PHY294H

- Professor: Joey Huston
- email:huston@msu.edu
- office: BPS3230
- Homework will be with Mastering Physics (and an average of 1 handwritten problem per week)
 - Help-room hours: <u>12:40-2:40 Monday (note change);</u>
 3:00-4:00 PM Friday
 - hand-in problem for Wed Mar. 16: 33.54
- Quizzes by iclicker (sometimes hand-written)
- Final exam Thursday May 5 10:00 AM 12:00 PM 1420 BPS
- Course website: www.pa.msu.edu/~huston/phy294h/index.html
 - lectures will be posted frequently, mostly every day if I can remember to do so

Happy π Day!

Inductors

- A capacitor is a good way of producing a uniform electric field
 - it also stores energy in the form of the electric field
- A solenoid is a useful way of producing a uniform magnetic field
 - and we'll find can also store energy in the form of the magnetic field
- Define the inductance L of a circuit element as the ratio of the magnetic flux it holds to the current flowing through it

$$L = \frac{N\phi_m}{I}$$

The larger the inductance, the larger flux can be held for a given current. Remember, the larger the capacitance, the larger charge that can be held for a a given voltage.

Unit of inductance is the Henry $1H = 1 \text{ Tm}^2/A$

Inductors in circuits

- We'll encounter inductors in circuits in the future
- The voltage drop across an inductor is proportional to the rate of change of current though it (and can be large)
- ...and independent of the value of the current

The potential always decreases.

The potential decreases if the current is increasing.

The potential increases if the current is decreasing.

Example

- The figure to the right shows the current through a 10 mH inductor
- What does the voltage drop across the inductor look like

Energy in inductors and magnetic fields

Current I

 An inductor stores energy just as a capacitor does

$$P = I\Delta V_{L} = -LI\frac{dI}{dt}$$

$$\frac{dU_{L}}{dt} = LI\frac{dI}{dt}$$

$$U_{L} = L\int_{0}^{L}IdI = \frac{1}{2}LI^{2}$$

 The energy is stored in the magnetic field with an energy density

$$\frac{\text{density}_1}{\mu_B} = \frac{1}{2\mu_o} B^2$$

Remember

$$\mu_E = \frac{1}{2} \varepsilon_o E^2$$

LC circuits

LC circuits

$$Q(t) = Q_o \cos \omega t$$

$$I = \frac{dQ}{dt} = \omega Q \sin \omega t = I_{\text{max}} \sin \omega t$$

LR circuits

- A circuit that has an inductor and a resistor is imaginatively called an LR circuit
- In the top circuit, the switch has been closed for a "long time", there is no dl/dt and all of the voltage drop is across the resistor
- The switch is then moved to b and the battery is no longer part of the circuit
- A current continues to flow because of the influence of the inductor
- We can still apply Kirchoff's laws

This is the circuit with the switch in position b. The inductor prevents the current from stopping instantly.

LR circuit

$$\Delta V_R + \Delta V_L = 0$$

$$-RI - L \frac{dI}{dt} = 0$$

$$\frac{dI}{I} = -\frac{R}{L} dt = -\frac{dt}{(L/R)}$$

$$\int_{I_o}^{I} \frac{dI}{I} = -\frac{1}{(L/R)} \int_{0}^{t} dt$$

$$\ln\left(\frac{I}{I_o}\right) = -\frac{t}{(L/R)}$$

$$I = I_o e^{-t/\tau}$$

$$\tau = L/R$$

This is the circuit with the switch in position b. The inductor prevents the current from stopping instantly.

Example

- The switch has been in position 1 for a long time
- Then it is abruptly moved to position 2
 - what is the maximum current through the inductor?
 - when does this maximum current occur?
 - what if the inductor and capacitor changed position?

iclicker question

 Right after the switch is closed what is the voltage across the inductor, V_L?
 The emf = 12 V, R = 10 Ω and L = 5 H.

iclicker question

 Right after the switch is closed what is the voltage across the inductor, V_L?
 The emf = 12 V, R = 10 Ω and L = 5 H.

Iclicker question

 A long time after the switch is closed what is the current in the circuit? The emf = 12 V, R = 10 Ω and L = 5 H.

iclicker question

 A long time after the switch is closed what is the current in the circuit? The emf = 12 V, R = 10 Ω and L = 5 H.

Some odds and ends: Gauss' law revisited

 We've written down Gauss' law for electric fields

$$\Phi_E = \oint \vec{E} \cdot d\vec{A} = \frac{Q_{in}}{\varepsilon_o}$$
• We can also write down

 We can also write down Gauss' law for magnetic fields

$$\Phi_{\scriptscriptstyle B} = \oint \vec{B} \cdot d\vec{A} = 0$$

- To be revised if magnetic monopoles are discovered
 - for the moment, the right-hand side is always zero

There is a net electric flux through this surface that encloses a charge.

Gaussian surface \vec{B}

There is no net magnetic flux through this closed surface.

Lorentz force law

- If a particle is moving in a region of space in which there are both an electric and a magnetic field, then it will experience both a Coulomb force and a magnetic force
- The total force acting on a particle will be given by the vector sum of the two forces

$$\vec{F} = q(\vec{E} + \vec{v}X\vec{B})$$

sometimes called a Lorentz force

Fun with Dick and Jane: paradox revisited

- Is there or is there not a magnetic field created by the charge Sharon/Jane is carrying?
- Is there or is there not a magnetic force on the charge Sharon/Jane is carrying?

Charge q moves with velocity \vec{v} relative to Bill.

Charge q moves through a magnetic field \vec{B} established by Bill.

Jane said, "Run, run.

Run, Dick, run.

Run and see.

See, Dick, see, if there is a magnetic force on the electric charge you're carrying?"

Inertial reference frames

 Consider two frames of reference with the S' frame moving with a velocity V with respect to the S frame

Accelerations and forces are the same in all inertial frames of reference. If they're not, then something is wrong.

Back to Bill and Sharon

- In S, there is a magnetic force on q
- In S', there is no magnetic force In S, the force on q is due to a magnetic field.

The situation in frame S

Charge q moves through a magnetic field \vec{B} established by Bill.

- But the forces have to be the same in the two frames of reference
- •In S', if there is no magnetic force then there must be an electric force on q due to an electric field of size

 \overrightarrow{VXB} , in order for Bill and Sharon In S', the force on q is due to an electric field. to agree

- At least part of Bill's magnetic field has become an electric field
- Whether a field is seen as electric or magnetic depends on the motion of the reference frame relative to the sources of the field!