Physics 294H

Professor: Joey Huston
email:huston@msu.edu
office: BPS3230

Homework will be with Mastering Physics (and an average of 1
hand-written problem per week)

¢ Help-room hours: 12:40-2:40 Monday (note change);
3:00-4:00 PM Friday

+ 36.73 hand-in problem for next Wed
Quizzes by iclicker (sometimes hand-written)
Average on 2" exam (so far)=71/120
Final exam Thursday May 5 10:00 AM - 12:00 PM 1420 BPS
Course website: www.pa.msu.edu/~huston/phy294h/index.html

+ lectures will be posted frequently, mostly every day if | can
remember to do so




Example

® At SLAC, electrons
are accelerated to
v=0.99999997c in a
3.2 km long ¥ N e e
accelerator i

® How long is the S &% e
accelerator from the g \"f———L—#w iR aerter
electron’ s point of A
view?




Intervals

® Back to (Galilean)
geometry

® Two coordinate systems,
one rotated with respect
to the other

® Coordinates (X,y;x",y’ )
different in two frames
but interval is the same
o d2=(AX)H(AY 2 =(AX P+
(Ay" )
+ this will be true for all such
coordinate systems
¢ dis called an invariant

Measurements in the xy-system

Distance d
is the same.

Coordinate values
and intervals
are different.
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Measurements in the x’y’-system



Spacetime intervals

= Consider two events that are separated in time by an
interval A¢, and are separated in space by an interval
Ax.

= Let us define the spacetime interval s between the two
events to be:

s = cX(At)? — (Ax)?

= The spacetime interval s has the same value in all inertial
reference frames.

= That is, the spacetime interval between two events is an
Invariant.



SN IEEIRA Using the spacetime interval

A firecracker explodes at the origin of an inertial reference frame.
Then, 2.0 us later, a second firecracker explodes 300 m away.
Astronauts in a passing rocket measure the distance between the
explosions to be 200 m. According to the astronauts, how much
time elapses between the two explosions?

SNV A Using the spacetime interval

MODEL The spacetime coordinates of two events are measured in
two different inertial reference frames. Call the reference frame
of the ground S and the reference frame of the rocket S’. The
spacetime interval between these two events i1s the same in both
reference frames.



VI TIWA Using the spacetime interval

soLVE The spacetime interval (or, rather, its square) in frame S 1s

s = c?(A1)? — (Ax)* = (600 m)*> — (300 m)*> = 270,000 m?

where we used ¢ = 300 m/us to determine that ¢ Ar = 600 m.
The spacetime interval has the same value in frame S’. Thus

= 270,000 m? = cX(At')* — (Ax')?
= c*(At")* — (200 m)?

This is easily solved to give Az’ = 1.85 us.



Lorentz transformations

® 2 coordinate systems, S

and S’
® Galilean transformations | |
, An event has spacetime coordinates
¢ X =X-vt (x, #) in frame S, (x" ¢') in frame S’.
o t=t’ y Y
® \What about a relativistic )
form for the Event =P~
transformations?
o
Need to | | s . () o
+ agree with Galilean S
transformations when ?“g_ms,ioz)m‘de
V<<C at.l = 1 =)

+ transform both spatial and
time coordinates

+ ensure that speed of light
is the same in all frames of
reference



Lorentz transformations

Try form
o X =y(x-vt)
o X=y(X’ +vt)

¢ is this the same y we met
before? We'll see. An event has spacetime coordinates

i x, 1) in frame S, (x’ ¢') in frame S’.
Consider an event where a 1) : ( ,)

flash of light is emitted from 1 2
the origin of both coordinate "uy §
systems at t=0 Event ===
In a second event, the light
hits a detector; the
coordinates for this eventare  (s) xS o
(x,t)inSand (x' ,t')in S’ s st
rigins coincide
Since light travels at the same att =1'= 0.

speed in both reference
frames, the positions of the
second event are x=ctin S
and x’ =ct’ in S’

Substitute into the equations
above



Some algebra

ct'=y(ct—vt)=y(c—V)t
ct=y(ct'+vt)=y(c+v)t'

® Solve first fort” and
substitute into second

- V)t 5
ct=y(c+v)y(c V) =y*(c? =v?)—
C C
5 c’ 1
V=" 2= 2
c-—-v %
I--=
C
. 11
y? 1-p°

An event has spacetime coordinates
(x, 1) in frame S, (x) ¢) in frame S’.

Yy
y,
Event
0N .
Origins coincide
att=1¢'=0.
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Lorentz transformations

x'= y (x —vt) These transformation e.quat.lons |
| leave Maxwell’s equations invariant.
y =Y
7'=2
VX
|
[ = Y (t i
C
x=y(x'+vt")
An event has spacetime coordinates
" (x, f) in frame S, (x} ¢") in frame S’.
y =) y ; y
" “':l. "
 =Z Event [
|
VX
_ |
[ = }/(t + C2 ) () x ) %

Origins coincide
atr=+¢=0.



Relativity

), =55 :;"/“/
Woarmages®

Frame the problem in terms of events, things that happen at a specific
place and time.

A pictorial representation defines the reference frames.

m Sketch the reference frames, showing their motion relative to each other.

® Show events. Identify objects that are moving with respect to the reference
frames.

® [dentify any proper time intervals and proper lengths. These are measured in
an object’s rest frame.

Relativity

|
J

The mathematical representation is based on the Lorentz transformations,
but not every problem requires the full transformation equations.

® Problems about time intervals can often be solved using time dilation:
At = yArT.

® Problems about distances can often be solved using length contraction:
L= {€/y.

Are the results consistent with Galilean relativity when v << ¢?



—>
V

Peggy passes Ryan at velocity v. Peggy
and Ryan both measure the length of the
railroad car, from one end to the other.
The length Peggy measures1s __ the
length Ryan measures.

A. longer than
B. at the same as

C. shorter than




— >

v A
Peggy passes Ryan at velocity . Peggy | ~
and Ryan both measure the length of the =
railroad car, from one end to the other.

The length Peggy measures1s __ the

length Ryan measures.

Vv A longer than
B. atthe same as

C. shorter than

Peggy measures the proper length because the railroad car 1s
at rest 1in her frame. Lengths measured in any other reference
frame are shorter than the proper length.



® Suppose an 8 m long school bus drives
past at 30 m/s. By how much is its length
contracted according to an observer
standing by the side of the road?

® The proper length (8 m) is in its own rest
frame.

® |t will be shorter in the frame of the
observer.

L=V1-8%



The binomial approximation

If x<<1,then(l +x)" =1+ nx.

= The binomial approximation is useful when we need to
calculate a relativistic expression for a nonrelativistic
velocity v << c.

i 2
V1=p=1-vicH)" =1 —%V—z
v <& g2 § ‘ 5
T TS L
¢ — @2 2 ¢
\ 1 —p




Lorentz velocity transformations

. Velocity of frame S’

® Frame S’ is moving at velocity y Y relative to frame S
v with respect to frame S —
® A speed uin S corresponds to u in frame S
what speed in S’ o>
® Take derivatives & Y
Codx' d(y(x=vt)) s
= ' = Cg/ X
dt VX
d(y(t ——))
C
dx e Velocity of frame S
. )/(dx — vdt) _ dt —V —v\:f b 4 Y relative to frame S’
dx (dx / dt) '
14 dt—ch 1-v o u' in frame S’
e
dx
u=— 7\ '
dt U=y u'+v ® ¢
u = U=
0 Uy 0 u'v ® %
%) Tt
C C




Transformation of velocities
[

Velocity

Time

Figure 6.14.  Graph of velocity versus time for constant force. In relativistic mechan-
ics, the velocity cannot increase indefinitely, but rather is limited by the speed of light.

Table 6.2. Comparison of Results for Velocity Addition According to Galilean and
Lorentz Transformations

; Lorentz
Galilean ( e )
u % u+v 1 + uv/c?
60 mph 30 mph 90 mph 90 mph
186 mps 18.6 mps 204.6 mps 204.59998 mps
(0.001¢) (0.0001¢)
0.6¢ 0.3¢ 0.9¢ 0.763¢
0.5¢ 0.5¢ ¢ 0.800¢
0.75¢ 0.75¢ 1.5¢ 0.960¢
0.9¢ 0.6¢ 1.6¢ 0.974¢
c 0.1¢ 15l 1.000¢

C (& 2C (5




Relativistic example

® A man on a (very fast) motorcycle

travelling 0.80 c throws a baseball
forward (he has a very good arm)
with a speed of 0.70 ¢ (from his
perspective)

How fast does the innocent
bystander see the ball travelling?

Table 6.2. Comparison of Results for Velocity Addition According to Galilean and
Lorentz Transformations

Lorentz
Galilean Uty

u v u+v I+ avie

60 mph 30 mph 90 mph 90 mph

1 : 3 :

((&)&?)(;TI[C); (15660311}33 204.6 mps 204.59998 mps
0.6¢ 0.3¢ 0.9¢ 0.763¢
0.5¢ 0.5¢ ¢ 0.800¢
0.75¢ 0.75¢ 1.5¢ 0.960¢
0.9¢ 0.6¢ 1.6¢ 0.974¢

c 0.1¢ sl 1.000¢
c c 2C c

B

\.

N &

©2003 Thomson - Brooks Cole

From Galilean perspective: 0.80 ¢ +0.70 c=1.5c¢
Using Lorentz transformation of velocities:
[u+v]/[1+uv/c?] = [0.8¢c+0.7c]/[1+(.8¢c)(.7¢c)/c?]
=0.96 c



Relativistic momentum

® Total momentum is conserved note that we use u for the velocity of a

in any interaction particle since v is already taken
® (Galilean) formula f
momentum (p=mu) doesn’ t (a) The relativistic momentum
work for high velocities p approaches ”fv.:as u— c.
® \Write formula for momentum ‘J: ‘‘‘‘‘‘
using At in rest frame of !
particle P mg !
At \Newtonian

|
5 | momentum
. . u . . L } u
time inrest —> A7 =,/l ——A7 — time in 0 % 05c .
frame of particle ¢ frame S :

® S it |ativisti ""Thc Newtonian momentum
o we C_an write a relativistic expression 1s valid when u << c.
expression for momentum
Law of conservation of momentum still

Ax Ax mu
p=nmi=m—=m = holds at relativistic velocities if formula
At u’ u’ on left is used




Speed limit

(a) The relativistic momentum
O Because the 14 approz:ches "f~as u—cC.
momentum increases o
to infinity as v->c, no ;
material object can : \mfm
travel at the speed of e
I|g ht WlthOUt the |npUt ThLNcwloman ]m]omﬁnlum<< ‘
of an infinite amount e |
of energy o |
1 /Newtpman
define YV, = 5 velocity
C : N
- The speed of a
— _ particle cannot
P 1> Vot exceed c.
1- 2 0 t



Relativistic energy

® Need a relativistic form for the
energy as well

® Start with the spacetime interval
that we discussed before

s’ = c*(At)” = (Ax)* = invariant

® Multiply by (m/At)?

Z(At)z (mAx)z 2(Az)2 .
mc - = nmc - P = [nvariant

AT At AT

® Relate At, time interval in S, to
proper time At, and then multiply
expression by c?

1
y,=—F7——= At=y At

(y pmcz )> = (pc)’ = invariant

The relativistic kinetic energy
K approaches «© as u — c.

&
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N

Newtonian
kinetic
energy

|
|
O ] S I | I
0 % 0.5¢ ¢ 1.5¢
“*The Newtonian kinetic-energy
expression is valid when u << c.

u

In rest frame
(y ,mc*)’ = (pe)’ = (mc*)’

What is y,mc??



) mc” [ 1u’)
y ,mc” = ~
| u’ l\ 2c
T2
c

® E=y mc?=E +K
=rest energy + kinetic
energy
® K=(y,-1)mc?
® Kinetic energy goes to
1/2mu? when u<<c
0‘ E_=mc? (rest energy)
® E2-(pc)?=E,?

2 2
1+——2/Jmc =mc” +—mu

energy

[

The relativistic kinetic energy
K approaches « as u — c.
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Newtonian
kinetic
energy

|
|
O ] s I | I
0 % 0.5¢ ¢ 1.5¢
“*The Newtonian kinetic-energy
expression is valid when u << c.

u

Convenient to quote particle energies in eV

1eV=16X101"°]J

m,=9.11X10-3! kg

m,c?=(9.11X10-3! kg)(3.0X 108 m/s)? = 8.2X10-17J
=(8.2X10* J)/(1.6X10°1° J/eV)=0.511 MeV



