 

electric field inside a 
sphere of charge 

l Again, choose a 
spherical Gaussian 
surface, or radius r < 
R 

l Electric field 
increases linearly 
inside the sphere and 
then drops off as 1/r2 

outside 
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A harder integral 
l  Suppose I have a wire 

with a uniform charge 
density λ passing 
through the center of a 
Gaussian surface (a 
cube) of side L 

l  What is the electric flux 
through the cube?  

l  I’ll do this the  easy way 
and the hard way 

l  Easy way: 
◆  Qin/εo = λL/εo 
◆  Qin=λL 

l  Hard way: 
◆  evaluate the integral 
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A harder integral 
l  Let’s make life a bit easier for 

ourselves 
l  We know the electric field 

from a long straight line of 
charge points perpendicularly 
away from the line 
◆  so there is no component of 

the electric  field along the z-
axis 

◆  so E.dA will be zero for both 
the top and bottom of the 
cube 

l  So I just  have to integrate  
over the 4 sides of the cube 
◆  but from the symmetry each 

side should give the same 
result, so I just  have to do 
one  side 

◆  but neither r nor cosθ is 
constant so this is not a trivial 
integral  

dA	



…to the whiteboard	
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Spherical shell 
l  Let’s consider a 

Gaussian surface inside 
a uniformly charged 
hollow spherical shell 

l  By symmetry, E should 
be  uniform on spherical 
surface of radius r 
◆  E4πr2 = Qin/εo 
◆  Qin = 0 
◆  E=0 
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Charged conductors 
l  Thus the electric field 

inside a conductor (due 
to static charges)  must 
be zero 

l  Since the electric field is 
zero, the electric flux 
must be zero through 
any surface in the interior 
of a conductor 

l  If the flux is 0,  then the 
charge enclosed by any 
Gaussian surface must 
be 0 

l  All free charge then 
resides on the surface of 
a conductor 
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Electric field near a conductor 
l  In addition, we can state 

the the electric field near 
the surface of a 
conductor has to be 
perpendicular to that 
surface 

l  Suppose that the electric 
field had a component 
parallel to the surface 
◆  then this would cause a 

force on the conduction 
electrons that would cause 
them to move, until the 
electric field at the surface 
was perpendicular again 
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Sharp edges 
l  If I have a charged object with 

a pointy end, then the electric 
field lines are more 
concentrated there 
◆  because electrons are 

more concentrated there 
l  So lightning rods have pointy 

ends 

demo	
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Lightning rods 

•  In the United States, the pointed 
lightning rod conductor, also called 
a “lightning attractor” or “Franklin 
rod” was invented by Benjamin 
Franklin in 1749 as part of his 
groundbreaking explorations of 
electricity 

•  Franklin speculated that with an 
iron rod sharpened to a point at the 
end,"The electrical fire would, I 
think, be drawn out of a cloud 
silently, before it could come near 
enough to strike [...]." 
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Electric field near a conductor 

l Let’s try a cylindrical 
Gaussian surface to 
calculate the value of 
E near the surface 

l The only contribution 
is  from the top of the 
cylinder 
◆  EA = qin/εo 
◆  qin = ηA 
◆  E = η/εo 
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Suppose the interior of a conductor is hollow 

l There is no electric 
field inside the 
conductor 

l So there is no electric 
flux around the 
Gaussian surface 
shown 

l So no net charge 
inside the hollow 
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Conductors 
l  Let’s put a positive charge 

inside the hollow 
l  If I put a Gaussian surface 

inside the hollow, there is a 
non-zero electric flux, so 
there’s got to be a non-zero 
field 

l  But if the Gaussian surface is 
outside the hollow, then the E 
field has to be zero 
◆  thus the flux has to be 

zero 
◆  and the charge enclosed 

has to be zero 
◆  electrons must move to 

the surface of the hollow to 
cancel out the electric field 
due to the postive charge 
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Use conductors to screen electric fields 

demo	
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iClicker question 
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iClicker question 

The electric field	


inside of the 	


conductor is zero. 	


So the Gaussian 	


surface integral 	


inside the conductor	


is zero. So the 	


charge enclosed	


must be zero. 	
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iClicker question 
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iClicker question 

The shell is 	


electrically neutral. 	
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Problem 

l Given the fluxes 
through the Gaussian 
surfaces, what are 
the values of the 
charges q1, q2 and 
q3? 
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Step back: how well do we know Gauss’ and Coulomb’s law 

l Gauss’ law is 
equivalent to 
Coulomb’s law only 
because Coulomb’s 
law is an inverse 
square law 

l How well is 
Coulomb’s law/
Gauss’ law known?  

l  Joseph Priestly knew that 
there is no gravitational field 
within a spherically symmetric 
mass distribution and 
speculated that a similar 
behavior of the gravitational 
and electric force laws would 
explain a charged cork ball 
placed inside the a charged 
metal container is not 
attracted to the walls of the 
container 
◆  this effect was first seen by 

Benjamin Franklin who told 
Priestly 
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Deviations from inverse square law 

l John Robison did 
experimental tests in 
1769 of the distance 
behavior of the forces 
between charges 

l Robison expressed 
the uncertainties in 
his result as a 
deviation from 
Coulomb’s law 
◆  F α 1/r2+/-δ 

Investigator Date Maximum δ 

Robison 1769 0.06 
Cavendish 1773 0.02 

Coulomb 1785 0.10 

Maxwell 1873 5 X 10-5 

Plimpton and 
Lawler 

1936 2 X 10-9 

Williams, 
Fawler and 
Hill 

1971 3 X 10-16 

Constraints on δ have improved	



Now verified to better than 1 part per billion from atomic scale to galactic scale.  	
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Electric potential 
l  We’ve discussed the 

similarities before between the 
force between two charges 
and the force between two 
masses 

l  Any force that is a function of 
position only is a conservative 
force which means that we 
can associate a potential 
energy with it 
◆  Emech = K + U 
◆  ΔEmech = ΔK + ΔU 

l K = ΣKi = Σ1/2mivi
2 

◆  sum of all kinetic 
energies in problem 

l U = interaction 
energy of  the system 
= potential energy 

l Most often talk about 
change  in potential 
energy due to work 
performed by 
conservative force 
◆  ΔU = Uf - Ui = - Wforce 

 


F = q1q2

r2
r̂

 


F = −G m1m2

r2
r̂
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Work 
l Work that a constant 

force does is 
◆  W = F.Δr = FΔr cosθ 

l If F or Δr is not 
constant, then have 
to integrate F.ds over 
the path travelled 

…for a conservative force, the work performed	


is independent of the path	
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Uniform fields 
l  Wgrav = mg Δr cos0o         

   = mgyi -mgyf 
l  ΔUgrav = Uf - Ui = -Wgrav    

     = mgyf -mgyi 

l  Welec = FΔr cos0o            
   = qEsi -qEsf 

l  ΔUelec = Uf -Ui = -Welec         
     = qEsf -qEsi 

U=Uo +mgy	



Uelec = Uo + qEs	
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Potential energy 
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Uniform fields 
l  Welec = FΔr cos0o  

   = qEsi -qEsf 
l  ΔUelec = Uf -Ui = -Welec  

     = qEsf -qEsi 

Uelec = Uo + qEs	



Note that the work done by the	


E field, and thus the change in	


potential energy does not depend	


on the path	
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Uniform fields 
l  Welec = FΔr cos0o  

   = qEsi -qEsf 
l  ΔUelec = Uf -Ui = -Welec  

    = qEsf -qEsi 

Uelec = Uo + qEs	
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iclicker question 
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iclicker question 
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Potential energy of point charges 
l  First, let me calculate the work 

done by charge 1 on charge 2 
while charge 2 moves from 
point x1 to point x2 
 

 
Welec =


F1on2 i


dx

x1

x2

∫

Welec =
q1q2
4πεo

1
x2
dx

x1

x2

∫

Welec =
q1q2
4πεo

−
1
x

$
%&

'
() x1

x2

=
q1q2
4πεo

1
x1
−
1
x2

*

+
,

-

.
/

ΔUelec =U f −Ui = −Wi→ f =
q1q2
4πεo

1
x2
−
1
x1

&

'
(

)

*
+

use r instead of x. Set Uinf=0	
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Potential energy of point charges 

Note that the potential energy between any two	


 point charges is zero at infinite separation	
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iclicker question 
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iclicker question 
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Example 
l  Suppose that the E field 

inside the capacitor is 
50,000 N/C and the 
spacing in the capacitor 
is 2 mm 

l  I release a proton from 
rest from the position of 
the positive plate 
◆  what’s the work done by 

the electric field by the 
time it gets to the negative 
plate?  

◆  what is the proton’s 
speed?  
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i	

 f	



Suppose I move a positive charge from i to f in each of the two cases	


above. Is ΔU positive, negative or zero? What about a negative charge?	


Is the field doing positive or negative  work? (Note that it can be easy	


to confuse the work done by the field and the work done by an external	


agent.)	



i	



f	
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Another example 
l What if I move a 

positive charge along 
a field line, in the 
direction of the field? 
◆  is ΔU + or -? 

l What about a 
negative charge?  
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Example 

l Suppose a small 
positive charge is 
shot towards a larger 
fixed charge 

l What happens to its 
speed?  

++++	


++++	


++++	

+	



v	
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Example 
l  Suppose a small positive 

charge is shot towards a 
larger fixed charge 

l  What happens to its 
speed?  
◆  there’s a force acting on 

the small charge causing a 
negative acceleration (it’s 
slowing down) 

◆  this force is varying with 
the distance between the 
two charges 

◆  I can calculate the work 
done by this force by 
integrating F.dr 

◆  …or I can calculate the 
change in potential energy 

++++	


++++	


++++	

+	



v	
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Example 
l  Suppose a small positive 

charge is shot towards a 
larger fixed charge 

l  How close does it come? 
◆  let’s suppose the small 

charge is a proton and it 
has the same velocity we 
used for the last example?  

▲  1.38 X 105 m/s 
◆  and that the fixed  charge 

is a carbon nucleus (Z=
+6e)  

++++	


++++	


++++	

+	
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F	
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Example 
l  Suppose instead we have a 

proton  shot away from a large 
negative charge (equal to -6e) 
with the initial velocity equal 
the final velocity for the proton 
in the previous problem and 
starting at the distance that 
the proton had stopped. 

l  How far does it go before 
stopping? 
◆  Uf - Ui = Kf - Ki  

---	


---	


	



+	

v	



F	
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Example 
l  Suppose instead we have a 

small negative  charge (an 
electron) shot away from the 
positive nucleus (with the 
initial velocity equal the final 
velocity for the proton in the 
previous problem and starting 
at the distance that the proton 
had stopped). 

l  How far does it go before 
stopping? 
◆  Uf - Ui = Kf - Ki  

++++	


++++	


++++	



+	

v	
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Multiple point charges 
l  What if I have more than 1 

charge? What is the total 
potential energy?  

◆  what is the potential 
energy of these charges 
when they’re separated 
by an infinite distance?  

◆  how much work does it 
take an external agent to 
assemble them in the 
positions shown?  

◆  Wexternal agent = Uf - Ui                 
= -Wfield 

q1	

 q2	



q3	



Uelec =
1
4πεoi< j

∑
qiqj
rij

Uelec =
1
4πεo

q1q2
r12

+
q1q3
r13

+
q2q3
r23

$

%
&

'

(
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Our old friend, the electric dipole 
l  Earlier we found that a 

dipole in an electric field 
experiences a torque that 
causes the dipole 
moment p to rotate in 
alignment with the 
electric field 

l  What about the work 
done  by the electric field 
in causing this rotation 
and the change in the 
potential energy?  

|p| = qd	
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Dipoles 
l ΔUdipole = Uf - Ui 
  = - Welec(i->f)  

 = -pEcosφf + pEcosφi 
l Udipole = -pEcosφ  

      = -p.E 
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Back to the electric field 
l  So we’re going to replace the 

idea of action at a distance by 
the concept of a field 

l  Particles don’t interact directly 
with each other 

l  They create fields which then 
interact with the other particles 
◆  we will need this when we 

start talking about dynamic 
situations 

l  We’ll be dealing with electric 
and magnetic fields in this 
course   



!
!

Electric potential: another abstract concept 
l  It’s easy to understand the 

energy stored in a spring when 
it’s compressed or stretched 

l  Harder to understand the energy 
stored in the interaction of 
charges 

l  Suppose I have a bunch of 
source charges interacting with a 
(test) charge q 

l  The potential energy is  

l  Let me define a quantity called 
the electric potential (V) such that 
U = qV 
◆  V is the potential created by the 

source charges 
◆  U is the potential energy that a 

charge q has in the potential V 

U =
1
4πεo

qsourceq
r
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Units of potential 
l Unit of electric 

potential is the joule 
per coulomb or volt 
(after Alessandro 
Volta), inventor of the 
electric battery 
◆  1 V = 1 J/C 

Lake	


Como,	


where 	


he hung	


out	




