Physics 294H

- Professor: Joey Huston
- email:huston@msu.edu
- office: BPS3230
- Homework will be with Mastering Physics (and an average of 1 hand-written problem per week)
 - Help-room hours: <u>12:40-2:40 Monday (note change)</u>;
 3:00-4:00 PM Friday
 - hand-in problem for Wed Mar. 23: 34.60
 - Note I revised Homework assignment 9 (due 3/23) adding some problems that were due a week later
- Quizzes by iclicker (sometimes hand-written)
- 2nd exam next Thursday
- Final exam Thursday May 5 10:00 AM 12:00 PM 1420 BPS
- Course website: www.pa.msu.edu/~huston/phy294h/index.html
 - lectures will be posted frequently, mostly every day if I can remember to do so

Polarization

 the plane containing the electric field vector and the Poynting vector S is called the plane of polarization of the EM wave

Polarizing filter

- Ordinary electromagnetic waves are unpolarized
 - the electric field vectors for each wave are random
- A polarizing filter lets in only those EM waves with a polarization in a particular direction
 - polymer chains are treated to make them conducting
 - electrons absorb energy from EM waves whose electric fields oscillate in the direction of the chains

The polymers are parallel to each other. \vec{E} Polaroid

Only the component of

The electric field of unpolarized light oscillates randomly in all directions.

Only the component of \vec{E} perpendicular to the polymer molecules is transmitted.

Polarization

 Electric field from EM wave can be decomposed into components along x (perpendicular to polarization axis) and y directions (parallel to)

$$E_{incident} = E_o \sin\theta \, \hat{\imath} + E_o \cos\theta \, f$$

 If the filter is 100% efficient, then only component perpendicular to polarization axis is transmitted

$$E_{transmitted} = E_o \cos \theta f$$

 The intensity of light depends on the square of the electric field so for initial polarized light

$$I_{transmitted} = I_o \cos^2 \theta$$
(Malus' law)

Polarization

If the light is initially unpolarized, then the direction of the electric field is random, and the average value of cos²θ is 0.5

$$I_{transmitted} = I_o \cos^2 \theta$$

$$I_{transmitted} = I_o \left(\frac{1}{2}\right)$$

iclicker question

<u>Unpolarized</u> light is incident on a polarizing filter with an intensity of 50 W/m². What is the intensity of the light after it passes through the polarizer?

A. 10 W/m²

B. 25 W/m²

C. 50 W/m²

D. 100 W/m²

<u>Unpolarized</u> light is incident on a polarizing filter with an intensity of 50 W/m². What is the intensity of the light after it passes through the polarizer?

$$I_{transmitted} = \frac{1}{2}I_{unpolarized}$$

A. 10 W/m²

B. 25 W/m²

C. 50 W/m²

D. 100 W/m²

Answer: B, When unpolarized light strikes a polarizer you lose half of the intensity. $I_{transmitted} = \frac{1}{2} * 50 = 25 \text{ W/m}^2$.

AC circuits

 We saw earlier that an electric generator produced an alternating voltage and current

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

Phasers

 It is useful to represent AC voltages and currents with phasers

Phasers

 It is useful to represent AC voltages and currents with phasers

Phasors

- Wrong spelling...sorry
- A phasor is a vector that rotates counterclockwise around the origin with an angular frequency ω
 - the instantaneous vaue of a quantity (voltage, current) is the projection of the phasor on the horizontal axis
 - sometimes it's defined with respect to the vertical axis, but that just causes a phase change
 - ωt is called the phase angle

Phasor representation of the emf

AC circuits with resistors

- Suppose I have a circuit consisting of an AC generator and a resistor
- I want to look at the currents and voltages in the circuits
- I do it the same way I did it for DC circuits, using Kirchoff's laws

$$\sum \Delta V = \Delta V_{source} + \Delta V_R = \varepsilon - v_R = 0$$

$$v_R = \varepsilon = \varepsilon \cos \omega t$$

 The voltage of the generator appears across the resistor, in phase

This is the current direction when $\mathcal{E} > 0$. A half cycle later it will be in the opposite direction.

AC circuits with resistors

(b)

 So I can write the voltage and current as

instan-
$$v_R = V_R \cos \omega t$$
taneous
values
$$i_R = \frac{v_R}{R} = \frac{V_R \cos \omega t}{R} = I_R \cos \omega t$$

 Note that the voltage and current are in phase with each other and they have the same angular velocity ω

 We can write the voltage across the capacitor as

$$v_c = V_c \cos \omega t$$

The charge on the capacitor is

$$q = Cv_c = CV_c \cos \omega t$$

The current is

$$i = \frac{dq}{dt} = -\omega C V_c \sin \omega t$$

The instantaneous capacitor voltage is $v_C = q/C$. The potential decreases from + to -.

AC circuits with resistors

(b)

 So I can write the voltage and current as

instan-
$$v_R = V_R \cos \omega t$$
taneous
values
$$i_R = \frac{v_R}{R} = \frac{V_R \cos \omega t}{R} = I_R \cos \omega t$$

 Note that the voltage and current are in phase with each other and they have the same angular velocity ω

 We can write the voltage across the capacitor as

$$v_c = V_c \cos \omega t$$

The charge on the capacitor is

$$q = Cv_c = CV_c \cos \omega t$$

The current is

$$i = \frac{dq}{dt} = -\omega C V_c \sin \omega t$$

The instantaneous capacitor voltage is $v_C = q/C$. The potential decreases from + to -.

I can also write

$$i = \omega C V_c \cos \left(\omega t + \frac{\pi}{2} \right)$$

 The AC current through a capacitor leads the voltage by 90°

(a) $i_{\rm C}$ peaks $\frac{1}{4}T$ before $v_{\rm C}$ peaks. We say that the current *leads* the voltage by 90°.

 We can define the capacitive reactance X_c as

$$X_c = \frac{1}{\omega C}$$

$$I_c = \frac{V_c}{X_c}$$

$$V_c = I_c X_c$$

 Note that the reactance relates the peak voltage and the peak current and not the instantaneous voltage and current

$$v_c \neq i_c X_c$$

• The unit of reactance is Ω

iclicker question

 A capacitor is attached to an AC voltage source. How could you double the current in the circuit?

- A. Double the capacitance.
- B. Double the voltage.
- C. Double the frequency.
- D. All of the above.

$$I_C =$$

iclicker question

 A capacitor is attached to an AC voltage source. How could you double the current in the circuit?

 $\begin{array}{c|c}
 & i_{c} \\
\downarrow & C \\
\downarrow v_{c}
\end{array}$ $I_{C} = \frac{V_{C}}{X_{C}}$ 1

- A. Double the capacitance.
- B. Double the voltage.
- C. Double the frequency.
- D. All of the above.

$$I_C = \frac{V_C}{X_C} = \omega C V_C$$

Answer: D, The capacitive reactance, X_c , is $(2\pi fC)^{-1}$ so doubling the capacitance OR the voltage OR the frequency would all work.

Circuits with resistors and capacitors

- If the frequency is low, then we expect X_C to be larger than R, while if the frequency is high we expect X_C to be smaller than R
- For the phasor for this circuit, I and V_R are in phase, V_C is 90° behind I
- v_R+v_C=ε (at any point in time), so draw the emf phasor as the vector sum of V_R and V_C
 - $\varepsilon = \varepsilon_0 \cos \omega t$

Circuits with resistors and capacitors

Calculate the current

$$\varepsilon_o^2 = V_R^2 + V_C^2 = (IR)^2 + (IX_C)^2 = (R^2 + X_C^2)I^2$$

$$= \left(R^2 + \frac{1}{\omega^2 C^2}\right)I^2$$

Thus, I can write the peak current as

$$I = \frac{\varepsilon_o}{\sqrt{R^2 + X_C^2}} = \frac{\varepsilon_o}{\sqrt{R^2 + \frac{1}{\omega^2 C^2}}}$$

The peak voltages are

$$V_R = IR = \frac{\varepsilon_o R}{\sqrt{R^2 + X_C^2}} = \frac{\varepsilon_o R}{\sqrt{R^2 + \frac{1}{\omega^2 C^2}}}$$

$$V_C = IX_C = \frac{\varepsilon_o X_C}{\sqrt{R^2 + X_C^2}} = \frac{\varepsilon_o X_C}{\sqrt{R^2 + \frac{1}{\omega^2 C^2}}}$$

iclicker

Does
$$V_R + V_C = {}_{0}$$
?

- A. Yes.
- B. No.
- C. Can't tell without knowing ω .

iclicker

Does
$$V_{\rm R} + V_{\rm C} = {}_{0}$$
?

- A. Yes.
- B. **No.**
- C. Can't tell without knowing ω out knowing ω .

Instantaneous voltages add.

Peak voltages don't because the voltages are not in phase.

Filters

- A low pass filter transmits a signal with a low frequency but blocks a signal with a high frequency
- And vice versa for a high pass filter

(a) Low-pass filter

Transmits frequencies $\omega < \omega_c$ and blocks frequencies $\omega > \omega_c$.

(b) High-pass filter

Transmits frequencies $\omega > \omega_c$ and blocks frequencies $\omega < \omega_c$.