Model 965, 946, 1003, 993, 984 & 951 Support Software

[image: image388.wmf]
Model 965, 946, 1003, 993, 984 & 951 Support Software

[image: image389.wmf]

[image: image1.wmf]
946 Solaris,

965 IRIX 6.5,

984 Windows 2000/XP/XPE,

 993 VxWorks,

1003 Linux

&

951 LynxOS

Support Software

Manual

Disclaimer

[image: image504.png]B boot - Notepad

Ble Edt Fomet Vew Hep

[boot Toader]

Timeout=30

default=muti (03disk (0Jrdisk(0)partition(1)\WINDOWS

[operating systens]

mui 1 (0)disk(0Jrdisk CO)partition(1)\WINDOWS="Microsoft windows xp professional” /fastderect
11 C03dTsk C09rafsk (oJpartTeTanCZ \uIioows="icrosaf windows ¢ enbedded” /Fastdtect

Please read and abide by the following paragraphs. Questions and comments should be directed to:

Technical Publications Department

SBS Technologies, Inc.

1284 Corporate Center Drive

St. Paul, MN 55121-1245

651-905-4700

SBS makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. SBS assumes no responsibility for any errors that may appear in this document. The information in this document is subject to change without notice.

SBS does not authorize the use of its components in life support applications where failure or malfunction of the component may result in injury or death. In accordance with SBS’s terms and conditions of sale, the user of SBS components in any and all life support applications assumes all risks arising out of such use and further agrees to indemnify and hold SBS harmless against any and all claims of whatsoever kind or nature (including claims of culpable conduct [strict liability, negligence or breach of warranty] on the part of SBS) for all costs of defending any such claims.
SBS does not authorize the use of its components in control and process applications where failure or malfunction of the component may result in radioactive releases, explosions, environmental damage/contamination, personal injury or death. In accordance with SBS’s terms and conditions of sale, the user of SBS components in any and all control and process applications assumes all risks arising out of such use and further agrees to indemnify and hold SBS harmless against any and all claims of whatsoever kind or nature (including claims of culpable conduct [strict liability, negligence or breach of warranty] on the part of SBS) for all costs of defending any such claims.

U.S. GOVERNMENT RESTRICTED RIGHTS

The Support Software and documentation are provided with restricted rights. Use, duplication or disclosure by the Government is subject to the restrictions as set forth in subdivision © (1) (ii) of the Rights in Technical Data and Computer Software Clause of DFAR 252.227-7013 (October 1988) and in similar clauses in the FAR and NASA FAR Supplement. Manufacturer is SBS Technologies, Inc., 1284 Corporate Center Drive, St. Paul, MN 55121-1245.

.

Manual copyright © 2001, 2002, 2004, 2005 by SBS Technologies, Inc.

Software copyright © 1997, 1998, 2000-2005 by SBS Technologies, Inc.

All rights reserved.

IRIX and SGI are registered trademarks of Silicon Graphics, Inc. UNIX is a registered trademark of AT&T. Sun, SPARCstation, Solaris, SPARCompiler, SunPro, SPARCclassic and SunOS are trademarks of Sun Microsystems, Inc. Intel is a trademark of Intel Corporation. Motif is a trademark of The Open Software Foundation, Inc. VToolsD is a trademark of Vireo Software, Inc. Mirror API and dataBLIZZARD are trademarks of SBS Technologies, Inc. Linux is a registered trademark of Linus Torvalds. Red Hat is a registered trademark of Red Hat, Inc. VxWorks is a registered trademark and Tornado is a trademark of Wind River Systems, Inc.

Revision 3.0 20050708
Pub. No. 85221990

Preface

[image: image2.wmf]
This manual describes SBS Support Software for SBS dataBLIZZARDtm and SBS adapters for PCI computers, and provides instructions for software installation, set up and use. In this manual, “adapter” applies to both dataBLIZZARD and other SBS adapters. All mentions of “Support Software” or “the software” refer to Models 965, 946, 1003, 993, 984 and 951. If a reference is to one model only, that model will be indicated.

For information about jumper settings, the physical installation adapter cards and descriptions of registers available on each card refer to the hardware manual for your SBS adapter.

To simplify installation and eliminate operation problems, we recommend that you review this manual and the appropriate hardware manual before beginning to install the Support Software. Hardware manuals are available for downloading from the SBS web site www.sbs.com.
About this manual:

[image: image3.wmf]
Chapter 1 introduces you to Support Software, its components, and lists system and hardware requirements.

[image: image4.wmf]
Chapter 2 gets you started with information about the software packages, important notes, and a listing of additional references.

[image: image5.wmf]
Chapter 3 describes Support Software example applications.

[image: image6.wmf]
Chapter 4 discusses the SBS Mirror Application Program Interface (API).

[image: image7.wmf]
Chapter 5 is an API reference that details each function.

[image: image8.wmf]
Chapter 6 contains installation instructions and porting information that is specific to Model 965 (IRIX).

[image: image9.wmf]
Chapter 7 describes Model 946 (Solaris) installation and porting.

[image: image10.wmf]
Chapter 8 has Model 1003 (Linux) installation instructions and porting information.

[image: image11.wmf]
Chapter 9 contains installation and porting information for Model 993 (VxWorks).

[image: image12.wmf]
Chapter 10 describes Model 984 (Windows) installation, porting, and 984 specific example applications.

[image: image13.wmf]
Chapter 11 describes Model 984 Windows XP Embedded installation.

[image: image14.wmf]
Chapter 12 contains information about Model 951 LynxOS Support Software.

[image: image15.wmf]
Chapter 13 contains information about general software issues including porting and optimization.

[image: image16.wmf]
Appendices—There are five appendices for quick reference, including: a glossary of the terms and symbols used throughout this manual, summaries of ioctl() commands and kernel functions, and information about DMA operation.

Standard C notation is used in this manual to denote hexadecimal and octal numbers. Hexadecimal numbers are preceded by 0x and octal numbers by 0.

Table Of Contents

[image: image17.wmf]
1Disclaimer

Preface
3
Table Of Contents
5
Chapter 1: Software Support Functions
13
1.0 Overview
13
Chapter 2: Getting Started
15
2.0 Getting The Software & Manuals
15
2.1 Additional References
15
2.2 Help!
16
Chapter 3: Example Applications
17
3.0 Introduction
17
3.1 dumpmem Example Application
18
3.2 readmem Example Application
19
3.3 bt_cat Example Application
19
3.4 datachk Example Application
20
3.5 bt_icbr Example Application
20
3.6 bt_info Example Application
21
3.7 bt_sendi Example Application
21
3.8 bt_tas Example Application
22
3.9 bt_cas Example Application
22
3.10 bt_reset Example Application
23
3.11 bt_bind Example Application
23
3.12 bt_revs Example Application
24
Chapter 4: Using The Mirror API
25
4.0 Introduction
25
4.1 Understanding Logical Devices
26
4.2 Initializing The Device And API
27
4.3 Reading And Writing Data
28
4.4 Memory Mapping Support
29
4.5 Interrupt Call Back Routines
30
4.6 Binding A Buffer To The Remote Bus
31
4.7 Doing Atomic Transactions on the VMEbus
33
4.8 Hardware Access Routines
34
Chapter 5: API Reference
37
5.0 Introduction
37
5.1 Mirror API Routines
37
5.1.1 Convert From String To Logical Device
38
5.1.2 Generate Device Name
38
5.1.3 Open A Logical Device For Access
39
5.1.4 Close The Logical Device
40
5.1.5 Check For Errors On A Unit
40
5.1.6 Clear Errors On A Unit
41
5.1.7 Print Error Message To stderr
41
5.1.8 String Error Message
42
5.1.9 Initialize A Unit
43
5.1.10 Read Data From Device
43
5.1.11 Write Data To Logical Device
44
5.1.12 Get Device Configuration Settings
44
5.1.13 Set Device Configuration Settings
45
5.1.14 Install An Interrupt Call Back Routine
46
5.1.15 Remove An Interrupt Call Back Routine
47
5.1.16 Lock A Unit
47
5.1.17 Unlock A Previously Locked Unit
48
5.1.18 Create A Memory Mapped Pointer Into A Logical Device
49
5.1.19 Unmap A Memory Mapped Location
50
5.1.20 Convert From A Logical Device Type To A String
51
5.1.21 Call Directly Into The Driver I/O Control Function
51
5.1.22 Map An Application Supplied Buffer
52
5.1.23 Unbind A Bound Buffer
53
5.2 NanoBus Specific Mirror API Functions
54
5.2.1 Convert Register To String
54
5.2.2 Compare And Swap Atomic Transactions
55
5.2.3 Test And Set Atomic Transaction
56
5.2.4 Reads An Adapter CSR Register
57
5.2.5 Writes An Adapter CSR Register
57
5.2.6 One Shot A Register
58
5.2.7 Remote Reset
59
5.2.8 Send Interrupt To Remote Bus
59
5.2.9 Send Vector to Remote Bus
60
5.2.10 Status
60
5.2.11 Read Data From Device To A Bus Address
61
5.2.12 Write Data To Logical Device
62
5.2.13 Bind A Given Bus Address
63
5.2.14 Unbind A Bound Local Bus Address
64
5.2.15 Gain Control Over The Given Semaphore
64
5.2.16 Release A Currently Owned Semaphore
65
5.3 Device Configuration Parameters
66
5.3.1 Parameters That Can Be Modified
66
5.3.2 Parameters That Are Read Only
71
Chapter 6: Model 965 For IRIX
73
6.0 Introduction
73
6.0.1 Components
73
6.0.2 System And Hardware Requirements
73
6.1 Installation
74
6.1.1 Installation Notes
74
6.1.2 Installing Support Software
74
6.1.3 Installing Device Driver
75
6.1.3.1 Software Manager Installation
75
6.1.4 Configuring The Software
77
6.2 Compiling Example Programs
79
6.3 Removing The SBS Support Software
79
Chapter 7: Model 946 For Solaris
81
7.0 Introduction
81
7.0.1 System & Hardware Requirements
81
7.1 Installation
82
7.1.1 Installation Notes
82
7.1.2 Installing Support Software
82
7.1.3 Changing The Driver’s Configuration
83
7.1.4 Checking The Installation
84
7.2 “Nexus-Link” Kernel Interface Routines
85
7.2.1 Mapping The VMEbus
86
7.2.1.1 Map VMEbus Memory - btp_ddi_map_regs()
86
7.2.1.2 Unmap VMEbus Memory - btp_ddi_unmap_regs()
87
7.2.2 Accessing the VMEbus
87
7.2.2.1 Reading An 8-Bit Value From The VMEbus
88
7.2.2.2 Reading A 16-Bit Value From The VMEbus
88
7.2.2.3 Reading A 32-Bit Value From The VMEbus
89
7.2.2.4 Reading A VMEbus Value From A Given Unit
89
7.2.2.5 Writing An 8-Bit Value To The VMEbus
90
7.2.2.6 Writing A 16-Bit Value To The VMEbus
90
7.2.2.7 Writing A 32-Bit Value To The VMEbus
91
7.2.2.8 Writing A Value To The VMEbus
91
7.2.3 Handling A VMEbus Interrupt
92
7.2.3.1 Get Interrupt Block Cookie
92
7.2.3.2 Register A VMEbus Interrupt Service Routine
93
7.2.3.3 Unregister A VMEbus Interrupt Service Routine
94
7.2.4 Preparing For VMEbus Device DMA
94
7.2.4.1 Buffer DMA Setup
95
7.2.4.2 Free A DMA Mapping
96
7.2.4.3 DMA Convert Handle To Cookie
96
7.3 Notes & Suggestions For Using The 946 Device Driver
97
7.3.1 Writing Device Drivers
97
7.3.2 Porting VMEbus Device Drivers
97
7.3.3 Limitations
98
Chapter 8: Model 1003 For Linux
99
8.0 Introduction
99
8.0.1 Components
100
8.0.2 System And Hardware Requirements
100
8.1 Installation
100
8.1.1 Installation Notes
100
8.1.2 Installing Support Software
101
8.1.3 Installing bigphysarea Patch & Building The Kernel
101
8.1.3.1 Build The Kernel
101
8.1.3.2 Apply The bigphysarea Patch
103
8.1.3.3 Modifying The Source To Not Require The bigphysarea Patch
103
8.1.4 Installing Device Driver
104
8.2 Configuring The Software
106
8.3 Loading The Driver
108
8.4 Compiling Example Programs
108
8.5 Removing The SBS Support Software
108
8.6 Detailed Interrupt Handling
109
8.7 usrisr Example User ISR
109
8.8 Programming Considerations
109
8.8.1 Building Applications With The Mirror API
109
8.8.2 Porting Applications
110
8.8.2.1 Porting Applications From UNIX Direct Device Interface
110
8.8.2.2 Writing Portable Applications Using The Mirror API
111
8.8.2.2.1 Using NanoBus Or 1003 Specific Extensions
111
8.8.2.2.2 BT_ENOSUP Error Return Value
111
8.8.2.3 ICBR Context Restrictions
112
8.8.3 Extending Or Modifying The Example Applications
112
8.8.3.1 Modifying bt_icbr Code Structure
112
8.9 Tracing And Logging
112
8.9.1 Trace Format
113
8.10 64-bit Addressing Support
113
8.11 Linux Bind Support
113
Chapter 9: Model 993 For VxWorks
115
9.0 Introduction
115
9.0.1 System And Hardware Requirements
115
9.1 Installation
116
9.1.1 Installation Notes
116
9.1.2 Installing Support Software
116
9.1.3 Initializing The Adapter Card In VxWorks
119
9.1.4 Configuring VxWorks Memory Space
119
9.1.5 Allocating PCI Memory
122
9.1.5.1 mcp750 J Fix
122
9.1.5.2 Rebuilding VxWorks
123
9.1.6 Installing The Library And Device Driver
123
9.1.6.1 Configuring The Device Driver
123
9.1.7 Compiling Example Applications
125
9.1.8 Checking The Installation
131
9.1.9 Running The Example Applications
132
9.2 Direct Access To The Device Driver
132
9.2.1 Accessing The Correct Logical Device
132
9.2.2 read() And write() Functions
133
9.2.3 lseek() Function
133
9.2.4 Checking For And Handling Errors
134
9.2.4.1 Initializing The Adapter
135
9.2.4.2 Check For Adapter Errors
136
9.2.4.3 Clear Error Status On The Adapter
137
9.3 dataBLIZZARD Device Driver Porting
137
9.4 Compiling vx_bsp_unique.c
138
Chapter 10: Model 984 For Windows 2000/XP
145
10.0 Introduction
145
10.0.1 Components
145
10.0.2 System And Hardware Requirements
146
10.1 Installation
146
10.1.1 General Installation Notes
146
10.1.2 Obtain The Driver Software.
146
10.1.3 Windows 2000 Installation
147
10.1.4 Windows 2000 Uninstall
161
10.1.5 Windows XP Install
169
10.1.6 Windows XP Uninstall
178
10.1.7 Verifying The Installation
186
10.1.7.1 Presence Of The Driver
186
10.1.7.2 Driver Functioning
186
10.2 Model 984 Specific Example Applications
187
10.2.1 Building The Model 984 Specific Example Applications
187
10.2.2 Tracing and Logging.
187
10.3 Porting Applications
188
10.3.1 Porting Applications From Previous Windows Drivers
188
10.3.2 Porting Applications From UNIX
188
10.4 Extending Or Modifying The Example Applications
189
10.4.1 Modifying bt_icbr Code Structure
189
10.5 User Written Interrupt Handlers
190
10.5.1 Types Of User Interrupt Handlers
191
10.5.1.1 Error Interrupt Handlers
191
10.5.1.2 Programmed Interrupt Handlers
191
10.5.1.3 Cable (IACK) Interrupt Handlers
191
10.5.2 Registering User Interrupt Handlers
191
10.5.2.1 When To Register A User Interrupt Handler
192
10.5.2.2 How To Register A User Interrupt Handler
192
10.5.2.2.1 RegisterUserIsr()
193
10.5.2.2.2 BT_UISR_INFO Structure
193
10.5.3 Unregistering A User Interrupt Handler
194
10.5.3.1 How To Unregister A User Interrupt Handler
194
10.5.3.2 UnregisterUserIsr()
194
10.5.4 Writing A User Interrupt Handler
194
10.5.4.1 User Interrupt Handler Definition
195
10.5.4.2 Accessing The Adapter Hardware
195
10.5.4.2.1 Remote Bus Window
195
10.5.4.2.2 Mapping Register
196
10.5.4.2.3 Node I/O Registers
196
10.5.4.3 Return Values
196
10.5.5 Installing A User Written Driver
197
Chapter 11: Model 984 For Windows XP Embedded
199
11.0 Introduction
199
11.0.1 Components
199
11.0.2 System And Hardware Requirements
200
11.1 Installation
200
11.1.1 General Installation Notes
200
11.1.2 Installing Embedded XP
200
11.1.3 Verify Adapter Install
202
11.1.4 Prepare SBS 984 Driver XP Embedded Components
203
11.1.5 Obtain Target Configuration
203
11.1.6 Run Target Analyzer Probe
203
11.1.7 Convert Target Configuration to XP Embedded Component
204
11.1.8 Import XP Embedded Components Into the Database
209
11.2 Build XP Embedded OS Image with 984 Driver
210
11.2.1 General Build Notes
210
11.2.2 Create A Disk Partition For Embedded XP
210
11.2.2.1 Bring Up Disk Manager
210
11.2.3 Gen The Embedded XP Image
211
11.3 Boot XP Embedded OS Image With 984 Driver
222
11.3.1 General Boot Notes
222
11.3.2 Modify BOOT.INI To Support Booting The Embedded XP OS Image
222
11.3.3 Boot The Embedded XP Image
222
11.3.4 Verify The Driver In The Embedded XP Image
223
Chapter 12: Model 951 For LynxOS
225
12.0 Introduction
225
12.0.1 Components
225
12.0.2 System And Hardware Requirements
226
12.1 Installation
226
12.1.1 Installation Notes
226
12.1.2 Installing Support Software
226
12.1.3 Installing Device Driver
227
12.1.4 Loading The Driver
231
12.1.5 Unloading The Driver
231
12.2 Configuring The Software
231
12.3 Compiling Example Programs
233
12.3.1 Running The Example Programs
233
12.4 Removing The SBS Support Software
234
12.5 Building Applications With The Mirror API
234
12.6 Extending Or Modifying The Example Applications
235
12.6.1 Modifying bt_icbr Code Structure
235
Chapter 13: General Software Issues
237
13.0 General Software Issues
237
13.1 Porting Applications From UNIX Direct Device Interface
237
13.2 Writing Portable Applications Using The Mirror API
237
13.2.1 Using NanoBus Or Model Specific Extensions
237
13.2.2 BT_ENOSUP Error Return Value
238
13.3 Be Careful Of Optimization
239
13.4 Using Structures
239
13.4.1 Memory Modifying Functions With Memory-Mapped Addresses
240
13.5 Extending or Modifying The Example Applications
241
13.5.1 Modifying The bt_icbr Code Structure
241
Appendix A: Glossary
243
Appendix B: Conventions Used In This Manual
247
Appendix C: ioctl() Summary
249
Appendix D: Kernel Functions
255
Appendix E: DMA Operation
257
Index
259

Chapter 1: Software Support Functions

[image: image18.wmf]
1.0 Overview
SBS Support Software provides a device driver and example programs to help applications programmers with adapter and system configuration. Support Software drivers are available for all dataBLIZZARD models and adapter models 614, 616, 617, 618, 618-3, 620, 620-3, 628, 630, 7X2, 7X3, 810, 820, 830 and RPQ600890 for PCI, CompactPCI and PMC computers running IRIX 6.5 (Model 965), Solaris (Model 946 with Nexus Extensions), Linux (Model 1003), VxWorks (Model 993), Windows 2000/XP/XPE (Model 984) and LynxOS (Model 951).

The software package provides a device driver that allows access to dual‑port and/or remote memory space from an application. This allows memory sharing between a PCI computer and another system.

SBS’s device drivers provide the support routines required to access all dataBLIZZARD and adapter resources. Remote memory and Dual Port RAM, if configured, can be shared between the two systems. Programmed interrupts can be exchanged. Devices on the remote system can be controlled from the PCI computer, and remote memory can be accessed.

Support Software’s memory mapping feature allows direct mapping to dual‑port and/or remote memory, without software overhead. After setup, all access details are handled by hardware.

Example programsXE “example programs” included in the Support Software demonstrate features of the adapter hardware and software, and are useful tools for:

[image: image19.wmf]
Debugging.

[image: image20.wmf]
Uploading and downloading binary data.

[image: image21.wmf]
Receiving and counting programmed interrupts.

[image: image22.wmf]
Testing hardware.

Subroutines and example programs may be modified for your specific hardware configuration.

[image: image23.wmf]
In the remainder of this manual, “adapter” refers to both dataBLIZZARD and other SBS adapters. If text refers to only one type of hardware, that hardware will be indicated by “adapters only” or “dataBLIZZARD only”.

[image: image24.wmf]
“Support Software” or “the software” refers to all six software models. If a reference is to one model only, that model will be indicated.

Chapter 2: Getting Started

[image: image25.wmf]
2.0 Getting The Software & Manuals
SBS general purpose I/O hardware manuals, software manuals, and software drivers are available for downloading from www.sbs.com.
To access the manuals and drivers for a specific product:

1.
Using a web browser such as Microsoft Internet Explorer, go to the SBS web site: http://www.sbs.com.

2.
From the SBS home page, search for the product page by using the Product Search function or the Quick Links function.

· If you choose to use the Product Search, enter the product name or model number; for example 820.

· If you choose to use Quick Links, select the product category then select the product form the list presented; for example, select Bus Adapters then select 820.

3.
Click View Manual to download or view hardware manuals. To download or view software manuals and/or to download a software driver, click Get Software.

2.1 Additional ReferencesXE “references”
[image: image26.wmf]
IEEE Standard for a Versatile Backplane Bus: VMEbus, Institute of Electrical and Electronics Engineers (IEEE), Inc.

[image: image27.wmf]
The PCI Local Bus Specification is available from the PCI Special Interest Group, JF2-51, 5200 NE Elam Young Parkway, Hillsboro, OR 97124-6497.

[image: image28.wmf]
PCI BIOS Specification is available from the PCI Special Interest Group, JF2-51, 5200 NE Elam Young Parkway, Hillsboro, OR 97124-6497.

[image: image29.wmf]
PCI System Architecture; Tom Shanley and Don Anderson; MindShare, Inc.; Addison-Wesley Publishing Company.

[image: image30.wmf]
Microsoft Development Library CD is available from Microsoft Corp., One Microsoft Way, Redmond, WA 98053-6399.

[image: image31.wmf]
Microsoft Windows NT Device Driver Kit is available from Microsoft Corp., One Microsoft Way, Redmond, WA 98053-6399.

[image: image32.wmf]
Microsoft Visual C++SYMBOL 212 \f "Symbol" is available from Microsoft Corp., One Microsoft Way, Redmond, WA 98053-6399.

[image: image33.wmf]
Linux Kernel Internals, second edition.

xe "requirements: system"

xe "requirements: hardware"[image: image34.wmf]
PCI specifications: PCI SIG (http://www.pcisig.com/specs.html).

[image: image35.wmf]
Writing Device Drivers, Sun Microsystems, Inc., 2550 Gracia Avenue, Santa Clara, CA 94043.

[image: image36.wmf]
Solaris 2.X On-Line Manual Pages, Section 2 (Application Interface); Section 9 (Device Driver Interface).

[image: image37.wmf]
Solaris 2.X AnswerBook CD, SunSoft

2.2 Help!XE “help”
Please have the following items and information handy when calling SBS for technical support:

[image: image38.wmf]
This manual.

[image: image39.wmf]
The SBS hardware manual.

[image: image40.wmf]
Software model and version number. If the driver is already installed on your system, you can get this information with the following command:

what /var/sysgen/boot/btpdd.o

[image: image41.wmf]
Size of Dual Port RAM, if any.

[image: image42.wmf]
Remote system configuration (installed devices and their configuration).

Technical supportXE “technical support” is available from 8:00 a.m. to 5:00 p.m. (Central Time) Monday ‑ Friday, excluding holidays.

Contact SBS at:

Mailing Address:
SBS Technologies, Inc.

1284 Corporate Center Drive

St. Paul, MN 55121-1245
Tel:
651‑905-4700
FAX:
651‑905-4701

Email:
support.commercial@sbs.com
Web:
http://www.sbs.com
Chapter 3: Example Applications

[image: image43.wmf]XE “example applications”
3.0 Introduction

Example applications provided in the Support Software demonstrate use of device driver featuresXE “device driver: example applications”

XE “device driver: utility programs” and facilitate device driver use.

Example applications:

	APPLICATION
	DESCRIPTION
	API FUNCTIONS USED

	dumpmem XE “dumpmem”

 XE “example applications: dumpmem”
	Uses bt_mmap() to read and print to standard output 256 bytes of remote bus data.
	bt_mmap()

	readmem XE “readmem”

 XE “example applications:readmem”
	Uses bt_read() to read and print to standard output 256 bytes of remote bus data.
	bt_read()

	bt_cat * XE “btcat”

 XE “example applications:btcat”
	Similar to the UNIX cat program. Allows reading from or writing to the remote bus from std.o.
	bt_read()

bt_write()

	datachk XE “datachk”

 XE “example applications:datachk”
	Reads and writes from device using a specific pattern and verifies that no data or status errors occurred.
	bt_read()

bt_write()

	bt_icbr XE “bt_icbr”

 XE “example applications:bt_icbr”
	Registers for and counts a given interrupt type.
	bt_icbr_install()

bt_icbr_remove()

	bt_info XE “bt_info”

 XE “example applications:bt_info”
	Gets or sets driver parameters.
	bt_get_info()

bt_set_info()

	bt_sendi XE “bt_sendi”

 XE “example applications:bt_sendi”
	Sends an interrupt to the remote bus.
	bt_send_irq()

	bt_bind * XE “bt_bind”

 XE “example applications:bt_bind”
	Binds a buffer to the remote bus, waits for user input, and then prints the first 256 bytes of the bound buffer.
	bt_bind()

bt_unbind()

	bt_revs XE “bt_revs”

 XE “example applications:bt_revs”
	Prints the software driver version and hardware firmware version
	bt_open()

	
	VMEbus ONLY
	

	bt_tas XE “bt_tas”

 XE “example applications:bt_tas”
	Performs a remote bus test and set atomic transaction.
	bt_tas()

	bt_cas XE “bt_cas”

 XE “example applications:bt_cas”
	Performs a remote bus compare and swap atomic transaction.
	bt_cas()

	bt_reset XE “bt_reset”

 XE “example applications:bt_reset”
	Resets the remote bus.
	bt_reset()

* Not included in all drivers.

Each of the files mentioned above is described in detail in the following sections of this chapter.

Most of the example applications use a -t option to select the logical device type. This implementation recognizes the following logical device typesXE “logical device: types”:

	NAME
	LOGICAL DEVICE TYPE

	BT_DEV_A16XE “BT_DEV_A16”
	Alias for BT_DEV_IO

	BT_DEV_A24XE “BT_DEV_A24”
	Remote VMEbus A24 spaceXE “A24 space”

	BT_DEV_A32XE “BT_DEV_A32”
	Alias for BT_DEV_RR

	BT_DEV_LM
	Local memory device

	BT_DEV_IO
	Remote VMEbus A16 space or PCI I/O space

	BT_DEV_RR
	Remote VMEbus A32 space or PCI memory space

	BT_DEV_MEM
	Alias for BT_DEV_RR

	BT_DEV_DEFAULT
	Alias for BT_DEV_DP

	BT_DEV_LDP
	Local dual port memory if it exists

	BT_DEV_RDP
	Remote dual port memory if it exists

	BT_DEV_DP
	Alias for BT_DEV_RDP

See section 4.1 for more information about logical devices.

3.1 dumpmem Example Application

The dumpmemXE “example applications: dumpmem”

XE “dumpmem” example application uses the device driver to create a memory-mapped pointer to the Local Memory Device, Dual Port RAM or to remote memory.

The dumpmem program uses the bt_mmap()XE “BT_MMap()” interface to open a memory window to the selected deviceXE “Dual Port RAM” or remote memoryXE “remote: memory” and displays the beginning of the first 256 bytes as hexadecimal and ASCII characters.

dumpmem takes a unit numberXE “unit number” (0, 1, 2, etc.), a logical deviceXE “logical device” (BT_DEV_RR, etc.), and a device offsetXE “Dual Port RAM: offset”

XE “remote: memory: address”. By default, dumpmem accesses the first 256 bytes of unit 0’s Remote Dual Port RAM.

Usage: dumpmem –[tua]

dumpmem command line options:

	OPTION
	FUNCTION

	-t <logical device>
	Logical device type.

	-u <unit number>
	Unit; default is unit 0.

	-a <addr>
	Device address to memory map and read.

3.2 readmem Example Application

 XE “readmem”

 XE “example applications:readmem” The readmem example application uses the bt_read() function to read from the local memory device, Dual Port RAM or remote bus memory. This example application uses only the core Mirror API. readmem is similar to dumpmem but uses a different method to transfer data.

After opening the device driver, readmem initializes the area into which data from the selected device will be read. The bt_read() call is used to read in all data at one time.

Usage: readmem –[tua]

readmem command line options:

	OPTION
	FUNCTION

	-t <type>
	Logical device type.

	-u <numb>
	Unit number; default 0.

	-a <addr>
	Device address to read.

3.3 bt_cat Example Application

The bt_cat example application uses bt_read()XE “BT_Read()” and bt_write()XE “BT_Write()” API functions and the POSIXXE “POSIX” stdin/stdout mechanismXE “stdin/stdout mechanism” to transfer data between the given logical deviceXE “remote: bus: memory” and the PCI computer. The program provides a convenient way to quickly download small sections of data or program code between the PCI bus computer and the remote system.

Usage:

bt_cat [-t <type>] [-u <unit>] [-a <addr>] [-l <length>] [-b <buflen>]

XE “btcat: arguments”
	ARGUMENT
	FUNCTION

	-t <type>
	logical device type.

	-u <unit>
	Unit number; default 0.

	-a <addr>
	Device address to read or write.

	-l <length>
	Length to read.

	-b <buflen>
	Size of internal buffer; how many bytes to read or write at one time.

If the –l option is given, bt_cat reads the given number of bytes from the remote system and writes them to the standard output. If the –l option is not given, bt_cat reads from the standard input and writes the data to the remote system until an End of File is encountered.

3.4 datachk Example Application

The datachk XE “datachk” XE “example applications:datachk” example application reads and writes from the device using a specific pattern and verifies that no data or status errors occurred. It uses bt_write() to write a buffer to a memory region on the remote bus and uses bt_read() to read the data back from the remote bus. This application uses only the core Mirror API.

Usage: datachk –[tualcmpswk]

datachk command line options:

	OPTION
	FUNCTION

	-t <type>
	Logical device type.

	-u <numb>
	Unit number; default 0.

	-a <addr>
	Device address to access.

	-l <numb>
	Length of transfer.

	-c <numb>
	Number of repetitions to perform.

	-m <misalign>
	Amount to misalign the buffer.

	-p <pattern>
	Pattern with which to fill the buffer.

	-s <seed>
	Seed for the pattern.

	-w <width>
	Pattern width.

	-k <addr>
	Kernel address (not supported by all drivers)

3.5 bt_icbr Example Application

 XE “bt_icbr”

 XE “example applications:bt_icbr” The bt_icbr example uses bt_icbr_install() to register to receive the given type of interrupt, and print a message when that interrupt occurs. Messages are only printed after input is received.

To exit the application, press q.

Usage: bt_icbr -[ui]

bt_icbr command line options:

	OPTION
	FUNCTION

	-u <numb>
	Unit number; default 0.

	-i<numb>
	Interrupt type to register for (bt_irq_t)

Because interrupts are registered for on a unit-wide basis, it does not matter which logical device is used.

3.6 bt_info Example Application

 XE “bt_info”

 XE “example applications:bt_info” The bt_info example application allows easy access to the device driver parameters from section 5.3 using bt_get_info() and bt_set_info().

Usage: bt_info –[tupv]

bt_info command line options:

	OPTION
	FUNCTION

	-t <type>
	Logical device type.

	-u <number>
	Unit number; default 0.

	-p <param>
	Parameter name. The name of one a parameter listed in section 5.3.1. A parameter name must be specified.

	-v <value>
	Value to set the parameter to. If the –v option is not specified, the current value of the selected parameter is printed. Only parameters listed in section 5.3.1 may be changed.

Example:

To set unit 1’s DMA threshold to 1000 (decimal):

bt_info –u 1 –p BT_INFO_DMA_THRESHOLD –v 1000

To see the current data width setting for the remote bus memory, unit 0:

bt_info –t BT_DEV_MEM –p BT_INFO_DATA_WIDTH

3.7 bt_sendi Example Application

The bt_sendi example application sends a programmed interrupt to the remote bus. XE “bt_sendi”

 XE “example applications:bt_sendi”
Usage: bt_sendi –[tu]

bt_sendi command line options:

	OPTION
	FUNCTION

	-t <type>
	Logical device type.

	-u <number>
	Unit number; default 0.

3.8 bt_tas Example Application

The bt_tas example application XE “bt_tas”

 XE “example applications:bt_tas” uses the bt_tas() function to do an atomic test and set to the remote bus.

Usage: bt_tas –[tua]

bt_tas command line options:

	OPTION
	FUNCTION

	-t <type>
	Logical device type.

	-u <numb>
	Unit number; default 0.

	-a <addr>
	Device address to access.

[image: image44.wmf]
This example application cannot be run in PCI-to-PCI configurations.

[image: image45.wmf]
This example application is not supported by Model 1003.

3.9 bt_cas Example Application

The bt_cas example application XE “example applications:bt_cas”

 XE “bt_cas” uses the bt_cas() function to do an atomic compare and swap on the remote bus.

Usage: bt_cas –[tuacsd]

bt_cas command line options:

	OPTION
	FUNCTION

	-t <type>
	Logical device type.

	-u <numb>
	Unit number; default 0.

	-a <addr>
	Device address to access.

	-c <cmpval>
	Compare value. If the remote memory location is this value, it is set to swapval.

	-s <swapval>
	Swap value. If the remote memory location is cmpval, it is set to this value.

	-d <datasize>
	Size (in bytes) of the remote memory location. Can be 1, 2, or 4 bytes in length.

[image: image46.wmf]
This example application cannot be run in PCI-to-PCI configurations.

[image: image47.wmf]
This example application is not supported by Model 1003.

3.10 bt_reset Example Application

The bt_reset example application XE “bt_reset”

 XE “example applications:bt_reset” uses the bt_reset() function to reset the remote bus.

Usage: bt_reset –[tua]

bt_reset command line options:

	OPTION
	FUNCTION

	-t <type>
	Logical device type.

	-u <numb>
	Unit number; default 0.

[image: image48.wmf]
This example application cannot be run in PCI-to-PCI configurations.

[image: image49.wmf]
The remote reset jumper (SYS-6) on the VMEbus adapter card must be installed for the VMEbus to be reset.

3.11 bt_bind Example Application

The bt_bind example application XE “example applications:bt_bind”

 XE “bt_bind” uses the bt_bind() function to bind a buffer to the remote bus. It waits for user input, then prints the first 256 bytes of the bound buffer.

Usage: bt_bind –[tuls]

bt_bind command line options:

	OPTION
	FUNCTION

	-t <type>
	Logical device type.

	-u <numb>
	Unit number; default 0.

	-l <length>
	Length of the buffer to bind.

	-s <swap>
	Swapping value to use during bind (bt_swap_t)

3.12 bt_revs Example Application

The bt_revs example application XE “example applications:bt_revs”

 XE “bt_revs” opens the device driver and prints on to the screen the software version and the hardware version.

Usage: bt_revs –[t]

bt_revs command line options:

	OPTION
	FUNCTION

	-t <type>
	Logical device type.

Chapter 4: Using The Mirror API

[image: image50.wmf]
4.0 Introduction

The SBS Mirror APIXE “Mirror API: using” supports accessing and controlling SBS adapters. The Mirror API provides a level of abstraction that allows source code compatibility with other operating systems and other SBS devices, as well as simplifying writing applications that use a range of SBS products.

The Mirror API needs the device driver to transfer data and perform certain administrative functions required by the device. The example applications use the library, the header “btapi.h”XE “btapi.h”, and all the header filesXE “header files” included by this file.
Core Mirror API functions are Mirror API functions that are common to all implementations. In addition to these core functions, the core Mirror API includes routines that are hardware architecture or software environment specific.

By necessity, the exact behavior of some functions vary from driver to driver. These implementation-defined behaviors should not be relied upon by portable programs, but will be defined by any given driver.

4.1 Understanding Logical DevicesXE “logical device”
There are several resource types you may want to access on the same physical unit; each resource type is treated as a logical device with a separate device name. This facilitates access and keeps each device independent.

Logical devicesXE “segments”

XE “logical device: segments” that can be accessed are named as follows:

	LOGICAL DEVICE
	FUNCTION

	Remote Dual Port

BT_DEV_RDP orXE “Remote Dual Port”
BT_DEV_DPXE “BT_DEV_RDP”
	References the remote Dual Port RAM address space for the Dual Port RAM located on the remote adapter card. BT_DEV_RDP is supported on all SBS NanoBus products.

	Local Dual Port

BT_DEV_LDP
	References the local Dual Port RAM address space for the Dual Port RAM located on the local adapter card. BT_DEV_LDP only exists on dataBLIZZARD products. Not supported by Model 1003.

	Remote Bus I/OXE “Remote Bus I/O”
BT_DEV_IO

or

BT_DEV_A16XE “BT_DEV_IO”
	References Remote Bus I/O spaceXE “remote: bus: I/O space”. For VMEbus, this is the A16XE “A16 space” (Short) space using Supervisory Data access, address modifier 2D. For the PCI bus, this is PCI I/O space.

BT_DEV_IO is part of the core Mirror API.

BT_DEV_A16 is supported on all SBS NanoBus products.

	Remote Bus MemoryXE “Remote Bus Memory”
BT_DEV_RR

or

BT_DEV_A32

or

BT_DEV_MEMXE “BT_DEV_MEM”
	References Remote Bus MemoryXE “remote: bus: memory” space. For VMEbus, this defaults to the A32XE “A32 space” (Extended) space using Supervisory Data access, address modifier 0D. BT_DEV_A32 is supported on all SBS NanoBus products.

The ‘BT_DEV_MEM’ device is part of the core Mirror API.

BT_DEV_RR and BT_DEV_A32 are supported on all SBS NanoBus products.

	Remote BusXE “Remote Bus”
BT_DEV_A24XE “BT_DEV_A24”
	References a secondary Remote Bus Memory space assumed to use 24-bit addressing or less. For VMEbus, this defaults to the A24 (Standard) space using Supervisory Data access, address modifier 3D.

For the PCI bus, this space will not exist.

	Local MemoryXE “Local Memory”
BT_DEV_LMXE “BT_DEV_LM”
	References a special buffer set up on the local system. The driver initializes the adapter to allow the remote system access to this buffer.

BT_DEV_LM is supported on all SBS NanoBus products.

	Default device

BT_DEV_DEFAULTXE “Default device”
	For Mirror API, this device is aliased to the Local Dual Port device.

This device is the default device used by example applications that only use the core Mirror API.

	Diagnostic Device

BT_DEV_DIAG
	Allows access to memory regions necessary to implement Mirror API as well as spaces for internal SBS use only. This device is meant for internal SBS use only. Unauthorized use of this device may corrupt the driver and/or adapter.

The example applications use the bt_gen_name() XE “bt_gen_name()” routine to convert from the mnemonic name and unit number to the device name.

4.2 Initializing The Device And API

XE “initialization: device”

XE “initialization: API”Routines in the Mirror API use an opaque objectXE “opaque object” (a descriptor) to determine which logical device an operation is to be performed against. The underlying descriptorXE “descriptor” type is implementation defined. Do not make assumptions about the relationship between the descriptor used by the Mirror API and file descriptors on the system.

The software supports multiple cards in a single system. Each physical card is a separate unit number. Each unit has its own set of logical devices within that unit. The bt_gen_name()XE “bt_gen_name()” routine takes the physical unit number and logical device mnemonic as parameters and creates a string that uniquely identifies the device.

bt_gen_name() prototype:

 char * bt_gen_name(into unit, bt_dev_t logical_device,

 char *devname_p, size_t max_devname);

The application is responsible for allocating the buffer to hold the string. It passes in the address and size of this buffer, which bt_gen_name() then initializes with the device identification string. The return value of this routine can be passed directly into the bt_open() routine. The return value may not be either the buffer passed in or NULL. See section 5.1.2 for a detailed description of bt_gen_name() XE “bt_gen_name()” and its parameters.

The bt_open() XE “bt_open()” routine does any initialization needed by the API to access a device. For Windows NT and many other systems, this includes a system call to open the device driver for access.

bt_open() prototype:

bt_error_t bt_open(bt_desc_t *btd_p, const char *devname_p,

 bt_accessflag_t flags);

The first parameter is a pointer to the location that will contain the descriptor that bt_open() returns. This value is then used by all other Mirror API calls to track the unit and logical device being accessed.

The second parameter is the device identification string. Use the bt_gen_name() routine to create this string. The string format is operating system dependent.

The last parameter is the device read and write permission flags.

See section 5.1.3 for a detailed description of bt_open() and its parameters.

When bt_open() returns, the device descriptor is set. If an error occurred on the bt_open() call, this descriptor is only valid for use when calling the error reporting routines bt_perror() and bt_strerror().

After successfully opening the logical device, it is ready to use. The descriptor remains valid until released with the bt_close() XE “bt_close()” routine.

4.3 Reading And Writing Data

The bt_read() XE “bt_read()” and bt_write() XE “bt_write()” functions provide a simple interface for transferring data. They provide serialization of all requests and use the current driver settings to determine swapping mode, data transfer size, and if the transfer should be performed via Programmed Input/Output (PIO XE “PIO”) or Direct Memory Access (DMA XE “DMA”).

bt_read() prototypeXE “bt_read(): prototype”:

bt_error_t bt_read(bt_desc_t btd, void *buffer_p,

 bt_devaddr_t logical_device_address, size_t transfer_length,

 size_t *actual_length_transferred_p);

bt_write() prototypeXE “bt_write(): prototype”:

bt_error_t bt_write(bt_desc_t btd, void *buffer_p,

 bt_devaddr_t logical_device_address, size_t transfer_length,

 size_t *actual_length_transferred_p);

The bt_read() and bt_write() routines provided by the library and the normal read()XE “read()” and write()XE “write()” functions that are part of the operating system are not the same. Differences include:

[image: image51.wmf]
Determination of errors and the amount of data transferred. The library always returns an error code to indicate success or failure. It has a separate parameter that indicates the amount of data transferred. Even if there is an error, the length parameter is updated to help determine if any part of the data was transferred.

[image: image52.wmf]
Library functions take the destination address as a parameter on the call. This parameter allows access to the full range of logical device addresses. Consequently, there is no need for a lseek() function to reposition within the remote device’s address space. The application advances the current address so that subsequent calls to routines access the next address.

When performing a data transfer, DMAXE “DMA” is automatically performed during bt_read() or bt_write() transfers that are longer than the DMA threshold value. See section 5.3.1 for information on setting DMA threshold values.

The adapter supports DMAXE “DMA” transfers of 32-bit data aligned to any 4-byte boundary, and DMA transfers of 16-bit data aligned to any 2-byte boundary. DMA transfer length must always be multiples of 4 bytes. The device driver or library must perform PIO if the starting address cannot be aligned properly. If device driver performance is not as high as expected, check the alignment of the data buffers and destination addresses.

Several configuration parameters affect the way bt_read()XE “bt_read()” and bt_write()XE “bt_write()” transfer data: maximum data transfer size, byte swappingXE “byte swapping” mode, and DMAXE “DMA” threshold value. See section 5.3.1 for information about these settings.

4.4 Memory Mapping Support

Memory mapping XE “memory mapping”allows an application to create a region of address space to directly access a resource. After the mapping is created, all references to this region of memory are completely handled by hardware. Via memory mapping, an application can directly access Remote Bus Memory, Remote Bus I/O, or Dual Port RAM.

Memory mapping is most efficient when small amounts of data are being accessed, or the data are at discontiguous addresses. The library provides the bt_mmap() and bt_unmmap() routines to create and release memory mapped regions to a logical device.

bt_mmap() prototypeXE “bt_mmap(): prototype”:

bt_error_t bt_mmap(bt_desc_t btd, void **map_p,

bt_devaddr_t logical_device_address, size_t map_length,

bt_accessflag_t flags, bt_swap_t swapping);

bt_unmmap() prototypeXE “bt_unmmap(): prototype”:

bt_error_t bt_unmmap(bt_desc_t btd, void *map_p, size_t

 map_length);

The bt_mmap()XE “bt_mmap()” routine performs all required resource allocation and adapter hardware mapping register programming. If the logical device is Remote Bus Memory or I/O, the region must be unmapped and remapped after the remote adapter card is disconnected and reconnected. This condition can be detected by registering for error interrupts and watching for a power cycling.

The memory mapped region always becomes invalid after bt_unmmap()XE “bt_unmmap()” is called to release the region or the descriptor used for the bt_mmap() is closed with the bt_close()XE “bt_close()” routine. After either action, the results of accessing this region are undefined.

It is important to call bt_unmmap() before closing a logical device. This allows the library and driver to release any resources used by the mapped region and reset the mapping registers. The length parameter for the bt_unmmap() call must match the length given in the original bt_mmapp() call.

4.5 Interrupt Call Back Routines

The library uses a call back routine to notify tasks that an interrupt occurred. An application can register an Interrupt Call Back Routine XE “Interrupt Call Back Routine” \t “See ICBR” (ICBRXE “ICBR”) to be called anytime a remote bus device interrupt occurs, an Event is set, or an error interrupt occurs.

When the ICBR is registered, the application indicates:

[image: image53.wmf]
Which type of interrupt it is registering the routine for;

[image: image54.wmf]
The address of the routine to be called;

[image: image55.wmf]
A parameter that is passed as one of the arguments to the routine;

[image: image56.wmf]
A vector to match.

When an interrupt occurs, the Interrupt Service Routine (ISRXE “ISR”) determines the type and vector for the interrupt sources and queues these for later interrupt dispatch.

Vectors are the non-zero return values from user ISRs or the IACK STATUS/ID value for VMEbus interrupts that are used to limit the times an ICBR is called to only those interrupts handled by a given user ISR.

The interrupt dispatcher receives the queued interrupt type and vector and searches the list of registered ICBRs for a match. If the interrupt type matches the registered type matches and the registered vector is BT_VECTOR_ALL or matches the queued interrupt vectorXE “BT_VECTOR_ALL”, the dispatch causes the ICBRXE “ICBR” to execute.

On some systems, the context that the ICBR executes in may have limited functions. If the same ICBR is to be used on multiple operating systems, functions within the ICBR will be limited because some systems implement the ICBR within a signal handler or a lightweight thread.

Even in the most restricted contexts, access is available to:

[image: image57.wmf]
The full address space, including any memory mapped regions, of the task that originally registered the ICBR.

[image: image58.wmf]
Error checking and handling routines, bt_chkerr()XE “bt_chkerr()” and bt_strerror()XE “bt_strerror()”.

Not all implementations support I/O from within an ICBR. Consequently, bt_perror, which writes its output to stderr, may not be available on all systems from within an ICBR.

The ICBR runs in a POSIX thread within the application. The library creates a new thread for each library instance, and destroys the thread with the last call to bt_close(). There are no restrictions on what operations an ICBR can perform.

On Linux, the ICBR runs as a POSIX thread within the application. The library creates a new thread for the first call to bt_icbr_install(), and destroys the thread with the last call to bt_icbr_uninstall().

Because the interrupt data are queued, this queue could overflow. If an overflow occurs, any ICBRs registered for that type of interrupt are called with a BT_IRQ_OVERFLOWXE “BT_IRQ_OVERFLOW” interrupt type. If the software cannot determine exactly which types of interruptsXE “interrupt” occurred during the overflow condition, all registered ICBRs are called with a BT_IRQ_OVERFLOW interrupt type.

4.6 Binding A Buffer To The Remote Bus

The Support Software offers two ways to share memory with the remote bus: local memory and binding a buffer to the remote bus.

Note the Model 1003 Linux product does not use malloc to obtain a buffer, instead the bt_get/set_info with BT_INFO_KMALLOC_BUF, BT_INFO_KFREE_BUF, and BT_INFO_KMALLOC_SIZ are used see the source code sample src/bt_bind.c.

Local memory is a logical device associated with a given unit. It is a buffer XE “binding:buffer”

 XE “buffer:binding” that the driver allocates out of kernel memory, and binds to the remote bus at boot. It can be opened using bt_open() and bt_gen_name() with a device type of BT_DEV_LM instead of BT_DEV_DEFAULT. Data can be transferred to and from the drivers buffer using bt_read() and bt_write(), and it can be mapped into the applications address space by using bt_mmap(). Other devices on the remote bus may access the local memory device by accessing the remote adapter card’s remote memory window or remote memory device.

Another, more versatile but more complex way of sharing memory with the remote bus is by binding a buffer to the remote bus. This allows the applications buffer to show up on the remote bus, and be accessible to all devices on the remote bus. Thus, bt_bind() XE “bt_bind()” is the opposite of bt_mmap().

Unlike bt_mmap(), buffers bound to the remote bus must be aligned to a multiple of a given value, and their size in bytes must also be a multiple of a given value. This is necessary as most implementations can only bind whole pages, and either the whole page is bound or none of the page is bound. Consequently, in these implementations, the buffer to be bound must start at the beginning of a page, and must cover a whole number of pages.

The SBS API provides the INFO parameter BT_INFO_BIND_ALIGN that returns the alignment restrictions for the implementation. The size of the buffer must be an even multiple of this parameter. To go from an arbitrary length for the buffer XE “buffer:binding”

 XE “binding:buffer” to an aligned length, the code looks like:

bt_desc_t btd;

/* open descriptor */

size_t buffer_size;

/* size of the buffer to bind */

bt_data32_t align_size;
/* alignment restriction */

bt_error_t status;

/* return value */

/* get the alignment restriction */

status = bt_get_info(btd, BT_INFO_BIND_ALIGN, &align_size);

if (status != BT_SUCCESS) {

/* error */

}

/* align the size requirement to an even multiple of align_size */

if ((buffer_size % align_size) != 0) {

/* we need to add some to the buffer size to make it an even

multiple */

buffer_size += align_size - (buffer_size % align_size);

}

ISO 9899 Standard C has no portable way to align the start of the buffer. Most implementations have a flat address space where pointers are interchangeable with integers. The code above is used to adjust the length of the buffer. This would also work to adjust the beginning address of the buffer. However, with segmented architectures (MS-DOS is a popular example) and non-linear address systems (where the address is actually a hash value) the code that would work in a flat address space would not work. To work around this, the SBS API provides a macro, BT_ALIGN_PTR, returns the amount to add to the pointer to align it. This will always be less than BT_INFO_BIND_ALIGN. It is a good idea to allocate an “extra” amount of memory, BT_INFO_BIND_ALIGN bytes in size, in the buffer to make sure the buffer will fit.

void * orig_ptr;

/* buffer we malloc’ed */

void * buf_ptr;

/* buffer we will bind */

bt_data32_t align_size;
/* alignment size from above */

size_t buffer_size;
/* buffer size from above */

/* call malloc to allocate the buffer. Note that we add a full

align_size to the amount to allocate to make sure we can align

the beginning of the buffer to an even multiple of align_size */

orig_ptr = malloc (buffer_size + align_size);

if (orig_ptr == NULL) {

/* error */

}

/* we need to keep orig_ptr around to pass to free(), so we put

the aligned buffer pointer into buf. We cast orig_ptr to a pointer

to bt_data8_t, to make sure we’re adding bytes. */

buf_ptr = (void *) (((bt_data8_t *) orig_ptr) + BT_ALIGN_PTR(orig_ptr, align_size));

After the buffer is aligned, bt_bind() can be called to bind the memory to the remote bus. bt_bind() returns the offset into the remote window the buffer was bound at, and a bind descriptor. A bind descriptor is a mechanism for bt_bind() to pass information to bt_unbind(); it has no other use.

bt_desc_t btd;
/* open descriptor */

bt_binddesc_t bind_desc;
/* bind descriptor to initialize */

bt_devaddr_t window_off; = BT_BIND_NO_CARE
/* written with the window offset */

void * buf_ptr;
/* buffer we will bind */

size_t buffer_size;
/* buffer size from above */

bt_accessflag_t flags = BT_RDWR;
/* accesses requested- both read and write. */

bt_swap_t swap = BT_SWAP_DEFAULT;
/* swapping method to use. */

bt_error_t status;
/* return value */

status = bt_bind(btd, &bind_desc, & window_offset, buf_ptr,

buffer_size, flags, swap);

if (status != BT_SUCCESS) {

/* Error */

}

Once bound, the buffer can still be accessed normally by pointer dereference or array subscripting. Other devices can access the buffer by accessing the proper location in the remote adapter card’s remote bus window. Because some SBS adapters cannot support remote access concurrently with DMA accesses, it may be necessary to create and hold an application level lock to make sure it does not make any concurrent accesses. A successful call to bt_bind() will return a window offset. This is the offset from the remote adapter’s remote memory window that should be used to access the bound buffer. The BT_BIND_NO_CARE value that is passed in above, indicates that the driver is free to place the buffer at any open offset for the remote system to access.

After all accesses are complete, and before the device descriptor is closed or the buffer is freed, the buffer should be unbound:

bt_desc_t btd;

/* open descriptor from above */

bt_binddesc_t bind_desc;
/* bind descriptor from above */

void * orig_ptr;
/* pointer originally returned from malloc() above */

status = bt_unbind(btd, bind_desc);

if (status != BT_SUCCESS) {

/* Error */

}

/* we can free the buffer now */

free(orig_ptr);

4.7 Doing Atomic Transactions on the VMEbus

 XE “atomic transactions” Support Software provides two functions for doing atomic read/write transactions on the VMEbus: bt_tas() XE “bt_tas()” and bt_cas() XE “bt_cas()” . The function bt_tas() does an atomic bit test and set. It tests and sets the high order bit of the given byte, and returns the value the byte had before the high bit was set. These functions only work when the remote bus is VME.

bt_desc_t btd;

bt_devaddr_t addr;

bt_data8_t prev_val;

bt_status_t status;

status = bt_tas(btd, addr, &prev_val);

if (status = BT_SUCCESS) {

/* Error */

}

if ((prev_val & 0x80u) == 0) {

printf (“Bit was clear and is now set.\n”);

} else {

printf (“Bit was already set.\n”);

}

The function bt_cas() does an atomic compare and swap to a memory location on the remote bus. First the value is read. If the value read is equal to a given compare value, the location is written with a swap value before the bus is released, otherwise the location remains unmodified.

bt_desc_t btd;

bt_devaddr_t addr;

bt_data32_t cmpval, swapval, prevval;

bt_status_t status;

status = bt_cas(btd, addr, cmpval, swapval, &prevval);

if (status != BT_SUCCESS) {

/* Error */

}

if (prevval == cmpval) {

printf (“Value swapped- Value is now swapval.\n”);

} else {

printf (“Value not swapped- Value is still prevval.\n”);

}

4.8 Hardware Access Routines

[image: image59.wmf]
Hardware Access Routines are not supported by Model 1003.

The XE “hardware access routines” NanoBus family allows for the adapter card to DMA to or from any PCI bus location. When the location is a user’s buffer, bt_read() or bt_write() must be used. However, when the location is another PCI card, the bt_hw_read() and bt_hw_write() routines must be used. See also sections 5.2.11 and 5.2.12.

The bt_hw_read() XE “bt_hw_read()” and bt_hw_write() XE “bt_hw_write()” implementations only use DMA mode. If the bus_addr, xfer_off or xfer_len are not aligned properly, the routines will return an error. Also, because only DMA is supported, it is illegal to transfer from local memory or local dual port. In addition, for PCI to PCI applications, remote dual port is not supported.

The bt_hw_read() and bt_hw_write() functions do not call bt_clrerr() or do the equivalent before starting the transfer. However, errors generated in the transfer will affect both the return value of these functions and the return values of later calls to bt_chkerr().

The bt_bind() and bt_unbind() functions of the core Mirror API allow a user’s buffer to be bound to a unit. Besides binding application memory, you may wish to bind a hardware resource or device to a unit. This process would allow the remote system to access the hardware resource as if it were local. The hardware resource must be accessible from the bus that the SBS adapter card is installed in and the application must do the work of determining a bus address that can be used to access the resource they are interested in making accessible. The bt_hw_bind() and bt_hw_unbind() routines allow a local bus address to be made accessible from the remote system. See also sections 5.2.13 and 5.2.14.

When a local bus address is bound to a unit is accessible via PIO or DMA from the remote system until it is unbound. Thus, bound resources will reduce the maximum DMA transfer size for the bt_read(), bt_write(), bt_hw_read(), and bt_hw_write() routines.

The local bus address to be bound must be a multiple of BT_INFO_BIND_ALIGN.

The bt_binddesc_t descriptor is used to pass all needed information from a call to bt_hw_bind() to the corresponding call to bt_hw_unbind(), not including the device descriptor (device argument) passed to bt_hw_bind(). Which logical device the descriptor references is irrelevant – bt_hw_bind() binds the buffer to the associated unit’s memory space or in the case of VME, wherever the REM RAM window is jumpered.

The device descriptor passed to bt_hw_unbind() must be the same one as was passed to the original bt_hw_bind() call. Not using the same descriptors results in undefined semantics.

Multiple calls to bt_unbind() with the same bind descriptor has undefined semantics.

Chapter 5: API Reference

[image: image60.wmf]
5.0 Introduction

Chapter 5 documents the following functions provided by the Mirror API XE “Mirror API” :

[image: image61.wmf]
bt_str2dev()
[image: image62.wmf]
bt_gen_name()
[image: image63.wmf]
bt_open()

[image: image64.wmf]
bt_close()
[image: image65.wmf]
bt_chkerr()
[image: image66.wmf]
bt_clrerr()

[image: image67.wmf]
bt_perror()
[image: image68.wmf]
bt_strerror()
[image: image69.wmf]
bt_init()

[image: image70.wmf]
bt_read()
[image: image71.wmf]
bt_write()
[image: image72.wmf]
bt_get_info()

[image: image73.wmf]
bt_set_info()
[image: image74.wmf]
bt_icbr_install()
[image: image75.wmf]
bt_icbr_remove()

[image: image76.wmf]
bt_lock()
[image: image77.wmf]
bt_unlock()
[image: image78.wmf]
bt_mmap()

[image: image79.wmf]
bt_unmmap()
[image: image80.wmf]
bt_dev2str()
[image: image81.wmf]
bt_ctrl()

[image: image82.wmf]
bt_bind()
[image: image83.wmf]
bt_unbind()

The following routines are NanoBus specific:

[image: image84.wmf]
bt_reg2str()
[image: image85.wmf]
bt_cas()
[image: image86.wmf]
bt_tas()

[image: image87.wmf]
bt_get_io()
[image: image88.wmf]
bt_put_io()
[image: image89.wmf]
bt_or_io()

[image: image90.wmf]
bt_reset()
[image: image91.wmf]
bt_send_irq()
[image: image92.wmf]
bt_status()

The following sections of this chapter describe the functions in detail.

5.1 Mirror API Routines

Mirror API routines XE “Mirror API: routines “detailed in sections 5.1.1 - 5.1.23 can be ported to other architectures.

5.1.1 Convert From String To Logical Device

bt_str2dev()XE “bt_str2dev()”
	DESCRIPTION
	Converts from a string containing the device name to a logical device type.

	PROTOTYPE
	bt_dev_t bt_str2dev(const char *name_p)

	ARGUMENT
	name_p String containing the device name.

	COMMENTS
	Example applications often use this routine when parsing the command line.

	RETURN VALUES
	Logical device type

5.1.2 Generate Device Name

bt_gen_name()XE “bt_gen_name()”
	DESCRIPTION
	Creates a string containing the device name for a particular unit and logical device type.

	PROTOTYPE
	char * bt_gen_name(int unit, bt_dev_t logical_device, char *devname_p, size_t max_devname)

	ARGUMENTS
	unit Unit number to reference. Valid range is 0 to 31.

logical_device Logical device type to reference.

devname_p Address of buffer in which to store the device name.

max_devname Size of the buffer to hold device name.

	COMMENTS
	Return value should be passed unexamined to bt_open().

For Model 1003, the return value is the raw device name to open. If you are using the Mirror API, pass this directly to bt_open(). Programs that directly access the device driver, bypassing the Mirror API, can still use this routine to generate the device name.

	RETURN VALUES
	devname_p On success.
NULL or other arbitrary pointer value On error.

5.1.3 Open A Logical Device For Access

bt_open()XE “bt_open()”
	DESCRIPTION
	Opens the specified device for access by the Mirror API and returns the descriptor to use when accessing the device.

	PROTOTYPE
	bt_error_t bt_open(bt_desc_t *btd_p, const char *devname_p, bt_accessflag_t flags)

	ARGUMENTS
	btd_p Address to hold the descriptor created by bt_open. This must be a pointer to type bt_desc_t.

devname_p Device name. Usually created by bt_gen_name() routine.

flags The permission flags to indicate that reading and/or writing is to be allowed for this device. Valid flags include:

BT_RD Read access allowed.

BT_WR Write access allowed.

BT_RDWR Both read and write access are allowed.

	COMMENTS
	May recognize NULL or other arbitrary pointer values to indicate an error (i.e. logical device not supported).

If bt_open() returns an error value (anything other BT_SUCCESS), the descriptor can be used to call bt_perror() or bt_strerror() for the given error code. It is not valid for any other use, including other possible error codes. The descriptor returned in btd_p is only valid in the process that called bt_open() and any threads it spawns.

	RETURN VALUES
	BT_SUCCESS On success.
BT_ENOSUP Logical device not supported (communicated from bt_gen_name() by special pointer value).

BT_EINVAL Invalid parameter; possibly bt_gen_name() problem.

5.1.4 Close The Logical Device

bt_close()XE “bt_close()”
	DESCRIPTION
	Closes the specified device, releasing the descriptor.

	PROTOTYPE
	bt_error_t bt_close(bt_desc_t btd)

	ARGUMENT
	btd Descriptor returned by the original bt_open() routine.

	COMMENTS
	There should be exactly one call to bt_close() for each successful call to bt_open().

If bt_close() returns an error value (anything other than BT_SUCCESS), the descriptor can be used to call bt_perror() or bt_strerror() for the given error code. It is not valid for any other use, including other possible error codes.

	RETURN VALUES
	BT_SUCCESS On success.
Other error value On error.

5.1.5 Check For Errors On A Unit

bt_chkerr()XE “bt_chkerr()”
	DESCRIPTION
	Checks for errors on a unit. All logical devices on the same unit share the error status.

	PROTOTYPE
	bt_error_t bt_chkerr(bt_desc_t btd);

	ARGUMENT
	btd Descriptor returned by the original bt_open() routine.

	COMMENTS
	The error is maintained until an application clears them with bt_clrerr(), or reinitializes the adapter with bt_init().

	RETURNS
	BT_SUCCESS No error.
Appropriate error value Otherwise.

5.1.6 Clear Errors On A Unit

bt_clrerr()XE “bt_clrerr()”
	DESCRIPTION
	Clears any error conditions on a unit.

	PROTOTYPE
	bt_error_t bt_clrerr(bt_desc_t btd)

	ARGUMENT
	btd Descriptor returned by the original bt_open() routine.

	COMMENTS
	None.

	RETURN VALUES
	BT_SUCCESS All errors were cleared.
Other value Outstanding errors could not be cleared.

5.1.7 Print Error Message To stderr

bt_perror()XE “bt_perror()”
	DESCRIPTION
	Prints a description of a Mirror API error code to stderr.

	PROTOTYPE
	bt_error_t bt_perror(bt_desc_t btd, bt_error_t status, const char * message_p)

	ARGUMENTS
	btd Descriptor returned by the original bt_open() routine.

status Value returned by one of the library functions indicating an error.

message_p String with which to prefix any error messages.

	COMMENTS
	This function can accept invalid handles to print messages for error values returned from bt_open() and bt_close().

	RETURN VALUES
	BT_SUCCESS On success.
Other error On failure.

5.1.8 String Error Message

bt_strerror()XE “bt_strerror()”
	DESCRIPTION
	Creates a string containing a description of a Mirror API error code.

	PROTOTYPE
	char * bt_strerror(bt_desc_t btd, bt_error_t status, const char * message_p, char * buf_p, size_t buf_len)

	ARGUMENTS
	btd Descriptor returned by the original bt_open() routine.

status Value returned by one of the library functions indicating an error.

message_p String with which to prefix error messages.

buf_p Address of the buffer to put the error message in.

buf_len Size of the buffer.

	COMMENTS
	Will return NULL if the complete string does not fit in the buffer.

This function can accept invalid handles to print messages for error values returned from bt_open() and bt_close().

	RETURN VALUES
	message_p On success.
NULL On error.

5.1.9 Initialize A Unit

bt_init()XE “bt_init()”
	DESCRIPTION
	Initializes a unit, resetting registers and bringing the device into a known state. This causes the remote device to be identified and clears a BT_EPWRCYC error code.

	PROTOTYPE
	bt_error_t bt_init(bt_desc_t btd)

	ARGUMENT
	btd Descriptor returned by the original bt_open() routine.

	COMMENTS
	On some systems (but not on Models 965, 1003 and 984) this may invalidate any mapped regions or bound buffers. As such, it should only be used as a last resort. Use bt_clrerr() instead.

	RETURN VALUES
	BT_SUCCESS Device was re-initialized.
Other error value Device could not be re-initialized; a power cycle of both the system and the VMEbus is needed.

5.1.10 Read Data From Device

bt_read()XE “bt_read()”
	DESCRIPTION
	Reads data from a logical device into an application’s data buffer.

	PROTOTYPE
	bt_error_t bt_read(bt_desc_t btd, void *buffer_p, bt_devaddr_t transfer_addr, size_t transfer_length, size_t *actual_length_p)

	ARGUMENTS
	btd Descriptor returned by the original bt_open() routine.

buffer_p Address of the data buffer to read data into.

transfer_addr The logical device address from which to read data.

transfer_length Transfer length (in bytes).

actual_length_p The number of bytes actually read from the device. If there is an error, this will be less than the amount requested.

	COMMENTS
	The transfer is automatically performed via DMA if the length is greater than the DMAXE “DMA” threshold and the buffers are properly aligned.

	RETURN VALUES
	BT_SUCCESS All data was successfully transferred.
Other error value All data was not successfully transferred.

5.1.11 Write Data To Logical Device

bt_write()XE “bt_write()”
	DESCRIPTION
	Writes data to a logical device from an application’s data buffer.

	PROTOTYPE
	bt_error_t bt_write(bt_desc_t btd, void *buffer_p, bt_devaddr_t transfer_addr, size_t transfer_length, size_t *actual_length_p)

	ARGUMENTS
	btd Descriptor returned by the original bt_open() routine.

buffer_p Address of the data buffer to write to the device.

transfer_addr The logical device address to send data to.

transfer_length The transfer length (in bytes).

actual_length_p The number of bytes actually written to the device. If there is an error, this will be less than the amount requested.

	COMMENTS
	The transfer is automatically performed via DMA if the length is greater than the DMAXE “DMA” threshold and the buffers are properly aligned.

	RETURN VALUES
	BT_SUCCESS All data was successfully transferred.
Other error value All data was not successfully transferred.

5.1.12 Get Device Configuration Settings

bt_get_info()XE “bt_get_info()”
	DESCRIPTION
	Gets the current value of a device configuration parameter. See the full list of parameters in section 5.3.

	PROTOTYPE
	bt_error_t bt_get_info(bt_desc_t btd, bt_info_t param, bt_devdata_t *value_p)

	ARGUMENTS
	btd Descriptor returned by the original bt_open() routine.

param The parameter to read.

value_p Address to store the parameter into.

	COMMENTS
	Some parameters are defined for all implementations but only supported on certain implementations. An error return of BT_ENOSUP indicates that the parameter is valid, but this specific implementation does not support it.

	RETURN VALUES
	BT_SUCCESS On success.
Other error value On failure.

5.1.13 Set Device Configuration Settings

bt_set_info()XE “bt_set_info()”
	DESCRIPTION
	Changes the current value of a device parameter. Not all parameters can be changed.

	PROTOTYPE
	bt_error_t bt_set_info(bt_desc_t btd, bt_info_t param, bt_devdata_t value)

	ARGUMENTS
	btd Descriptor returned by the original bt_open() routine.

param The parameter to read.

value The current value of that parameter.

	COMMENTS
	Some parameters are defined for all implementations but only supported on certain implementations. An error return of BT_ENOSUP indicates that the parameter is valid, but this specific implementation either doesn’t support the parameter or doesn’t support the value you attempted to set it to.

To determine if the implementation has support for the parameter, find out if bt_get_info() also returns BT_ENOSUP.

	RETURN VALUES
	BT_SUCCESS On success.

BT_ENOSUP Either the parameter or the value you attempted to set it to is not supported on this implementation.

BT_EINVAL The value you attempted to set the parameter to is invalid.
Other error value On failure.

5.1.14 Install An Interrupt Call Back Routine

bt_icbr_install()XE “bt_icbr_install()”
	DESCRIPTION
	Installs an ICBRXE “ICBR” on that unit for a specific interrupt type.

	PROTOTYPE
	bt_error_t bt_icbr_install(bt_desc_t btd, bt_irq_t irq_type, bt_icbr_t *icbr_p, void *param_p, bt_data32_t vector)

	ARGUMENTS
	btd Descriptor returned by the original bt_open() routine.

irq_type Type of interrupt this ICBR handles.

icbr_p Address of the ICBR.

param_p An opaque object that is passed through to the ICBR as a parameter. This is usually a pointer to a data structure.

vector BT_VECTOR_ALL if the ICBR should be called for any occurrence of that interrupt type.

Otherwise, the vector matches the vector for that interrupt type.

	COMMENTS
	The prototype for the application’s ICBR is:

void application_icbr(void * param_p, bt_irq_t irq_type, bt_data32_t vector);

The first parameter (param_p) is whatever value was given when bt_icbr_install() was called. The API and driver pass this value through to the ICBR.

The second parameter (irq_type) is the interrupt type that actually occurred. If the interrupt data queue has overflowed, this will be BT_IRQ_OVERFLOW. Otherwise, it will be the same type as given when the ICBRXE “ICBR” was installed.

	
	The last parameter (vector) is the value of the vector when this interrupt occurred.

Only bt_chkerr(), bt_clrerr(), and bt_strerror() are guaranteed to be callable from within the ICBR on all platforms. However, Models 965 and 1003 run the ICBR within a lightweight (POSIX) thread allowing all functions to be called.

On Windows and Linux, BT_IRQ_OVERFLOW should not be used when registering an ICBR. Any ICBR may be called with BT_IRQ_OVERFLOW as its type to indicate that the ICBR’s queue has overflowed.

	RETURN VALUES
	BT_SUCCESS ICBR was installed.
Other error value ICBR was not installed.

5.1.15 Remove An Interrupt Call Back Routine

bt_icbr_remove()XE “bt_icbr_remove()”
	DESCRIPTION
	Removes a previously installed ICBR. Returns BT_EINVAL if it cannot find a matching entry.

	PROTOTYPE
	bt_error_t bt_icbr_remove(bt_desc_t btd, bt_irq_t irq_type, bt_icbr_t *icbr_p)

	ARGUMENTS
	btd Descriptor returned by the original bt_open() routine.

irq_type Type of interrupt that this ICBR handles.

icbr_p Address of the ICBR.

	COMMENTS
	None.

	RETURN VALUES
	BT_SUCCESS ICBR was removed.
Other error value On failure.

5.1.16 Lock A Unit

bt_lock()XE “bt_lock()”
	DESCRIPTION
	Provides any serialization required by the hardware architecture such that memory mapped access does not interfere with the device driver.

	PROTOTYPE
	bt_error_t bt_lock(bt_desc_t btd, bt_msec_t wait_len)

	ARGUMENTS
	btd Descriptor returned by the original bt_open() routine.

wait_len Number of milliseconds to wait for the lock. There are two special values for this parameter:

BT_FOREVER Never has a time out while waiting for the lock.

BT_NO_WAIT Will not wait for the lock to become available.

	COMMENTS
	This function does nothing in this and future revisions of the 965, 946, 984 and 993 software. While pre-dataBLIZZARD adapters do require synchronization between the use of mmap pointers and bt_read, bt_write, bt_bind, bt_cas, bt_tas, and bt_reset, it was too much of a performance penalty to use bt_lock. Therefore, users should implement their own locking scheme, such as pthread_mutex_lrch, to provide protection from the things mentioned above.

For Linux, we recommend that an application lock the unit before any memory mapped or bound buffer accesses are attempted. This is required because the NanoBus hardware cannot perform concurrent PIO and DMA transfers.

	RETURN VALUES
	BT_SUCCESS Unit was locked.

BT_EBUSY Lock timed out.

Other error value On failure.

5.1.17 Unlock A Previously Locked Unit

bt_unlock()XE “bt_unlock()”
	DESCRIPTION
	Unlocks a unit previously locked by this task using this descriptor. Both the descriptor and the task ID must match those of the task that originally received the lock.

	PROTOTYPE
	bt_error_t bt_unlock(bt_desc_t btd)

	ARGUMENT
	btd Descriptor returned by the original bt_open() routine.

	COMMENTS
	This function does nothing in this and future revisions of the 964, 946, 984 and 993 software. While pre-dataBLIZZARD adapters do require synchronization between the use of mmap pointers and bt_read, bt_write, bt_bind, bt_cas, bt_tas, and bt_reset, it was too much of a performance penalty to use bt_unlock. Therefore, users should implement their own unlocking scheme, such as pthread_mutex_lrch, to provide protection from the things mentioned above.

For Linux, the thread that locked the unit must be the one to unlock it.

	RETURN VALUES
	BT_SUCCESS Unit was unlocked.

Other error value On failure.

5.1.18 Create A Memory Mapped Pointer Into A Logical Device

bt_mmap()XE “bt_mmap()”
	DESCRIPTION
	Returns a memory mapped pointer to the adapter address space. The logical unit determines the type of memory space used.

	PROTOTYPE
	bt_error_t bt_mmap(bt_desc_t btd, void **map_p, bt_devaddr_t logical_addr, size_t map_length, bt_accessflag_t flags, bt_swap_t swapping)

	ARGUMENTS
	btd Descriptor returned by the original bt_open() routine.

map_p Address of the pointer to the logical device. This is set by the bt_mmap() routine.

logical_addr The logical device address to memory map to. This is the same value as would be used when doing a bt_read() or bt_write() to the device.

map_length The number of bytes to memory map into the application’s space.

flags Permission flags to affect this memory mapped section. The following flags are currently supported:

 BT_RD Allow reads from the memory mapped location.

 BT_WR Allow writing to the memory mapped location.

 BT_RDWR Allow both reading and writing to the memory mapped region.

swapping The swapping mode to use for this memory mapped section.

	COMMENTS
	For the Local Memory Device, swap bits are not used, and only BT_SWAP_NONE or BT_SWAP_DEFAULT is allowed for the swap value.

Neither the length nor the address need to be aligned. The API may map extra space before or after the region to fulfill any alignment requirements.

If the BT_RD and BT_WR flags set in the btAccessFlags parameter were not also set in the bt_open() call, this function will fail with BT_EACCESS.

If the BT_WR flag is not set, subsequent use of the mapped memory for PIO writes generates a protection violation. However, if only the BT_WR flag is set, subsequent use of the mapped memory for PIO reads can not generate a violation.

Multiple successful calls to bt_mmap() with identical units, logical devices, and remote addresses return different addresses and use different sets of mapping registers in the adapter hardware. However, each address returned will ultimately access the same address on the remote device.

(Table continued on next page.)

(Table continued from previous page.)

	COMMENTS
	For user PIO writes and reads, the mapping register swap bits are obtained from the parameter swapping rather than the swap bits set or obtained with bt_set_info() or bt_get_info().

The pointer returned is valid only in the context of the calling process. It is valid in the context of all threads within that process.

	RETURN VALUES
	BT_SUCCESS Region was mapped.
Other error value Region was not mapped.

5.1.19 Unmap A Memory Mapped Location

bt_unmmap()XE “bt_unmmap()”
	DESCRIPTION
	Unmaps a previously created memory mapped pointer and releases any resources associated with that memory mapping.

	PROTOTYPE
	bt_error_t bt_unmmap(bt_desc_t btd, void *map_p, size_t map_len)

	ARGUMENTS
	btd Descriptor returned by the original bt_open() routine.

	
	map_p Value returned by the original bt_mmap() call. The address of the memory mapped region.

	
	map_len The number of bytes requested by the original bt_mmap() call.

	COMMENTS
	The map_len must be the same value as was passed in to bt_mmap() and map_p must be the value returned from bt_mmap(); otherwise the behavior is undefined.

	RETURN VALUES
	BT_SUCCESS Region was unmapped.
Other error value On failure.

5.1.20 Convert From A Logical Device Type To A String

bt_dev2str()XE “bt_dev2str()”
	DESCRIPTION
	Returns a string with the suffix used in the device identification string to indicate a particular logical device.

	PROTOTYPE
	const char * bt_dev2str(bt_dev_t type)

	ARGUMENT
	type One of the defined logical device types.

	COMMENTS
	None.

	RETURN VALUES
	Pointer to constant string holding the logical device name On success.
NULL Otherwise.

5.1.21 Call Directly Into The Driver I/O Control Function

bt_ctrl()XE “bt_ctrl()”
	DESCRIPTION
	Directly calls the device driver ioctl() entry point. This is useful for a program that directly called the device drive, but now needs to be converted to using the API.

	PROTOTYPE
	bt_error_t bt_ctrl(bt_desc_t btd, int ctrl, void * param_p)

	ARGUMENTS
	btd Descriptor returned by the original bt_open() routine.

ctrl The command code (one of the BIOC_ values from btio.h) of the ioctl() to call.

param_p The parameter for that particular ioctl() call. The use of this depends on which ioctl() is being called.

	COMMENTS
	bt_ctrl() is not portable across the various Mirror API implementations. It is intended as a temporary measure when trying to convert an application from directly accessing the device driver to using the Mirror API.

On operating systems without an ioctl() entry point, this routine always returns BT_ENOSUP.

To use this, the application would have to include both the “btapi.h” header file for the Mirror API and the “btio.h” header file for direct device driver access.

	RETURN VALUES
	BT_SUCCESS ioctl was successful.

Other error value On failure.

5.1.22 Map An Application Supplied Buffer

bt_bind() XE “bt_bind()”
	DESCRIPTION
	Maps an application supplied buffer onto the remote bus.

	PROTOTYPE
	bt_error_t bt_bind(bt_desc_t btd, bt_binddesc_t* desc_p, bt_devaddr_t* rem_addr_p, void *buf_p, size_t buf_len, bt_accessflag_t flags, bt_swap_t swapping)

	ARGUMENTS
	btd Logical device handle returned from bt_open().

desc_p Pointer to the bind handle to initialize.

rem_addr_p Pointer to the location to store the offset into the unit’s remote memory window to which the buffer was bound.

buf_p Pointer to the start of the buffer to bind.

buf_len Length of the buffer to bind.

flags Access rights requested on the bind.

swapping Swapping method to use on remote accesses to the buffer.

	COMMENTS
	The bt_binddesc_t descriptor is used to identify the bind to undo in a call to bt_unbind(). It should be treated as an opaque data type.

Which logical device the descriptor references is irrelevant; bt_bind() binds the buffer to the associated unit.

	
	Calls to bt_bind() will need to have their buffers aligned. The INFO parameter, BT_INFO_BIND_ALIGN, is provided for this purpose. If the buffer (buf_p) passed to bt_bind() is not aligned on a BT_INFO_BIND_ALIGN byte boundary, or is not a positive (non-zero) multiple of BT_INFO_BIND_ALIGN bytes long (buf_len), bt_bind() will return BT_EINVAL. The macro BT_ALIGN_PTR is provided to allow alignment of an arbitrary buffer.

rem_addr_p should be initialized to a value of BT_BIND_NO_CARE before calling bt_bind() if you do not care what offset the driver binds the buffer to. Otherwise the requested offset should be passed into the driver in this field.

Model 1003 should first do a bt_set_info with BT_INFO_KMALLOC_SIZ and a bt_get_info with BT_INFO_KMALLOC_BUF to obtain a driver allocated kernel buffer which is then mmapped for user space.

A program should lock the adapter while any remote accesses are occurring, and not do DMA or PIO accesses at the same time. NanoBus adapters do no support concurrent bi-directional PIO or concurrent PIO and DMA.

The bt_bind() functions exists on all SBS API products. If it is not supported, it will return BT_ENOSUP.

	RETURN VALUES
	BT_SUCCESS On success.
BT_ENOMEM Insufficient resources to bind the buffer.

BT_EBUSY Buffer could not be bound due to conflicts with other bound buffers.

BT_ENOSUP If bt_bind is not supported.

Appropriate error number Otherwise.

5.1.23 Unbind A Bound Buffer

bt_unbind() XE “bt_unbind()”
	DESCRIPTION
	Unbinds a bound buffer and releases any resources consumed by a previous call to bt_bind().

	PROTOTYPE
	bt_error_t bt_unbind(bt_desc_t btd, bt_binddesc_t desc)

	ARGUMENTS
	btd Descriptor returned by the original bt_open() routine.

desc Bind descriptor returned from bt_bind().

	COMMENTS
	The bt_unbind() functions exists on all SBS API products. If it is not supported, it will return BT_ENOSUP. Unbinding is supported on Models 965, 984, and 1003.

The device descriptor passed to bt_unbind() must be the same one that was passed to the original bt_bind() call. The bind descriptor passed must be the one that was returned from the original bt_bind() call. Not using the same descriptors results in undefined behavior.

For the 1003 driver, follow this with a unmap and bt_set_info with BT_INFO_KFREE_BUF to free the driver allocated kernel buffer which was mmapped for user space

Multiple calls to bt_unbind() with the same bind descriptor has undefined behavior.

	RETURN VALUES
	BT_SUCCESS On success.
Appropriate error number Otherwise.

5.2 NanoBus Specific Mirror API Functions

All routines discussed in this section are specific to the NanoBus hardware design, and may not port to other hardware architectures. XE “NanoBus-specific functions”
5.2.1 Convert Register To String

bt_reg2str()XE “bt_reg2str()”
	DESCRIPTION
	Given a bt_reg_t enumeration of a register, returns a null-terminated ASCII string containing the printable form of the register’s name.

The inverse of this function (bt_str2reg()) is not implemented.

	PROTOTYPE
	const char * bt_reg2str(bt_reg_t reg)

	ARGUMENT
	reg Register number that a name is needed for.

	COMMENTS
	The bt_reg2str() function exists only on the SBS NanoBus adapters. Programs should test that the preprocessor define BT_NBUS_FAMILY is defined before using this function.

	RETURN VALUES
	Register name On success.
NULL On error.

5.2.2 Compare And Swap Atomic Transactions

bt_cas()XE “bt_rom_size()”
	DESCRIPTION
	Does a compare and swap atomic transaction on the remote bus.

	PROTOTYPE
	bt_error_t bt_cas(bt_desc_t btd,

 bt_devaddr_t rem_off, bt_data32_t cmpval,

 bt_data32_t swapval, bt_data32_t *prevval_p,

 size_t data_size)

	ARGUMENTS
	btd Logical device handle returned from bt_open().

rem_off Address of the memory location to check.

cmpval If the memory location is this value, swap_value is written to the location.

swapval If the memory location is equal to compare_value, this value is written to the location.

prevval_p Pointer to a bt_data32_t that is written with the value the memory location had before the swap value was written.

data_size The size of the memory location to check. This must be one of BT_WIDTH_D8, BT_WIDTH_D16, or BT_WIDTH_D32.

	COMMENTS
	The bt_cas() function exists only on the SBS NanoBus adapters. Programs should test that the preprocessor define BT_NBUS_FAMILY is defined before using this function.

	RETURN VALUES
	BT_SUCCESS On success.
Appropriate error number Otherwise.

5.2.3 Test And Set Atomic Transaction

bt_tas()XE “bt_rom_read()”
	DESCRIPTION
	Tests and sets a bit on the remote bus atomically. It acts on a single byte (bt_data8_t), and only checks the high-order bit of the byte.

This function uses the address modifier set by BT_INFO_PIO_AMOD.

	PROTOTYPE
	bt_error_t bt_tas(bt_desc_t btd,

 bt_devaddr_t rem_off, bt_data8_t *prevval_p)

	ARGUMENTS
	btd Logical device handle returned from bt_open().

rem_off Address of the byte to test and set.

prevval_p Pointer to a buffer to store the byte’s value prior to modification.

	COMMENTS
	The bt_tas() function exists only on the SBS NanoBus adapters. Programs should test that the preprocessor define BT_NBUS_FAMILY is defined before using this function.

	RETURN VALUES
	BT_SUCCESS On success.
Appropriate error number Otherwise.

5.2.4 Reads An Adapter CSR Register

bt_get_io()XE “bt_get_io()”
	DESCRIPTION
	Reads an adapter CSR.

	PROTOTYPE
	bt_error_t bt_get_io(bt_desc_t device, bt_reg_t reg, bt_data32_t *result)

	ARGUMENTS
	device Logical device handle returned from bt_open().

reg Register to reads.

result Pointer to buffer to hold the current value of the register.

	COMMENTS
	The bt_get_io() function exists only on the SBS NanoBus adapters. Programs should test that the preprocessor define BT_NBUS_FAMILY is defined before using this function.

Not all implementations will support all registers.

	RETURN VALUES
	BT_SUCCESS On success.

BT_EINVAL Register not implemented on the current unit, or register is write-only.
Appropriate error number Otherwise.

5.2.5 Writes An Adapter CSR Register

bt_put_io()XE “bt_put_io()”
	DESCRIPTION
	Writes a new value into an adapter CSR.

	PROTOTYPE
	bt_error_t bt_put_io(bt_desc_t device, bt_reg_t reg, bt_data32_t value)

	ARGUMENTS
	device Logical device handle returned from bt_open().

reg Register to write to.

value Value to write into the CSR.

	COMMENTS
	The bt_put_io() function exists only on the SBS NanoBus adapters. Programs should test that the preprocessor define BT_NBUS_FAMILY is defined before using this function.

Not all implementations will support all registers.

	RETURN VALUES
	BT_SUCCESS On success.

BT_EINVAL Register not implemented on the current unit, or register is read-only.
Appropriate error number Otherwise.

5.2.6 One Shot A Register

bt_or_io()XE “bt_or_io()”
	DESCRIPTION
	One shots a value into a register. Bitwise ORs the value with the current value of the register and writes that value to the register.

	PROTOTYPE
	bt_error_t bt_or_io(bt_desc_t device, bt_reg_t reg, bt_data32_t value)

	ARGUMENTS
	device Logical device handle returned from bt_open().

reg Register to read.

value Value to write to the register.

	COMMENTS
	The bt_or_io() function exists only on the SBS NanoBus adapters. Programs should test that the preprocessor define BT_NBUS_FAMILY is defined before using this function.

Not all implementations will support all registers.

	RETURN VALUES
	BT_SUCCESS On success.

BT_EINVAL Register not implemented on the current unit, or register is read-only.
Appropriate error number Otherwise.

5.2.7 Remote Reset

bt_reset() XE “bt_reset()”
	DESCRIPTION
	Performs a system reset on the remote bus.

	PROTOTYPE
	bt_error_t bt_reset(bt_desc_t device)

	ARGUMENTS
	device Logical device handle returned from bt_open().

	COMMENTS
	The bt_reset() function exists only on the SBS NanoBus adapters. Programs should test that the preprocessor define BT_NBUS_FAMILY is defined before using this function.

This implementation locks the unit and sleeps the length of time indicated by BT_INFO_RESET_DELAY before unlocking the unit. This allows the remote bus time to finish resetting.

	RETURN VALUES
	BT_SUCCESS On success.

Appropriate error number Otherwise.

5.2.8 Send Interrupt To Remote Bus

bt_send_irq() XE “bt_send_irq()”
	DESCRIPTION
	Sends a programmed interrupt to the remote bus.

	PROTOTYPE
	bt_error_t bt_send_irq(bt_desc_t device)

	ARGUMENTS
	device Logical device handle returned from bt_open().

	COMMENTS
	The info parameter BT_INFO_USE_PT controls whether a PT or PR interrupt is sent to the remote system.

The bt_send_irq() function exists only on the SBS NanoBus adapters. Programs should test that the preprocessor define BT_NBUS_FAMILY is defined before using this function.

	RETURN VALUES
	BT_SUCCESS On success.

Appropriate error number Otherwise.

5.2.9 Send Vector to Remote Bus

bt_send_vector() XE “bt_send_vector()”
	DESCRIPTION
	Sends the given vector to the remote bus via programmed interrupt.

	PROTOTYPE
	bt_error_t bt_send_vector(bt_desc_t device, bt_data32_t vector)

	ARGUMENTS
	device Logical device handle returned from bt_open().

vector 32-bit vector to send to remote side. Must be less than BT_DRV_VECTOR_BASE in btngpci.h.

	COMMENTS
	The bt_send_vector() function exists only on the SBS NanoBus adapters. Programs should test that the preprocessor define BT_NBUS_FAMILY is defined before using this function.

	RETURN VALUES
	BT_SUCCESS On success.

Appropriate error number Otherwise.

5.2.10 Status

bt_status() XE “bt_status()”
	DESCRIPTION
	Returns the device status, including the Status Register.

	PROTOTYPE
	bt_error_t bt_status(bt_desc_t btd,

 bt_data32_t *status_p)

	ARGUMENTS
	btd Logical device handle returned from bt_open().

status_p Pointer to buffer to store status information into (length – bt_data32_t).

	COMMENTS
	The bt_status() function exists only on the SBS NanoBus adapters. Programs should test that the preprocessor define BT_NBUS_FAMILY is defined before using this function.

For Model 1003, programs should check for BT_1003 before using this function.

	RETURN VALUES
	BT_SUCCESS On success.

Appropriate error number Otherwise.

5.2.11 Read Data From Device To A Bus Address

bt_hw_read() XE “bt_hw_read()”
	DESCRIPTION
	Reads data from a logical device into a physical bus address. Only uses DMA Mode. Requests that cannot use DMA will return an error.

	PROTOTYPE
	bt_error_t bt_hw_read(bt_desc_t btd,

 bt_devaddr_t bus_addr, bt_devaddr_t xfer_off, size_t xfer_len,

 size_t* xfer_done_p)

	ARGUMENTS
	btd Descriptor returned by the original call to bt_open().

bus_addr A physical bus address of the data buffer to read data into. This is not the same as a virtual address received from a malloc() call or from a call to bt_mmap(). To read from application memory, use bt_read().

xfer_off The logical device address from which to read data. Cannot be used with BT_DEV_LDP or BT_DEV_LM. For PCI to PCI configurations, BT_DEV_DP and BT_DEV_RDP will also be illegal.

xfer_len Transfer length (in bytes).

xfer_done_p Pointer to the number of bytes actually read from the device. If there is an error, this may be less than the amount requested.

	COMMENTS
	This implementation only uses DMA mode. If the bus_addr, xfer_off or xfer_len are not aligned properly, the routines will return an error. Also, because only DMA is supported, it is illegal to transfer from local memory or local dual port. In addition, for PCI to PCI applications, remote dual port is not supported.

This function does not call bt_clrerr() or do the equivalent before starting the transfer. However, errors generated in the transfer will affect both the return value of this function and the return values of later calls to bt_chkerr().

This function is not supported on Model 1003.

	RETURN VALUES
	BT_SUCCESS All data were successfully transferred.

Error value All data were not successfully transferred.

5.2.12 Write Data To Logical Device

bt_hw_write() XE “bt_hw_write()”
	DESCRIPTION
	Write data to a logical device from a physical bus address. Only uses DMA Mode. Requests that cannot use DMA will return an error.

	PROTOTYPE
	bt_error_t bt_hw_write(bt_desc_t btd,

 bt_devaddr_t bus_addr, bt_devaddr_t xfer_off, size_t xfer_len,

 size_t* xfer_done_p)

	ARGUMENTS
	btd Descriptor returned by the original call to bt_open().

bus_addr A physical bus address of the data buffer to write data from. This is not the same as a virtual address received from a malloc() call or from a call to bt_mmap(). To write from application memory, use bt_write().

xfer_off The logical device address from which to write data to.

xfer_len Transfer length (in bytes).

xfer_done_p Pointer to the number of bytes actually written to the device. If there is an error, this may be less than the amount requested.

	COMMENTS
	This implementation only uses DMA mode. If the bus_addr, xfer_off or xfer_len are not aligned properly, the routines will return an error. Also, because only DMA is supported, it is illegal to transfer from local memory or local dual port. In addition, for PCI to PCI applications, remote dual port is not supported.

This function does not call bt_clrerr() or do the equivalent before starting the transfer. However, errors generated in the transfer will affect both the return value of this function and the return values of later calls to bt_chkerr().

This function is not supported on Model 1003.

	RETURN VALUES
	BT_SUCCESS All data were successfully transferred.

Error value All data were not successfully transferred.

5.2.13 Bind A Given Bus Address

bt_hw_bind() XE “bt_hw_bind()”
	DESCRIPTION
	Binds a local bus resource to the remote bus.

	PROTOTYPE
	bt_error_t bt_hw_bind(bt_desc_t btd,

 bt_binddesc_t* desc_p, bt_devaddr_t* rem_addr_p,

 bt_devaddr_t* loc_addr, size_t buf_len,

 bt_accessflag_t flags, bt_swap_t swapping)

	ARGUMENTS
	btd Logical device handle returned from bt_open().

desc_p Pointer to the bind handle to initialize.

rem_addr_p Pointer to the location to store the offset into the unit’s remote memory window to which the buffer was bound. If BT_BIND_NO_CARE is passed in, then the buffer is bound to the first open spot of the remote memory window. Otherwise, the driver will bind the buffer at the *rem_addr_p offset of the remote memory window or return an error if it is already used.

loc_addr Local physical bus address to bind.

buf_len Length of the bus region to bind.

flags Access rights requested on the bind.

swapping Swapping method to use on remote accesses to the region.

	COMMENTS
	The bt_binddesc_t descriptor is used to identify the bind to undo in a call to bt_unbind(). It should be treated as an opaque data type.

Which logical device the descriptor references is irrelevant; bt_bind() binds the buffer to the associated unit.

Calls to bt_bind() will need to have their bus addresses aligned to BT_INFO_BIND_ALIGN.

The rem_addr_p either indicates the offset into the remote memory window that the buffer should be bound at or that the first open offset should be used (BT_BIND_NO_CARE).

This function is not supported on Model 1003.

	RETURN VALUES
	BT_SUCCESS On success.

BT_ENOMEM Insufficient resources to bind the buffer.

BT_EBUSY Buffer could not be bound due to conflicts with other bound buffers.

BT_ENOSUP If bt_bind is not supported.

Appropriate error number Otherwise.

5.2.14 Unbind A Bound Local Bus Address

bt_hw_unbind() XE “bt_hw_unbind()”
	DESCRIPTION
	Unbinds a bound bus address and releases any resources consumed by a previous call to bt_hw_bind().

	PROTOTYPE
	bt_error_t bt_hw_unbind(bt_desc_t btd, bt_binddesc_t desc_p)

	ARGUMENTS
	btd Descriptor returned by the original bt_open() routine.

desc Bind descriptor returned from bt_hw_bind().

	COMMENTS
	The device descriptor passed to bt_hw_unbind() must be the same one that was passed to the original bt_hw_bind() call. Not using the same descriptors results in undefined semantics.

Multiple calls to bt_hw_unbind() with the same bind descriptor has undefined semantics.

This function is not supported on Model 1003.

	RETURN VALUES
	BT_SUCCESS On success.

Appropriate error number Otherwise.

5.2.15 Gain Control Over The Given Semaphore

bt_take_sema() XE “bt_take_sema()”
	DESCRIPTION
	Attempts to get control of a given semaphore.

	PROTOTYPE
	bt_error_t bt_take_sema(bt_desc_t device,

 bt_reg_t sema, bt_msesc_t timeout)

	ARGUMENTS
	device Logical device handle returned from bt_open().

sema Semaphore register to take.

timeout Number of milliseconds to wait for semaphore to become available. Note: first implementation will only accept BT_NO_WAIT.

	COMMENTS
	This function exists only on SBS NanoBus adapters. Programs should test that the preprocessor define BT_NBUS_FAMILY is defined before using bt_take_sema().

Not all implementations will support semaphore registers.

This function is not supported on Model 1003.

	RETURN VALUES
	BT_SUCCESS On success.

BT_EINVAL Semaphore does not exist on the current unit or timeout value is not supported.

BT_EBUSY Semaphore is currently owned by another adapter card.

Appropriate error number Otherwise.

5.2.16 Release A Currently Owned Semaphore

bt_give_sema() XE “bt_give_sema()”
	DESCRIPTION
	Release a currently owned semaphore register.

	PROTOTYPE
	bt_error_t bt_give_sema(bt_desc_t device,

 bt_reg_t sema)

	ARGUMENTS
	device Logical device handle returned from bt_open().

sema Semaphore register to give.

	COMMENTS
	This function exists only on SBS NanoBus adapters. Programs should test that the preprocessor define BT_NBUS_FAMILY is defined before using bt_take_sema().

Not all implementations will support semaphore registers.

This function is not supported on Model 1003.

	RETURN VALUES
	BT_SUCCESS On success.

BT_EINVAL Semaphore does not exist on the current unit.

BT_EBUSY Semaphore is currently owned by another adapter card.

Appropriate error number Otherwise.

5.3 Device Configuration Parameters

These parametersXE “parameters: device configuration” control device driver configuration and operation. They are accessed by the bt_get_info()XE “bt_get_info()” and bt_set_info()XE “bt_set_info()” routines. XE “configuration: parameters”
5.3.1 Parameters That Can Be Modified

Modifiable parameters XE “parameters:modifiable” can be read by bt_get_info() and changed with bt_set_info().

	PARAMETER
	BT_INFO_BLOCKXE “BT_INFO_BLOCK”

	TYPE
	boolean

	DESCRIPTION
	Force block transfer when reading or writing data. Default setting is TRUE.

	
	

	PARAMETER
	BT_INFO_PAUSEXE “BT_INFO_PAUSE”

	TYPE
	boolean

	DESCRIPTION
	When doing block transfers, rearbitrate for the bus more than required. This allows other bus masters faster arbitration for the bus, but reduces the transfer rate. Default setting is FALSE.

	
	

	PARAMETER
	BT_INFO_DATAWIDTHXE “BT_INFO_DATAWIDTH”

	TYPE
	bt_width_t

	DESCRIPTION
	Determines the maximum size transfer used for PIO or DMA.

Valid values are: BT_WIDTH_D8, BT_WIDTH_D16, BT_WIDTH_D32, and BT_WIDTH_ANY.

The BT_WIDTH_ANY setting allows the device driver to choose the transfer size. The driver always selects the highest performance data transfer method.

for Model 1003, the default setting is BT_EWIDTH_D32 since PCs rarely support D64. For all other software drivers, the default setting is BT_WIDTH_ANY.

	
	

	PARAMETER
	BT_INFO_DMA_AMODXE “BT_INFO_DMA_AMOD”

	TYPE
	int

	DESCRIPTION
	Address modifier to use for DMAXE “DMA” transfers.

	
	

	PARAMETER
	BT_INFO_PIO_AMODXE “BT_INFO_PIO_AMOD”

	TYPE
	int

	DESCRIPTION
	Address modifier to use for PIO XE “PIO”transfers.

	
	

(Parameters continued on next page.)

(Parameters continued from previous page.)XE “parameters: device configuration”

XE “configuration: parameters”
	PARAMETER
	BT_INFO_INC_INHIBITXE “BT_INFO_INC_INHIBIT”

	TYPE
	boolean

	DESCRIPTION
	Model 1003 only. Can only be used with RQP600XXX adapter cards. Prevents the DMA controller from incrementing the remote bus address.

	
	

	PARAMETER
	BT_INFO_MMAP_AMODXE “BT_INFO_MMAP_AMOD”

	TYPE
	int

	DESCRIPTION
	Address modifier to use when creating memory mapped sections. Used by the driver at the time the bt_mmap()XE “bt_mmap()” call is made.

	
	

	PARAMETER
	BT_INFO_SWAPXE “BT_INFO_SWAP”

	TYPE
	bt_swap_t

	DESCRIPTION
	Swapping mode to use. Data swapping is needed when data are shared between two systems with different byte ordering.

The adapter hardware swaps data based on the assumed data size. This allows the hardware to correctly order the data regardless of transfer size used to move the data.

The valid swapping modesXE “swapping modes” are:

BT_SWAP_DEFAULT Sets it to the default swapping mode for the adapter. BT_SWAP_NONE for Model 614 and 615 adapters, and BT_SWAP_BSBD for Models 616 and 617 adapters.

BT_SWAP_NONE No swapping is performed.

BT_SWAP_BSNBD Byte swap on non-byte data.

	
	BT_SWAP_WS Word swap.

BT_SWAP_WS_BSNBD Word swap and byte swap on non-byte data.
BT_SWAP_BSBD Byte swap on byte data.

BT_SWAP_BSBD_BSNBD Byte swap on byte and non-byte data.

BT_SWAP_BSBD_WS Byte swap on byte data and word swap.

BT_SWAP_BSBD_WS_BSNBD Byte swap on byte and non-byte data, and word swap.

For all logical devices except the Local Memory Device, BT_INFO_SWAP sets the mapping register swap bits used in subsequent bt_read() and bt_write() operations. The swap bits for user PIO read/writes are set through bt_mmap()

	
	

 (Description continued on next page.)

(Description continued from previous page.)

	BT_INFO_SWAP Description continued
	For the Local Memory Device, BT_INFO_SWAP sets the swap bits for all subsequent accesses to the local memory via the remote adapter card. Setting the swap bits has no effect when the local system accesses the Local Memory Device.

For more information on swapping, refer to your adapter hardware manual.

	
	

	PARAMETER
	BT_INFO_DMA_THRESHOLDXE “BT_INFO_DMA_THRESHOLD”

	TYPE
	unsigned int

	DESCRIPTION
	Minimum length of transfer at which DMAXE “DMA” is attempted. Used by the device driver to determine when to use PIOXE “PIO” instead of DMA for a read or write.

	
	

	PARAMETER
	BT_INFO_DMA_POLL_CEILINGXE “BT_INFO_DMA_POLL_CEILING”

	TYPE
	unsigned int

	DESCRIPTION
	Maximum length of DMA for which polled mode is used. Polled mode DMA causes the device driver to busy-wait for a DMA to complete, rather than allow other tasks to run. It is more efficient only if the transfer is small enough to complete in less time than is required to process an interrupt.

Setting the BT_INFO_DMA_POLL_CEILING to a value less than the BT_INFO_DMA_THRESHOLD causes all DMAs to interrupt when done, disabling Polled Mode DMA.

	
	

	PARAMETER
	BT_INFO_TRACEXE “BT_INFO_TRACE”

	TYPE
	bit-mask

	DESCRIPTION
	Software tracing level. This setting is global to all units and logical devices using the driver. Changing it on one logical device causes it to change on every unit and every logical device. It consists of various bit definitions that enable/disable various trace messages based on predefined functional sections. See the btngpci.h file in the include directory for a list of possible flags.

	
	

	PARAMETER
	BT_INFO_DMA_WATCHDOGXE “BT_INFO_DMA_WATCHDOG”

	TYPE
	bt_msec_t

	DESCRIPTION
	Maximum amount of time any DMA is allowed to take. This is used to detect “stuck” DMAs and complete them with an error.

	
	

	PARAMETER
	BT_INFO_USE_PTXE “BT_INFO_USE_PT”

	TYPE
	boolean

	DESCRIPTION
	TRUE Use PT interrupt for bt_send_irq() and bt_send_vector().

FALSE Use PR interrupt.

Not supported on Model 1003.

	
	

(Parameters continued on next page.)

(Parameters continued from previous page.)

	PARAMETER
	BT_INFO_RESET_DELAYXE “BT_INFO_RESET_DELAY”

	TYPE
	bt_msec_t

	DESCRIPTION
	Amount of time to block during bt_reset() / bt_setup() to allow the local bus to complete resetting.

Not supported on Model 1003.

	
	

	PARAMETER
	BT_INFO_REM_RESET_DELAYXE “BT_INFO_REM_RESET_DELAY”

	TYPE
	bt_msec_t

	DESCRIPTION
	Maximum amount of time to block during bt_reset() to allow the remote bus to complete resetting.

Model 1003 only.

	
	

	PARAMETER
	BT_INFO_TRANSMITTERXE “BT_INFO_TRANSMITTER”

	TYPE
	boolean

	DESCRIPTION
	TRUE if the unit is configured as an adapter.

Model 1003 only.

	
	

	PARAMETER
	BT_INFO_A64_OFFSETXE “BT_INFO_TRANSMITTER”

	TYPE
	unsigned int

	DESCRIPTION
	This parameter is used only with Model RPQ 601332 cards and has no effect with other cards without 64-bit addressing support. This parameter is used when translating local PCI bus memory cycles into memory cycles on the remote system. If the remote system has 64-bit memory this register and
If this parameter is zero, then 32-bit addressing is used.

If this parameter is nonzero bits 0-30 define the upper A32-A62 addressing bits to be used for DMA and PIO. Address bit A63 is always zero. Bit 31 is reserved as a flag bit and must be enabled i.e. set (1) when setting this parameter.

	
	

(Parameters continued on next page.)

(Parameters continued from previous page.)

	PARAMETER
	BT_INFO_KMALLOC_SIZXE “BT_INFO_RESET_DELAY”

	TYPE
	Unsigned int

	DESCRIPTION
	Specifies the size of the buffer to be allocated by the driver for the BT_INFO_KMALLOC_BUF parameter.

Allocations that exceed a kmalloc call will be attempted using the Linux bigphysarea patch code.

Model 1003 only.

	
	

	PARAMETER
	BT_INFO_KMALLOC_BUFXE “BT_INFO_REM_RESET_DELAY”

	TYPE
	Unsigned int

	DESCRIPTION
	Driver allocated kmalloc buffer for use with bt_bind(). This address must be mmapped to user space using the driver.
This parameter may be set if a kmalloc (physically contiguous) buffer was obtained by some other method (in this case a BT_INFO_KFREE_BUF should not be performed).

Performing a bt_get_info allocates a buffer.

Model 1003 only.

	
	

	PARAMETER
	BT_INFO_KFREE_BUFXE “BT_INFO_TRANSMITTER”

	TYPE
	Unsigned int

	DESCRIPTION
	This parameter may be used with bt_set_info only. It will free the buffer obtained by performing a bt_get_info with BT_INFO_KMALLOC_BUF.

Model 1003 only.

	
	

5.3.2 Parameters That Are Read Only

These parameters can only be read by bt_get_info()XE “bt_get_info()”. Attempts to change them with bt_set_info()XE “bt_set_info()” will return an error BT_EINVALXE “BT_EINVAL”.

	PARAMETER
	BT_INFO_LOC_PNXE “BT_INFO_LOC_PN”

	TYPE
	int

	DESCRIPTION
	SBS part number of the local adapter card.

	
	

	PARAMETER
	BT_INFO_REM_PNXE “BT_INFO_REM_PN”

	TYPE
	int

	DESCRIPTION
	SBS part number of the remote adapter card.

	
	

	PARAMETER
	BT_INFO_LM_SIZEXE “BT_INFO_LM_SIZE”

	TYPE
	unsigned int

	DESCRIPTION
	Size (in bytes) of the local memory device.
This value can be set in the 984 driver. The value is persistent by use of the Windows registry. You must reboot or cause the driver to reload for the value to take effect.

	
	

	PARAMETER
	BT_INFO_BIND_ALIGNXE “BT_INFO_BIND_ALIGN”

	TYPE
	size_t

	DESCRIPTION
	Bind alignment requirement (see section 4.6).

	
	

	PARAMETER
	BT_INFO_BIND_COUNTXE “BT_INFO_BIND_COUNT”

	TYPE
	int

	DESCRIPTION
	Maximum number of binds. More than this number of bound buffers, of any size, will always fail.

	
	

	PARAMETER
	BT_INFO_BIND_SIZEXE “BT_INFO_BIND_SIZE”

	TYPE
	size_t

	DESCRIPTION
	Largest possible bind (a bind request larger than this will always fail).

	
	

	PARAMETER
	BT_INFO_LOG_STATXE “BT_INFO_LOG_STAT”

	TYPE
	bt_devdata_t

	DESCRIPTION
	Status of the logical device.

Not supported on Model 1003.

	
	

 (Parameters continued on next page.)

(Parameters continued from previous page.)XE “parameters: device configuration”

XE “configuration: parameters: read only”
	
	

	PARAMETER
	BT_INFO_UNIT_NUMXE “BT_INFO_UNIT_NUM”

	TYPE
	int

	DESCRIPTION
	Unit number of the descriptor.

	
	

	PARAMETER
	BT_INFO_TOTAL_COUNTXE “BT_INFO_TOTAL_COUNT”

	TYPE
	bt_devdata_t

	DESCRIPTION
	Total number of interrupts received since boot.

	
	

	PARAMETER
	BT_INFO_EVENT_COUNTXE “BT_INFO_EVENT_COUNT”

	TYPE
	bt_devdata_t

	DESCRIPTION
	Total number of programmed interrupts received since boot.

	
	

	PARAMETER
	BT_INFO_ERROR_COUNTXE “BT_INFO_ERROR_COUNT”

	TYPE
	bt_devdata_t

	DESCRIPTION
	Total number of error interrupts received since boot.

	
	

	PARAMETER
	BT_INFO_IACK_COUNTXE “BT_INFO_IACK_COUNT”

	TYPE
	bt_devdata_t

	DESCRIPTION
	Total number of remote bus interrupts received since boot.

	
	

	PARAMETER
	BT_INFO_ICBR_Q_SIZEXE “BT_INFO_ICBR_Q_SIZE”

	TYPE
	bt_devdata_t

	DESCRIPTION
	Number of interrupt vectors that can be queued between the driver and the Mirror API without losing one.

Not supported on Model 1003.

This value can be set in the 984 driver. The value is persistent by use of the Windows registry. You must reboot or cause the driver to reload for the value to take effect.

	
	

	PARAMETER
	BT_INFO_KMEM_SIZEXE “BT_INFO_KMEM_SIZE”

	TYPE
	bt_devdata_t

	DESCRIPTION
	Running total, in bytes, of kernel memory used by the driver.

Not supported on Model 1003.

	
	

[image: image388.wmf]Chapter 6: Model 965 For IRIX
6.0 Introduction

Chapter 6 describes installation of Model 965 Support. It includes general information about the installation procedure, and gives a brief description of how to verify that the adapter is installed correctly and the device driver is loaded properly.

Model 965 Support Software provides a device driver and example programs to help applications programmers with adapter and system configuration. It currently supports all dataBLIZZARD models and adapter models 617, 618, 618-3, 620, 620-3, 628, 630, 7X2, 7X3, 810, 820, 830, and RPQ600890 for PCI, CompactPCI and PMC computers running IRIX 6.5.

6.0.1 Components

Model 965 Support Software consists of the following componentsXE “components”:

[image: image93.wmf]
An IRIX device driver with installation and removal script.

[image: image94.wmf]
A statically linked library implementing SBS’s Mirror API. This API, found on most SBS general purpose I/O software, allows for easier porting between products.

[image: image95.wmf]
Example programsXE “example programs” demonstrating how to map remote and/or dual‑port memory into an application’s memory space using the device driver.

[image: image96.wmf]
Example programs demonstrating the bt_read(), bt_write() functions for moving data blocks.

[image: image97.wmf]
Example programs demonstrating requirements for sending and receiving interrupts.

6.0.2 System And Hardware RequirementsXE “requirements: system”

XE “requirements: hardware”
[image: image98.wmf]
SBS recommends at least 128M bytes of RAM in SGI Origin, Octane, and O2 machines. Insufficient RAM can cause the Model 965 device driver to fail to load, or can hang the machine.

[image: image99.wmf]
Model 965 works with: all dataBLIZZARDs, all 7X2,7X3, 630, 628, 620, 620-3, 618, 618-3, 810, 820, 830, adapters, all RPQ 600890 cards, and Model 617 adapters with Part Number 85221511 PCI adapter cards (part numbers are located on a white label affixed to the adapter card).

[image: image100.wmf]
Model 965 does not work with: Model 617 adapters with Part Number 85221510 PCI adapter cards (part numbers are located on a white label affixed to the adapter card), all Model 616, 615 and 614 adapters.

[image: image101.wmf]
Operating systems: Model 965 works only with IRIX 6.5; it does not support IRIX 6.4 or IRIX 6.3.

6.1 Installation

6.1.1 Installation Notes

[image: image102.wmf]
See section 2.0 for information about locating downloadable software on the SBS web site.

[image: image103.wmf]
Refer to the README fileXE “README file” for revision historyXE “revision history” information.

[image: image104.wmf]
Files are stored XE “media”in tar format.

[image: image105.wmf]
FileXE “file names”

XE “directory names” or directory names in the form ./filespecXE “./filespec” relate to the directory in which the Support Software is installed. All files are located in a directory that is named for the software model and version number. For example, if version 2.0 of the software is installed in the /usr/local directory, the full path specification for the ./src directoryXE “src directory” is /usr/local/965/v2.0/src.

[image: image106.wmf]
Chapter 4 lists the contents of the ./src directory and describes the function of each file.

[image: image107.wmf]
Before example programsXE “example programs” can run successfully, the device driver must be installed, the PCI and remote adapter cards must be installed, the adapter cable connected, and the remote system powered on. For dataBLIZZARD and Model 7X2/7X3 adapters, the remote system’s device driver must be loaded and its local memory device enabled or a buffer bound to use any remote memory device.

6.1.2 Installing Support SoftwareXE “installation”
Before extracting filesXE “installation: extracting files”

XE “extracting files”:

1.
Login as root.

2.
Create a directory for Support Software tar files. Use the following commands (# denotes system prompt):

cd /usr/local

mkdir temp
3.
Change directories to the one you just created. Use the following command:

cd temp
4.
Retrieve the archive file SBS’s web site (www.sbs.com), and extract it using the following command.

tar –xf 85222001.tar

6.1.3 Installing XE “installation: device driver”

XE “device driver: installation”Device Driver

[image: image108.wmf]
You should be logged in as root and in the /usr/local/temp directory.

6.1.3.1 Software Manager Installation

XE “installation: software manager”

XE “software manager: installation”
1.
Start the Software Manager as root:

swmgr

[image: image389.wmf]
2.
Enter the directory where the tar file was extracted plus /dist in the Available Software button.

3.
Click the Lookup button.

[image: image390.wmf]4.
Click the Start box to begin installation. Or, click the Customize Installation button to customize the installation, then click the Start button.

[image: image391.wmf]5.
Click the Restart the System Now line.

6.
Click the OK button.

7.
After the system reboots, log in as root and change to the /usr/local/SBS/965/sys directory

cd /usr/local/SBS/965/sys

8.
Run the mkdev script

./mkdev

6.1.4 Configuring The SoftwareXE “configuration: software”
1.
In most cases, you will not need to change the default settingsXE “default settings”. If no reconfiguration is required, go to step 2.

Default configuration:XE “configuration: default”
· Local memory enabled and sized at 64K bytes,

· Driver will only display error and warning messages (error messages resulting from programming errors will not be displayed).

· The default interrupt queue size will be used.

If configuration changesXE “configuration: changes” are required, make sure you are in the ./sys directory. Then, using your choice of editor, edit the btp_flag.c file that contains the following configuration routine:

void btp_cnfg_flags(u_short unit, bt_cfg_param_t *config_p);

This routine, called by the driver at initialization, is passed the physical unit number and pointer to the configuration settings for that unit.

bt_cfg_param_t XE “bt_cfg_param_t: structure “structure in btpio.h:

/*

**
Structure to pass the configuration information into the

**
driver

**

**
See comments in sys/btp_flag.c for additional info

*/

typedef struct bt_cfg_param_d {

 bt_data32_t config_flags;
/* No config_flags currently defined */

 bt_data32_t trace_level;

/* Trace level */

 bt_data32_t lmem_size;

/* Local memory device size (bytes) */

 bt_data32_t q_size;

/* Interrupt queue size (# of interrupts stored */

} bt_cfg_param_t;

· Please note that support for the rram_start_addr configuration parameter has been removed. This parameter was incompatible with PCI to PCI support. VMEbus users will have to align their REM-RAM starting address to a multiple of 16M bytes. See section 5.3 for more information.

The trace_level valueXE “trace_level: value” is one of the following:

	VALUE
	DESCRIPTION

	BT_TRC_ERRORXE “BT_TRC_ERROR”
	Display only error messages.

	BT_TRC_WARNXE “BT_TRC_WARN”
	Display warning and error messages.

	BT_TRC_INFOXE “BT_TRC_INFO”
	Display informational, warning, and error messages.

Refer to section 5.3.1 for details on changing the trace level although, under normal operation, there is no need to change the trace level from its default value.

[image: image109.wmf]
Operating the device driver with the trace levelXE “trace level” above the default, BT_TRC_WARN, severely degrades driver performance.

[image: image110.wmf]
If configuration changesXE “configuration: changes” are required, use caution when modifying btp_flag.c because the device may become inoperable if modifications are not made correctly.

[image: image111.wmf]
The lmem_size value gives the size in bytes of the local memory device; a value of 0 disables it.

[image: image112.wmf]
The q_size value give the number of interrupts that can be queued between the driver and awaiting ICBRs.

2.
After adding, removing, or moving SBS PCI adapter cards to different PCI slots, the mkdev script in the sys directory should be rerun to reconfigure the driver.

3.
Rebuild and re-install the device driver if you made any changes in steps 1 - 3. Use the following command:

make install

The make install command executes all commands required to configure and install the device driver on your system.

[image: image113.wmf]
Make sure you are in the correct directory before executing make install. For most cases, your working directory should be /usr/local/SBS/965/sys.

4.
Reboot the system to activate the new kernel.

6.2 Compiling Example ProgramsXE “example programs: compiling”
[image: image114.wmf]
Both the source code and executablesXE “source code” to the example programs are distributed with the Support Software.

To recompile the software --
Change directories to the ./src directory containing the example programs, then compile the example programs. Use the following commands:

cd /usr/local/SBS/965/src

make all

To recompile a specific program you may have changed, use the command:

make filename

6.3 Removing The SBS Support SoftwareXE “removing software”
In certain instances you may need to remove the Model 965 Support Software from a system.

To remove the SBS Support Software from a system, please follow the instructions below.

1.
Log in as root and start software manager.

[image: image392.wmf]
swmgr

2.
Click Manage Installed Software.

[image: image393.wmf]3.
Find and select the SBS 965 Support Software.

4.
Click Start.

5.
Shutdown the machine and remove the SBS adapter.

Chapter 7: Model 946 For Solaris

[image: image115.wmf]
7.0 Introduction

Chapter 7 describes installation of Model 946 Support. It includes general information about the installation procedure, and gives a brief description of how to verify that the adapter is installed correctly and the device driver is loaded properly.

SBS Model 946 Support Software with Nexus extensions for the PCI bus provides a loadable device driver for the SPARCstation® and example programs to help application programmers with adapter and system configuration. It currently supports the following SBS adapters:

[image: image116.wmf]
All dataBLIZZARDs.

[image: image117.wmf]
810 VME64 to PCI bus adapter.

[image: image118.wmf]
820 VME64 to PMC bus adapter.

[image: image119.wmf]
830 VME64 to CompactPCI bus adapter.

[image: image120.wmf]
617 with Slave Mode and Controller Mode DMA for PCI bus to VMEbus interconnection.

[image: image121.wmf]
618-3 and 618 fiber-optic adapter with Slave Mode and Controller Mode DMA for PCI bus to VMEbus interconnection.

[image: image122.wmf]
620-3 and 620 fiber-optic adapter with Slave Mode and Controller Mode DMA for PCI bus to VMEbus interconnection (no loopback diagnostics).

[image: image123.wmf]
628 fiber-optic adapter with Slave Mode and Controller Mode DMA for CompactPCI bus to VMEbus interconnection.

[image: image124.wmf]
630 fiber-optic adapter with Slave Mode and Controller Mode DMA for CompactPCI bus to VMEbus interconnection (no loopback diagnostics).

The software provides a device driver and installation tools necessary to quickly port Solaris VMEbus devices drivers to new Sun PCI workstations.

SBS’s loadable device driver provides support that mimics the Solaris DDI routines for VMEbus drivers. Routines are supplied to map any VMEbus address to a virtual Solaris address, to probe the VMEbus by reads or writes, to install a device interrupt handler for a VMEbus interrupt level and vector, and to map Solaris memory so it can be accessed by VMEbus devices.

Example programs are included that aid in determining if the adapter hardware as well as the support software is functioning correctly.

Currently, Model 946 supports Solaris 2.5.1 or higher.

7.0.1 System & Hardware Requirements

 XE “requirements:PCI”

 XE “requirements:VMEbus” PCI Bus:
Root privileges to install the support software.

VMEbus:
The remote reset jumper (SYS-5) on the VMEbus adapter card must be in place to use the remote VMEbus reset function.

7.1 Installation

7.1.1 Installation Notes

[image: image125.wmf]
See section 2.0 for information about locating downloadable software on the SBS web site.

[image: image126.wmf]
Refer to the README file for revision history information.

[image: image127.wmf]
Files are stored in tar format. Files may also be compressed if the name ends with .2.

[image: image128.wmf]
File or directory names in the form ./filespec relate to the directory in which the Support Software is installed. All files are automatically placed in the /opt/SBSECm946/vX.Y directory. Where X.Y is the version of the software being installed.

[image: image129.wmf]
Chapter 4 lists the contents of the ./src directory and describes the function of each file.

[image: image130.wmf]
The PCI adapter card must be installed before the device driver can be loaded. The driver can successfully load itself even when the VMEbus system is not connected.

[image: image131.wmf]
Before example programs will run successfully, the device driver must be installed, the cable connected, and the VMEbus system powered on.

7.1.2 Installing Support Software

[image: image132.wmf]
denotes a system root prompt.

 XE “installation”
Before extracting files:

1.
Login as root.

2.
Check that the adapter is installed correctly. Use the prtconf command located in the /usr/sbin directory; enter the command as follows:

prtconf | grep 108a

If the adapter card is installed in the PCI system, the output generated by this command will include a section similar to this:

pci108a,1, instance #0 (driver not attached)

If the PCI adapter card is not installed or is incorrectly installed, device pci108a,? will not be reported.

For additional information about the pci108a,1 device, as well as other devices in the system, enter:

prtconf -p -v | more

3.
Retrieve the archive file from SBS’s web site (www.sbs.com), and extract it using the tar command located in the /usr/sbin directory. If the file you downloaded or received ends with a .Z, you will need to uncompress it using the uncompress command as demonstrated below.

uncompress 85221907.tar.Z

tar –xf 85221907.tar

4.
Install the Model 946 Support Software using the /usr/sbin/pkgadd command and then follow the on-screen instructions.

pkgadd SBSECm946

5.
Make sure the following sub-directories were created in the /opt/SBSECm946/vX.Y directory:

ls –l /opt/SBSECm946/vX.Y

	SUB-DIRECTORY
	CONTENTS

	 ./sys
	The device driver and installation script.

	 ./src
	Source files and makefile for all example programs.

7.1.3 Changing The Driver’s Configuration

Certain driver parameters are inspected only when the driver loads. These parameters are called boot time configurable parameters and are controlled through the driver’s configuration file, btp.conf. A copy of the driver’s default configuration file is kept in the sys directory and can be modified with any text editor. The value for the boot time configuration parameters can be modified by changing the appropriate value in the btp.conf file, copying this file to /kernel/drv directory and reloading the SBS device driver. The process is described below.

1.
Log into the root account.

2.
Change to the sys directory:

cd /opt/SBSECm946/vX.Y/sys

3.
If this is the first time you have modified the btp.conf file, change the permissions to allow writing:

chmod 644 btp.conf

4.
Unload the driver (make utility can often be found in /usr/ccs/bin directory):

make unload

5.
Modify the boot time parameters of interest using a text editor. A description of the boot time parameters follows.

	NAME
	DEFAULT
	LEGAL
	DESCRIPTION

	rram_addr
	0xffffffff
	0x0 – 0xffff0000
	Setting of low REM RAM jumper block on VME

	latency_timer
	0x0
	0x0, 0x20 – 0xe0
	PCI Latency timer, 0 -> system default

	dp_enable
	0x0
	0x0, 0x1
	Dual port enable, 0x1 -> enabled

	lm_enable
	0x0
	0x0, 0x1
	Local memory enable, 0x1 -> enabled

	trace_flags
	0x3
	0x0 – 0xffffffff
	Trace flags bit map, see btnbus.h file for definition

6.
Reload the driver (make utility can often be found in /usr/ccs/bin directory):

make load

7.1.4 Checking The Installation

1.
 XE "installation:checking" Issue the package information command, pkginfo, located in the /usr/sbin directory. The results should indicate that this package has been installed.
2.
Check that the adapter is installed correctly and the device driver loaded properly. Use the prtconf command located in the /usr/sbin directory; enter the command as follows:

prtconf | grep 108a

If the driver successfully installed, the output generated by this command will include a line similar to one of the following:

pci108a,1 instance #0
(For Model 617 installed as Unit 0)

pci108a,3 instance #1
(For Model 616 installed as Unit 1)

pci108a,10 instance #2
(For Model 618 installed as Unit 2)

(The unit number may be different for your system.)

If this section looks like the following, the adapter card is installed in the PCI chassis; however, the device driver was not loaded correctly:

pci108a,1, (driver not attached)

If the PCI adapter card is not installed or is incorrectly installed, device pci108a will not be reported and the device driver will not load correctly.

3.
If Dual Port RAM XE "Dual Port RAM" is installed and enabled, enter the command

./dumpmem

(the dumpmem program is located in the ./src directory) to verify that the driver and adapter are working correctly. The program should display the data in the first section of dual-port memory in a hexadecimal and ASCII format.

4.
To access memory on the VMEbus system, try using the dumpmem program with the given flags.

Your dumpmem command line entry should be similar to the following example (should be replaced by the address of at least 256 bytes of memory on your VMEbus).

./dumpmem –t re -a 0x80000000

5.
If the dumpport or dumpmem program fails, check the cable connection and jumper settings on the VMEbus adapter card. Pay special attention to the VMEbus adapter card's system jumper block and anything related to bus arbitration on the VME system.

7.2 “Nexus-Link” Kernel Interface Routines

Model 946 Support Software has been specifically designed to ease the porting of Solaris VMEbus device drivers. It contains kernel level routines XE “kernel level routines” that mirror the DDI routines supplied by the Solaris operating system. When the Model 946 software is coupled with a Model 616, 617, 618, or 618-3 PCI to VMEbus adapter, the combination provides an easy method for customers to upgrade from either VMEbus based or SBus-based Sun workstations to the new PCI-based Sun workstations.

The kernel level routines provided by Model 946 can be broken down in to four categories: Mapping the VMEbus, Accessing the VMEbus, Handling a VMEbus Interrupt and Preparing for VMEbus Device DMA.

Mapping VMEbus Memory

[image: image133.wmf]
btp_ddi_map_regs XE “btp_ddi_map_regs”
[image: image134.wmf]
btp_ddi_unmap_regs XE “btp_ddi_unmap_regs”
Accessing the VMEbus

[image: image135.wmf]
bt_ddi_peek8 XE “bt_ddi_peek8”
[image: image136.wmf]
bt_ddi_peek16 XE “bt_ddi_peek16”
[image: image137.wmf]
bt_ddi_peek32 XE “bt_ddi_peek32”
[image: image138.wmf]
bt_ddi_peek XE “bt_ddi_peek”
[image: image139.wmf]
bt_ddi_poke8 XE “bt_ddi_poke8”
[image: image140.wmf]
bt_ddi_poke16 XE “bt_ddi_poke16”
[image: image141.wmf]
bt_ddi_poke32 XE “bt_ddi_poke32”
[image: image142.wmf]
bt_ddi_poke

 XE “bt_ddi_poke”
Handling a VMEbus Interrupt

[image: image143.wmf]
btp_ddi_get_iblock_cookie XE “btp_ddi_get_iblock_cookie”
[image: image144.wmf]
btp_ddi_add_intr XE “btp_ddi_add_intr”
[image: image145.wmf]
btp_ddi_remove_intr XE “btp_ddi_remove_intr”
Preparing for VMEbus Device DMA

[image: image146.wmf]
btp_ddi_dma_buf_setup XE “btp_ddi_dma_buf_setup”
[image: image147.wmf]
btp_ddi_dma_free XE “btp_ddi_dma_free”
[image: image148.wmf]
btp_ddi_dma_htoc XE “btp_ddi_dma_htoc”
7.2.1 Mapping The VMEbus

Two routines are provided for mapping VMEbus addresses XE “mapping VMEbus addresses” into kernel addresses so that a Solaris driver can access them. The two routines are described below. For a detailed description of the routine please see the Solaris man page for the corresponding DDI routine or the Writing Device Drivers manual by Sun Microsystems.

7.2.1.1 Map VMEbus Memory - btp_ddi_map_regs()

	FUNCTION
	Creates a mapping to the register set given in the xxx.conf file. Returns a kernel pointer to the region described.

	PROTOTYPE
	int btp_ddi_map_regs (u_int unit, dev_info_t *dip, u_int mumber, caddr_t *kaddrp, off_t offset, off_t len);

	ARGUMENT
	unit = Hardware unit/instance number to use.

	
	dip = Device information pointer of the requesting driver.
mumber = Register set number from the requesting driver’s xxx.conf file reg property

kaddrp = Address of a pointer to remote memory (set upon success).
offset = Offset into register space.
len = Number of bytes to map

	DESCRIPTION
	Available in kernel mode only.

bt_ddi_map_regs() is a macro that always uses unit 0.

An amod value of 0x1 in the reg property will setup a mapping to Dual Port RAM.

An amod value of 0x2 in the reg property will setup a mapping the local memory device.

	DDI Routine
	Mimics the ddi_map_regs() function.

7.2.1.2 Unmap VMEbus Memory - btp_ddi_unmap_regs()

	FUNCTION
	Releases a mapping previously created with btp_ddi_map_regs

	PROTOTYPE
	void btp_ddi_unmap_regs (u_int unit, dev_info_t *dip, u_int rnumber, caddr_t *kaddrp, off_t offset, off_t len);

	ARGUMENT
	unit = Hardware unit/instance number to use.

	
	dip = Device information pointer of the requesting driver.
rnumber = Register set given to the prior btp_ddi_map_regs call.
kaddrp = Address of the pointer created by the prior btp_ddi_map_regs call.
offset = Offset into register space specified in the prior btp_ddi_map_regs call.
len = Number of bytes to map specified in the prior btp_ddi_map_regs call.

	DESCRIPTION
	Available in kernel mode only.

bt_ddi_unmap_regs() is a macro that always uses unit 0.

	DDI Routine
	Mimics the ddi_unmap_regs() function.

7.2.2 Accessing the VMEbus

There are two sets of routines that allow kernel mode drivers XE “accessing the VMEbus” access to the VMEbus and obtain status information about the result. Normally, the kernel mode driver can dereference pointers obtained by the btp_ddi_map_regs() call to access VMEbus resources. However, if there is a chance that the access may result in a VMEbus error or the driver is interested in verifying that the access succeeded, it should use the routines described in sections 7.2.2.1 – 7.2.2.8. For example, during the driver’s probe() routine, the VMEbus read may result in a bus error if the VMEbus card is not installed.

7.2.2.1 Reading An 8-Bit Value From The VMEbus

bt_ddi_peek8

	FUNCTION
	Cautiously tries to read an 8-bit value from the given pointer and checks for errors.

	PROTOTYPE
	int bt_ddi_peek8 (dev_info_t *dip, int8_t *addr, int8_t *valuep);

	ARGUMENT
	dip = Device information pointer of the requesting driver.
addr = Char pointer to the VMEbus location to read.
valuep = Pointer to 8-bit storage. If read is successful, this is updated with the value read.

	DESCRIPTION
	Available in kernel mode only.

Always uses unit 0.

bt_ddi_peekc() is a macro for Solaris 2.5 systems that always uses unit 0.

addr must be obtained from the btp_ddi_map_regs() call.

Value is only updated on success.

	DDI Routine
	Mimics the ddi_peek8() function.

7.2.2.2 Reading A 16-Bit Value From The VMEbus

bt_ddi_peek16

	FUNCTION
	Cautiously tries to read a 16-bit value from the given pointer and checks for errors.

	PROTOTYPE
	int bt_ddi_peek16 (dev_info_t *dip, int16_t *addr, int16_t *valuep);

	ARGUMENT
	dip = Device information pointer of the requesting driver.
addr = Short pointer to the VMEbus location to read.
valuep = Pointer to 16-bit storage. If read is successful, this is updated with the value read.

	DESCRIPTION
	Available in kernel mode only.

Always uses unit 0.

bt_ddi_peeks() is a macro for Solaris 2.5 systems that always uses unit 0.

addr must be obtained from the btp_ddi_map_regs() call.

Value is only updated on success.

	DDI Routine
	Mimics the ddi_peek16() function.

7.2.2.3 Reading A 32-Bit Value From The VMEbus

bt_ddi_peek32

	FUNCTION
	Cautiously tries to read a 32-bit value from the given pointer and checks for errors.

	PROTOTYPE
	int bt_ddi_peek32 (dev_info_t *dip, int32_t *addr, int32_t *valuep);

	ARGUMENT
	dip = Device information pointer of the requesting driver.
addr = Long pointer to the VMEbus location to read.
valuep = Pointer to 32-bit storage. If read is successful, this is updated with the value read.

	DESCRIPTION
	Available in kernel mode only.

Always uses unit 0.

bt_ddi_peekl() is a macro for Solaris 2.5 systems that always uses unit 0.

addr must be obtained from the btp_ddi_map_regs() call.

Value is only updated on success.

	DDI Routine
	Mimics the ddi_peek32() function.

7.2.2.4 Reading A VMEbus Value From A Given Unit

btp_ddi_peek

	FUNCTION
	Cautiously tries to read a value from the given pointer and checks for errors.

	PROTOTYPE
	int btp_ddi_peek (u_int unit, caddr_t kaddr_p, size_t width, bt_data32_t *val_p);

	ARGUMENT
	unit = Hardware unit/instance number to use.
kaddr_p = Pointer to the VMEbus location to read.
width = Number of bytes to read in a single transaction.

val_p = Pointer to 32-bit storage. If read is successful, this is updated with the value read.

	DESCRIPTION
	Available in kernel mode only.

kaddr_p must be obtained from the btp_ddi_map_regs() call.

	DDI Routine
	Provides the same functionality provided in ddi_peek??() functions.

7.2.2.5 Writing An 8-Bit Value To The VMEbus

bt_ddi_poke8

	FUNCTION
	Cautiously tries to write an 8-bit value to the given pointer and checks for errors.

	PROTOTYPE
	int bt_ddi_poke8 (dev_info_t *dip, int8_t *addr, int8_t value);

	ARGUMENT
	dip = Device information pointer of the requesting driver.
addr = Char pointer to the VMEbus location to write.
value = 8-bit value to write.

	DESCRIPTION
	Available in kernel mode only.

Always uses unit 0.

bt_ddi_pokec() is a macro for Solaris 2.5 systems that always uses unit 0.

addr must be obtained from the btp_ddi_map_regs() call.

	DDI Routine
	Mimics the ddi_poke8() function.

7.2.2.6 Writing A 16-Bit Value To The VMEbus

bt_ddi_poke16

	FUNCTION
	Cautiously tries to write a 16-bit value to the given pointer and checks for errors.

	PROTOTYPE
	int bt_ddi_poke16 (dev_info_t *dip, int16_t *addr, int16_t value);

	ARGUMENT
	dip = Device information pointer of the requesting driver.
addr = Short pointer to the VMEbus location to write.
value = 16-bit value to write.

	DESCRIPTION
	Available in kernel mode only.

Always uses unit 0.

bt_ddi_pokes() is a macro for Solaris 2.5 systems that always uses unit 0.

addr must be obtained from the btp_ddi_map_regs() call.

	DDI Routine
	Mimics the ddi_poke16() function.

7.2.2.7 Writing A 32-Bit Value To The VMEbus

bt_ddi_poke32

	FUNCTION
	Cautiously tries to write a 32-bit value to the given pointer and checks for errors.

	PROTOTYPE
	int bt_ddi_poke32 (dev_info_t *dip, int32_t *addr, int32_t value);

	ARGUMENT
	dip = Device information pointer of the requesting driver.
addr = Pointer to the 32-bit VMEbus location to write.
value = 32-bit value to write.

	DESCRIPTION
	Available in kernel mode only.

Always uses unit 0.

bt_ddi_pokel() is a macro for Solaris 2.5 systems that always uses unit 0.

addr must be obtained from the btp_ddi_map_regs() call.

	DDI Routine
	Mimics the ddi_pokel() function.

7.2.2.8 Writing A Value To The VMEbus

btp_ddi_poke

	FUNCTION
	Cautiously tries to write a value to the given pointer and checks for errors.

	PROTOTYPE
	int bt_ddi_poke (u_int unit, caddr_t kaddr_p, size_t width, bt_data32_t Val);

	ARGUMENT
	unit = Hardware unit/instance number to use.
kaddr_p = Pointer to the VMEbus location to write.
width = Number of bytes to read in a single transaction.

Val = Value to write.

	DESCRIPTION
	Available in kernel mode only.

kaddr_p must be obtained from the btp_ddi_map_regs() call.

	DDI Routine
	Provides the same functionality provided in ddi_pokek??() functions.

7.2.3 Handling A VMEbus Interrupt

Many VMEbus devices generate an interrupt XE “interrupts” to indicate that it requires attention or has completed some operation. Therefore, the device driver must register an Interrupt Service Routine (ISR) with the Operating System, to respond to its device’s interrupt. The following routines allow a driver to install or remove an ISR and provide protection from the ISR to the other parts of the driver.

7.2.3.1 Get Interrupt Block Cookie

btp_get_iblock_cookie()

	FUNCTION
	Retrieves an interrupt block cookie that can be used to initialize mutexes and locks for protecting driver code from the ISR.

	PROTOTYPE
	int btp_ddi_get_iblock_cookie (u_int unit, dev_info_t *dip, u_int inumber, ddi_iblock_cookie_t *iblock_cookiep);

	ARGUMENT
	unit = Hardware unit/instance number to use.

	
	dip = Device information pointer of the requesting driver.
inumber = interrupt number from the interrupts property of the driver’s xxx.conf file.
iblock_cookiep = Pointer to a cookie storage item. The storage item will be initialized if the call succeeds.

	DESCRIPTION
	Available in kernel mode only.

bt_ddi_get_iblock_cookie() is a macro that always uses unit 0.

	DDI Routine
	Mimics the ddi_get_iblock_cookie() function.

7.2.3.2 Register A VMEbus Interrupt Service Routine

btp_ddi_add_intr()

	FUNCTION
	Installs an interrupt service routine for the given VMEbus interrupt.

	PROTOTYPE
	int btp_ddi_add_intr (u_int unit, dev_info_t *dip, u_int inumber, ddi_iblock_cookie_t *iblock_cookiep, ddi_idevice_cookie_t *idevice_cookiep, u_int (* int_handler) (caddr_t), caddr_t int_handler_arg);

	ARGUMENT
	unit = Hardware unit/instance number to use.

	
	dip = Device information pointer of the requesting driver.
inumber = interrupt number from the interrupts property of the driver’s xxx.conf file.
iblock_cookiep = Should always be NULL.
idevice_cookiep = Should always be NULL.
int_handler = Address of the interrupt service routine to install.
int_handler_arg = Pointer to data structure that gets passed to int_handler() when it is called to handle a device interrupt.

	DESCRIPTION
	Available in kernel mode only.

bt_ddi_add_intr() is a macro that always uses unit 0.

Only one ISR may be installed for any given interrupt level/vector pair.

The same ISR may be installed multiple times for different interrupt level/vector pairs.

	DDI Routine
	Mimics the ddi_add_intr() function.

7.2.3.3 Unregister A VMEbus Interrupt Service Routine

btp_ddi_remove_intr()

	FUNCTION
	Removes an installed interrupt service routine for the given VMEbus interrupt.

	PROTOTYPE
	int btp_ddi_remove_intr (u_int unit, dev_info_t *dip, u_int inumber, ddi_iblock_cookie_t *iblock_cookiep);

	ARGUMENT
	unit = Hardware unit/instance number to use.

	
	dip = Device information pointer of the requesting driver.
inumber = interrupt number from the interrupts property of the driver’s xxx.conf file.
iblock_cookiep = Should always be NULL.

	DESCRIPTION
	Available in kernel mode only.

bt_ddi_remove_intr() is a macro that always uses unit 0.

btp_ddi_add_int() must have been previously called with the given inumber.

	DDI Routine
	Mimics the ddi_remove_intr() function.

7.2.4 Preparing For VMEbus Device DMA

The following routines allow a VMEbus device driver to DMA XE “DMA” directly into a memory region described by a buf structure. Only three of the most popular DMA related routines XE “DMA related routines” are currently supported: btp_ddi_dma_buf_setup XE “btp_ddi_dma_buf_setup” (), btp_ddi_dma_free XE “btp_ddi_dma_free” (), and btp_ddi_dma_htoc XE “btp_ddi_dma_htoc” (). If you use a different Solaris DDI DMA routine, please contact SBS Technologies for information on extending DMA support.

7.2.4.1 Buffer DMA Setup

btp_ddi_dma_buf_setup

	FUNCTION
	Prepares the system to DMA to the section of memory described in the buf structure.

	PROTOTYPE
	int btp_ddi_ dma_buf_setup (u_int unit, dev_info_t *dip, struct buf *bp, u_int flags, int (*waitfp) (caddr_t), caddr_t arg, ddi_dma_lim_t *lim, bt_ddi_dma_handle_t *handlep);

	ARGUMENT
	unit = Hardware unit/instance number to use.

	
	dip = Device information pointer of the requesting driver.
bp = Pointer to buf structure describing memory region.
flags = DMA specific flags.
waitfp = Address of waiting function, must be NULL.
arg = Address of argument to pass to the wait function, must be NULL.
lim = Pointer to the structure describing the DMA limit requirements.
handlep = Pointer to an empty DMA handle structure. This structure will be filled if the call succeeds.

	DESCRIPTION
	Available in kernel mode only.

bt_ddi_dma_buf_setup() is a macro that always uses unit 0.

The rram_addr parameter of the SBS btp.conf file must match the information in the limits structure. If the dlim_addr_hi and dlim_addr_lo are both below 16M bytes, an A24 VMEbus address is calculated.

The limits structure is not fully parsed and the VMEbus device’s DMA ability must be compatible with the adapter’s REM-RAM window capability.

The DMA handle type, bt_ddi_dma_handle_t, is an opaque type that should never be inspected or modified.

	DDI Routine
	Mimics the ddi_dma_buf_setup() function.

7.2.4.2 Free A DMA Mapping

btp_ddi_dma_free()

	FUNCTION
	Releases resources previously consumed in a DMA mapping with btp_ddi_dma_buf_setup() call.

	PROTOTYPE
	int btp_ddi_ dma_free (u_int unit, bt_ddi_dma_handle_t handle);

	ARGUMENT
	unit = Hardware unit/instance number to use.

	
	handle = DMA handle structure from the corresponding call to btp_ddi_dma_buf_setup().

	DESCRIPTION
	Available in kernel mode only.

The DMA handle type, bt_ddi_dma_handle_t, is an opaque type that should never be inspected or modified.

	DDI Routine
	Mimics the ddi_dma_free() function.

7.2.4.3 DMA Convert Handle To Cookie

btp_ddi_dma_htoc()

	FUNCTION
	Converts a DMA handle to a DMA cookie containing the physical VMEbus addresses for the DMA.

	PROTOTYPE
	int btp_ddi_ dma_htoc (u_int unit, ddi_dma_handle_t handle, off_t, bt_ddi_dma_cookie_t *cookiep);

	ARGUMENT
	unit = Hardware unit/instance number to use.

	
	handle = DMA handle structure from the corresponding call to btp_ddi_dma_buf_setup().
cookiep = Pointer to DMA cookie structure to be filled out if call succeeds.

	DESCRIPTION
	Available in kernel mode only.

The DMA cookie type, bt_ddi_dma_cookie_t, is the same as ddi_dma_cookie_t except for the bt_ prefixed to all of the members.

The DMA handle type, bt_ddi_dma_handle_t, is an opaque type that should never be inspected or modified.

	DDI Routine
	Mimics the ddi_dma_htoc() function.

7.3 Notes & Suggestions For Using The 946 Device Driver

7.3.1 Writing Device Drivers

Model 946 Support Software is designed to provide a kernel level interface similar to the Solaris DDI. This manual describes the kernel level routines implemented in Model 946. However, it does not go into great detail on these routines or kernel level programming in general. For detailed information on either of these two topics, please refer to the appropriate manual pages or the Writing Devices Drivers manual by Sun Microsystems.

7.3.2 Porting VMEbus Device Drivers

For most VMEbus drivers, actual C source code conversion is the easiest porting XE “porting” task. Model 946 supports the DDI functions listed in the table below. Code conversion consists of simply prefixing bt_ to each function, no parameters need to be changed. Not all of the ddi_dma_ functions are supported. If you are using a DMA function not listed, please contact SBS for specific porting instructions.

	Solaris DDI Name
	SBS Model 946 Name

	ddi_pokec XE “ddi_pokec”
	bt_ddi_pokec XE “bt_ddi_pokec”

	ddi_pokes XE “ddi_pokes”
	bt_ddi_pokes XE “bt_ddi_pokes”

	ddi_pokel XE “ddi_pokel”
	bt_ddi_pokel XE “bt_ddi_pokel”

	ddi_poked XE “ddi_poked”
	bt_ddi_poked XE “bt_ddi_poked”

	ddi_poke8 XE “ddi_poke8”
	bt_ddi_poke8 XE “bt_ddi_poke8”

	ddi_poke16 XE “ddi_poke16”
	bt_ddi_poke16 XE “bt_ddi_poke16”

	ddi_poke32 XE “ddi_poke32”
	bt_ddi_poke32 XE “bt_ddi_poke32”

	ddi_poke64 XE “ddi_poke64”
	bt_ddi_poke64 XE “bt_ddi_poke64”

	ddi_peekc XE “ddi_peekc”
	bt_ddi_peekc XE “bt_ddi_peekc”

	ddi_peeks XE “ddi_peeks”
	bt_ddi_peeks XE “bt_ddi_peeks”

	ddi_peekl XE “ddi_peekl”
	bt_ddi_peekl XE “bt_ddi_peekl”

	ddi_peekd XE “ddi_peekd”
	bt_ddi_peekd XE “bt_ddi_peekd”

	ddi_peek8 XE “ddi_peek8”
	bt_ddi_peek8 XE “bt_ddi_peek8”

	ddi_peek16 XE “ddi_peek16”
	bt_ddi_peek16 XE “bt_ddi_peek16”

	ddi_peek32 XE “ddi_peek32”
	bt_ddi_peek32 XE “bt_ddi_peek32”

	ddi_peek64 XE “ddi_peek64”
	bt_ddi_peek64 XE “bt_ddi_peek64”

	ddi_map_regs XE “ddi_map_regs”
	bt_ddi_map_regs XE “bt_ddi_map_regs”

	ddi_unmap_regs XE “ddi_unmap_regs”
	bt_ddi_unmap_regs XE “bt_ddi_unmap_regs”

	ddi_add_intr XE “ddi_add_intr”
	bt_ddi_add_intr XE “bt_ddi_add_intr”

	ddi_remove_intr XE “ddi_remove_intr”
	bt_ddi_remove_intr XE “bt_ddi_remove_intr”

	ddi_dma_buf_setup XE “ddi_dma_buf_setup”
	bt_ddi_dma_buf_setup XE “bt_ddi_dma_buf_setup”

	ddi_dma_free XE “ddi_dma_free”
	bt_ddi_dma_free XE “bt_ddi_dma_free”

	ddi_dma_htoc XE “ddi_dma_htoc”
	bt_ddi_dma_htoc XE “bt_ddi_dma_htoc”

The following line must be added to the driver’s main source code module XE "main source code module" . This line should be added before the “struct cb_ops” standard Solaris driver declaration.

static char _depends_on[] = "drv/btp";

The include file below must be added to all files that reference Model 946’s routines or types.

#include <sys/btpvme.h>
After the source code has been converted, the driver configuration file must be modified. The ported driver will actually be a pseudo device to the PCI workstation. This is accomplished through the driver configuration file. The class property XE "class property" (for VMEbus driver) or the parent property XE "parent property" (for drivers using a SBus Nexus) will need to be changed to “parent=pseudo”. Also an instance property must be added to each device defined. Please see the “vme” and “pseudo” manual pages for detailed information. Below is a sample conversion XE "conversion" for a given VMEbus device. No changes to the “reg” or “interrupts” properties need to be made.

Original

name="btv" class="vme";

Ported

name="btv" parent="pseudo" instance=0;

After the driver configuration file has been modified, device link creation must be examined. Since the driver is no longer a VMEbus driver, but now is a pseudo driver, the location of the device files created in the driver’s attach routine will have changed. They will now be located under the /devices/pseudo directory but will have the same name as before. Most installation scripts create symbolic links to the device files in the /dev directory. The commands that create these links will have to be changed to take into account the new file locations under the /devices/pseudo directory. If you used the /etc/devlink.tab file to automatically create the links, no changes are necessary.

7.3.3 Limitations

Model 946 Support Software has the following limitations XE “limitations” .

[image: image149.wmf]
bt_ddi_map_regs XE “bt_ddi_map_regs” () – Slightly less then 32M bytes of VMEbus address space can be mapped at any given time.

[image: image150.wmf]
bt_ddi_dma_buf_setup XE “bt_ddi_dma_buf_setup” () – Up to 16M bytes of host PCI memory can be allocated for DMAs at a time.

[image: image151.wmf]
bt_ddi_dma_buf_setup XE “bt_ddi_dma_buf_setup” () – Does limited looking at the limits structure. User must manually setup the REM-RAM jumpers to match the limits structure and set the rem_ram_addr parameter of the btp.conf file to match jumpers. If dlim_addr_hi and dlim_addr_lo are below 16M bytes, A24 addressing is assumed and the upper 8 address bits are cleared during the bt_ddi_dma_htoc.

[image: image152.wmf]
If applications are going to use Model 946’s read() or write() functions while drivers use the pointers acquired with bt_ddi_map_regs(), the ioctl() parameter THRESHOLD must be set to 17M bytes. This disables the DMA engine.

Chapter 8: Model 1003 For Linux

[image: image153.wmf]
8.0 Introduction

Chapter 8 describes installation of Model 1003 Support. It includes general information about the installation procedure, and gives a brief description of how to verify that the adapter is installed correctly and the device driver is loaded properly.

SBS Model 1003 Support Software for IntelSYMBOL 212 \f "Symbol" x86-compatible PCI bus computers provides a device driver for Red Hat 6.0 (Kernel 2.2.5–15) Linux, Red Hat 7.0 (Kernel 2.2.16-22) Linux, Red Hat 7.2 (kernel 2.4.7-10) or Red Hat 8.0 (Kernel 2.4.18-14) and example applications to help application programmers with adapter and system configuration. Other 2.2.X kernels and distributions may work, but are not officially supported. Model 1003 currently supports the following SBS productsXE “adapter: supported”:

[image: image154.wmf]
dataBLIZZARD communication interfaces.

[image: image155.wmf]
810, 820, 830 VME64 bus adapters.

[image: image156.wmf]
618-3/620-3 PCI to VMEbus fiber-optic adapters.

[image: image157.wmf]
618/620 PCI to VMEbus fiber-optic adapters.

[image: image158.wmf]
617 PCI to VMEbus adapters.

[image: image159.wmf]
616 PCI to VMEbus (no DMA) adapters.

The software package provides a device driver, plus all tools, including memory mapping, to access dual-port and/or remote memory space from an application. This allows memory sharing between a PCI bus computer and another system.

Model 1003 also includes an Application Program Interface (API) that provides routines required to access all adapter resources. Remote memory and Dual Port RAM, if configured, can be shared between the two systems. Programmed interrupts can be exchanged. Devices on the remote system can be controlled from Linux and remote bus memory can be accessed.

Model 1003’s device driver allows direct mapping to Dual Port RAM and/or remote bus memory without software overhead. In addition, the Mirror API provides routines to map VMEbus addresses to an application’s memory. After setup, all access is handled by hardware; the memory responds to all VMEbus accesses.

The example applications included in the Support Software demonstrate features of the adapter hardware and software, and are useful tools for:

[image: image160.wmf]
Debugging.

[image: image161.wmf]
Uploading and downloading binary data.

[image: image162.wmf]
Receiving and counting error interrupts.

[image: image163.wmf]
Testing hardware.

Subroutines and example applications may be modified for your specific hardware configuration or application’s requirements.
8.0.1 Components

Model 1003 consists of the following components:

[image: image164.wmf]
A device driver with installation script for Linux 2.2.X kernel.

[image: image165.wmf]
Mirror API Library to access the device.

[image: image166.wmf]
Example applications that demonstrate using the Mirror API.

[image: image167.wmf]
An example user Interrupt Service Routine (ISR).

8.0.2 System And Hardware Requirements

XE “system: requirements”

XE “hardware: requirements”

XE “requirements: system”

XE “requirements: hardware”Linux:XE “Windows: requirements”

XE “requirements: Windows”
Intel x86-compatible computer with a PCI bus with Linux 2.2/2.4 kernel, such as Red Hat 6.0, 7.0, 8.0 or other distribution.

[image: image168.wmf]
Kernel source code for the currently running kernel.

[image: image169.wmf]
Kernel module support built into the kernel.

VMEbus:
XE “VMEbus: requirements”

XE “requirements: VMEbus”The remote reset jumperXE “remote: reset: jumper”

XE “VMEbus: remote reset jumper” (SYS-5) on the VMEbus adapter card must be in place to use the remote VMEbus reset function.

The Address Modifier Register jumperXE “Address Modifier Register: jumper” (SYS-1) on the VMEbus adapter card must be removed.XE “VMEbus: address modifier: register jumper”
Although Model 1003 is designed to work with a variety of Linux distributions, it has been tested only against a limited set. Currently, the software has been tested to work with Red Hat 6.0 Linux for Intel systems and Red Hat 6.1 Linux for Intel systems, Red Hat 7.0 Linux for Intel systems and Red Hat 8.0 Linux for Intel systems.

8.1 Installation

8.1.1 Installation Notes

[image: image170.wmf]
See section 2.0 for information about locating downloadable software on the SBS web site.

[image: image171.wmf]
Refer to the README fileXE “README file” for revision historyXE “revision history” information.

[image: image172.wmf]
Files are stored XE “media” in tar format.

[image: image173.wmf]
FileXE “file names”

XE “directory names” or directory names in the form ./filespecXE “./filespec” relate to the directory in which the Support Software is installed. All files are located in a directory that is named for the software model and version number. For example, if version 2.0 of the software is installed in the /usr/local directory, the full path specification for the ./src directoryXE “src directory” is /usr/local/1003/v1.0/src.

[image: image174.wmf]
Chapter 3 lists the contents of the ./src directory and describes the function of each file.

[image: image175.wmf]
Before example programsXE “example programs” can run successfully, the device driver must be installed, the PCI and remote adapter cards must be installed, the adapter cable connected, and the remote system powered on.

8.1.2 Installing Support Software

Before extracting filesXE "installation: extracting files"

XE "extracting files":

1.
Login as root.

2.
Create a directory for Support Software tar files. Use the following commands (# denotes system prompt):

cd /usr/local

mkdir SBS

3.
Change directories to the one you just created. Use the following command:

cd SBS

4.
Retrieve the archive file from SBS’s web site (www.sbs.com), and extract it using the following command.

tar –xf 85222001.tar
8.1.3 Installing bigphysarea Patch & Building The Kernel
The following sections describe the method of applying the bigphysarea patch XE "bigphysarea patch" and building the kernel for Red Hat 8.0. This must be done prior to building the driver. If no bind buffers, or bind buffer of 64k or less are desired, the bt_param.c file may be modified to remove the bigphysarea code and building and patching the kernel may be omitted.
8.1.3.1 Build The Kernel
Build the kernel without patches to ensure it works and to create the desired configuration file for your hardware.

1. # cd /usr/src

2. # ls

3. Make a symbolic link to the Linux source

ln -s linux-2.4.18-14 linux

4. # cd linux

5. # vi Makefile
Modify the EXTRAVERSION line

i.e. EXTRAVERSION = -14custom-smp for smp

or EXTRAVERSION = -14custom-up for non-smp
[image: image176.wmf]
Maintain this version name in file naming below.

6. Copy the kernel config for uniprocessor (up) or sysmetic multi-processing (smp)

for up do:

cp configs/kernel-2.4.18-i386.config arch/i386/defconfig

 for smp do:

cp configs/kernel-2.4.18-i386-smp.config arch/i386/defconfig

7. Copy config to .config

cp arch/i386/defconfig .config

8. # make clean

9. # make mrproper

10. # make menuconfig

· Examine for desired drivers and modify as desired for your hardware.

· Enable bigphysarea code under “Processor type & features”. Verify “Support for big physical area reservation” is enabled as not a module [*].

· Under Filesystems, verify ext3 file system is not a module if using ext3 type file systems [*].

11. # make dep

12. # make bzImage

13. Make a modules directory in /lib/modules to match EXTRAVERSION

mkdir /lib/modules/2.4.18-14custom-smp

14. # make modules

15. # make modules_install

16. Create files in /boot directory

cp arch/i386/boot/bzImage /boot/vmlinuz-2.4.18-14custom-smp

cp System.map /boot/System.map-2.4.18-14custom-smp

Remove /boot/initrd-2.4.18-14custom-smp.img if it exists
rm /boot/initrd-2.4.18-14custom-smp.img

mkinitrd -v /boot/initrd-2.4.18-14custom-smp.img 2.4.18-14custom-smp

17. Modify /etc/lilo.conf for the new kernel version

vi /etc/lilo.conf and copy the "image=/boot/vmlinuz-2.4.18-14" and following lines.

Modify:

· image=/boot/vmlinuz-2.4.18-14 to be image=/boot/vmlinuz-2.4.18-14custom-smp
· label=linux-up to be label=custom-smp
· initrd=/boot/initrd-2.4.18-14.img to be initrd=/boot/initrd-2.4.18-14custom-smp.img
18. # /sbin/lilo

19. Reboot selecting custom-smp when lilo displays the kernels to boot.
8.1.3.2 Apply The bigphysarea Patch
Patch the kernel to add bigphysarea XE "bigphysarea" support.

1. # cd /usr/src

2. Make a backup copy of the Linux kernel code if desired

cp –r /usr/src/linux linux-2.4.orig

3. Make a symbolic link to /usr/src/linux-2.4.18-14 as /usr/src/lin

ln -s /usr/src/lunux-2.4.18-14 /usr/src/linux
4. Copy the patchfile to /tmp

cp /usr/local/SBS/1003/dd/patch-2.4.18-14-bigphysarea /tmp/.

5. # cd /usr/src/linux

6. Patch the kernel code

patch -p1 < /tmp/patch-2.4.18-14-bigphysarea
7. Modify lilo.conf to allocate memory to bigphysarea

Specify the number of 4k pages to allocate to bigphysarea

vi /etc/lilo.conf

Modify the append line for the Linux custom build.
Append=”root=LABEL=/”

Change to:

Append=”root=LABEL=/ bigphysarea=1024”

(This will allow allocating ~4MB of memory, note 8k is unavailable.)

8. Rebuild the kernel using the above steps 11-18.

9. The bigphysarea memory usage may be monitored by the following:

cat < /proc/bigphysarea

8.1.3.3 Modifying The Source To Not Require The bigphysarea Patch
1. Move to the SBS ./dd directory:

cd 1003/vx.x/dd

(vx.x = version number)
2. Edit the bt_param.c file:

vi bt_param.c

3. Modify to remove bigphysarea support

· Remove the bigphysarea include file – find the following lines:

include <asm/io.h>
include <linux/wrapper.h>
include <linux/bigphysarea.h>

Change to:
include <asm/io.h>
include <linux/wrapper.h>

· Remove the bigphysarea free code – find the following lines in btk_set_info():

else if (unit_p->bt_kmalloc_buf) {

/* allocated kernel buffer via bigphysarea, free it */
 unsigned long virt_addr;
Remove the entire else if branch code.

· Remove the bigphysarea allocate code – find the following lines in btk_get_info():

 if (!(unit_p->bt_kmalloc_ptr)) {
 /* unable to obtain kmalloc allocated buf, try bigphysarea */
 virt_addr = (unsigned long)(bigphysarea_alloc(unit_p->bt_kmalloc_size + (2 * PAGE_SIZE)));
 if (!(virt_addr)) {
 INFO_STR("Unable to obtain kernel allocated buf\n");
 retval = BT_EINVAL;
 *value_p = 0;
 break;
 }
 }

Change to:

if (!(unit_p->bt_kmalloc_ptr)) {
 /* unable to obtain kmalloc allocated buf, fail */
 INFO_STR("Unable to obtain kernel allocated buf\n");
 retval = BT_EINVAL;
 *value_p = 0;
 break;
}

8.1.4 Installing XE “installation: device driver”

XE “device driver: installation”Device Driver

[image: image177.wmf]
You should be logged in as root and in the usr/local/SBS directory.

1.
Move to the SBS ./sys directory:

cd 1003/vx.x/sys

(vx.x = version number)

Check that the adapter is installed correctly; the following command should list all SBS (vendor_id = 108a) adapters (device_id = 1, 2, 3, or 10:40):

cat /proc/pci | grep 108a

bridge: PCI device 108a:0040 (Bit3 Computer Corp.) (rev 66),
2.
Use the following command to install the device driver and related system files:

make install

This command executes all other commands required to configure and install the device driver on your system.

[image: image178.wmf]
The PCI adapter must be installed for installation to continue.

3.
Check that the adapter is installed correctly. The command

cat /proc/pci

should list a device named “btp”. If the command fails to list any units, the driver did not load.

If the driver fails to load, check that the PCI adapter cards are installed and firmly seated in the bus slots. Insufficient memory may cause the driver resource allocation to fail, causing the driver to fail to load.

For Mandrake Linux, use the following commands to verify the correct loading:

% cat /proc/modules | grep i btp

(device btp should appear in the output)

% cat /proc/pci | grep i 108a

(the vendor ID should appear in the output)

4.
Compile the dumpmem example program using the makefile provided in the ./src directory:

#cd /usr/local/SBS/vX.X/src

#make dumpmem

5.
If Dual Port RAM is installed, enter the command ./dumpmem (located in the ./src directory) to verify that the driver and adapter are working correctly. The program should display the data in the first section of dual‑port memory in hexadecimal and ASCII format.

[image: image179.wmf]
The xmitXE "BT_CFG_TRANSMIT" flag must be enabled (default is enabled).

To adjust the configuration flag, see section 8.1.3.

6.
To access remote bus memory, try using the dumpmem program (located in the ./src directory).

Enter the following command:

./dumpmem -t BT_AXSRR -a <addr>

Where <addr> is the location of memory on the VMEbus A32 address space.

See section 4.1 for a list of logical devices' mnemonic names.

[image: image180.wmf]
The xmit flag must be enabled (default is enabled).

To adjust the xmit flag, see section 8.1.3.

[image: image181.wmf]
If the dumpmemXE "dumpmem" program fails, check the cable connection and jumper settings on the remote adapter card. Pay special attention to the remote adapter card's System (SYS) and Bias jumper blocks and anything related to bus arbitration on the remote system.

8.2 Configuring The SoftwareXE “configuration: software”
1.
In most cases, you will not need to change the default settingsXE "default settings". If no reconfiguration is required, go to step 2.

Default configuration (set to enabled):XE "configuration: default"

[image: image182.wmf]
Transmitter status enabled, allowing the driver to access the remote bus.

[image: image183.wmf]
All remote bus interrupters assumed to be ROAK.

[image: image184.wmf]
Local Memory device is enabled.

By default, the software is configured for use as a transmitter, to display all warning messages, and for a VMEbus REM RAM starting address jumpered to 0.

By default, local memory (lm_enable) is enabled with a default size of 64K bytes.

The configuration parameters are stored in the btp.conf file that the SBS script reads when it installs the Model 1003 driver with the insmod command.

The following parameters can be customized when loading the device driver:

	PARAMETER
	DESCRIPTION

	bt_major XE "bt_major"
	Major device number XE "major device number" to request. By default, it is 0 (zero) allowing the kernel to choose the number.

	trace XE "trace"
	Device driver tracing level XE "tracing level" . Used to control which trace messages the driver displays. See section 5.3.1, BT_INFO_TRACE.

	icbr_q_size XE "icbr_q_size"
	The number of ICBR XE "ICBR"

 XE "ICBR:number of entries" entries that should be allocated for the queue. Once set, this value cannot be changed without unloading and reloading the driver.

	xmit XE "xmit"
	Determines if this system is a transmitter. Defaults to enabled (non-zero).

	roak XE "roak"
	Determines if all interrupters are assumed to be ROAK (Release-On-Acknowledge) devices. Defaults to true (zero).

	lm_enable XE "lm_enable"
	Determines if local memory device is enabled for any of the units. Default is disabled (zero).

	lm_size[] XE "lm_size[]"
	Array of local memory sizes XE "local memory sizes" . If the local memory device is enabled, this determines the size of local memory to allocate. If it is set to 0 (zero), local memory will be disabled for that unit only.

	lm_raddr[] XE "lm_raddr[]"
	Array of local memory remote addresses. These are the starting address used by the remote system to access the local memory device on the Linux system. Default is 0 (zero). This is only needed when the remote memory window is not aligned on a 16M byte address boundary.

The lm_raddr[]XE "rram_start_addr" should be set to the value of the REM RAM LO jumper value on the remote card.

Refer to section 5.3.1 for details on changing the trace level, although under normal operation there is no need to change the trace level from its default value.

[image: image185.wmf]
When enabled, local memory access uses PCI system resources and may affect local system performance.

[image: image186.wmf]
Operating the device driver with the trace levelXE "trace level" above the default, BT_TRC_WARN, severely degrades driver performanceXE "performance".

2.
After adding or removing SBS PCI adapter cards, the mkbtp script in the sys directory should be rerun to reconfigure the driver (see section 8.2, step 3).

3.
Rebuild and re-install the device driver if you made any changes in steps 1 - 3. Use the following command:

make install

The make install command executes all commands required to configure and install the device driver on your system.

[image: image187.wmf]
Make sure you are in the correct directory before executing make install. For example, if you loaded software version 2.0 in /usr/local/SBS, your working directory should be /usr/local/SBS/1003/v2.0/sys.

8.3 Loading The Driver

The mkbtp script can be used to XE "driver:loading" load the device driver and create the /dev/btp* device nodes. The installation procedure automatically calls this script after copying the device driver and configuration file to /lib/modules.

Add the mkbtp script to your boot sequence to have the driver loaded each time the system is booted.
8.4 Compiling Example ProgramsXE "example programs: compiling"
[image: image188.wmf]
Only the source codeXE "source code" to the example programs is distributed with the Support Software.

To compile the software:

Change directories to the ./src directory containing the example programs, then compile the example programs. Use the following commands:

cd /usr/local/SBS/1003/vx.x/src

(vx.x = version number)
make all

To recompile a specific program XE "example programs: recompile"you may have changed, use the command:

make filename

8.5 Removing The SBS Support SoftwareXE "removing software"
In certain instances you may need to remove the Model 1003 Support Software from a system; for example, to install the software on a different system in compliance with the software license.

To remove the SBS Support Software from a system, please follow the instructions below.

1.
Remove all SBS adapters from the system and reboot.

2.
Change directories to the ./sys directory. Use the following command.

#cd /usr/local/SBS/1003/vx.x/sys

3.
Remove the device driver and configuration information from the system. Use the command below. You must be logged in as root.

#make uninstall

4.
Change directories to the top level directory in which the software was originally installed. Use one of the two commands below.

#cd ../../..

 or

#cd /usr/local/SBS

5.
Remove all versions of the SBS software. Use the following command.

#rm -rf 1003

8.6 Detailed Interrupt Handling

The first time the function bt_icbr_install() is called, the library spawns a thread within the task. The thread then blocks waiting for an interrupt from the driver. When a hardware interrupt occurs, Linux calls the device driver’s interrupt XE "interrupt:handling" handler. The device driver (possibly with the help of one or more User ISRs) acknowledges the interrupt, and then wakes up the relevant threads waiting for interrupts. The thread, after determining that the error is relevant, calls the actual ICBR.

A single queue is used for all ICBR registrations. If interrupts are occurring faster than an ICBR is handling them, that ICBR will receive a queue overflow.

ICBRs run in a separate thread than the main program; consequently, the ICBR interact with the main program without errors and on multiprocessor systems, the ICBR and main program can run simultaneously. We recommend that the programmer be familiar with the POSIX thread routines pthread_mutex_enter() and pthread_mutex_exit(), ant that these routines (or ones with similar purposes) be used to synchronize access to communal resources. Also, because the ICBR runs in a separate thread, it can call any function.

Any ICBR may receive queue overflow interrupts. ICBRs should be written to handle these calls.

8.7 usrisr Example User ISR

The usrisr is the Example User ISR. XE "example applications:usrisr"

 XE "usrisr"
8.8 Programming Considerations

This section contains several related topics on writing and porting applications for the 1003 driver.

8.8.1 Building Applications With The Mirror API

[image: image189.wmf]
The API XE "API"

 XE "Mirror API:building applications" can be used to build Win32 applications XE "applications:building" for Linux. It cannot be used to build 16-bit applications.

[image: image190.wmf]
The API is implemented as a library. To build your application, you must link it with the btp library. With the GNU compilers and binary utilities, this is done by specifying –lbtp on the command line.

[image: image191.wmf]
In addition, the preprocessor symbol BT1003 needs to be defined before including btapi.h either by having

define BT1003

within the source code, or having

-DBT1003

on the command line.

8.8.2 Porting Applications

8.8.2.1 Porting Applications From UNIX Direct Device Interface

 XE "porting:from UNIX" Somewhat more work is required to port applications from the old UNIX interface to the Mirror API on Linux. The Mirror API provides the function bt_ctrl() that on UNIX is an interface to the ioctl() call. Note: ioctl() XE "ioctl()"

 XE "porting:using Mirror API"

 XE "porting:using extensions" cannot be called with a bt_desc_t.

In addition, many of the comments in section 8.8.2.2.1 – 8.8.2.2.3 are applicable.

To convert a program from the direct driver interface to the Mirror API:

1.
Change the program to use bt_gen_name(), and bt_str2dev() routines to generate the device names. Include the btapi.h header file in addition to the btio.h header file.

2.
Replace all the calls to BIOC_LOCK and BIOC_UNLOCK with calls to bt_lock() and bt_unlock().

3.
Change the open() and close() routines to use bt_open() and bt_close(). Change the program to use a bt_desc_t to identify the device instead of an integer.

4.
Change the mmap() and munmap() routines to use bt_mmap() and bt_unmmap().

5.
Rewrite any code that used signal handlers for interrupt notification to use ICBRs. This should simplify the code and make the driver more efficient when notifying an application.

6.
Convert all other ioctl() calls to use bt_ioctl(). This is only a temporary measure to allow you to get the program running.

7.
Debug.

8.
Change the bt_ioctl() calls to the equivalent Mirror API routines, after which, you will no longer need to include the btio.h header file.

8.8.2.2 Writing Portable Applications Using The Mirror API

This section deals with the issues arising from using the SBS API in a portable way.

8.8.2.2.1 Using NanoBus Or 1003 Specific Extensions

When writing code that will be ported and that uses the Mirror API, be aware of the generality of the functions used. All functions in the Mirror API fall into one of three categories: supported on all SBS products, supported on all SBS products of the same family, and supported only on one or a small set of SBS products.

For example, bt_open() is a function that is supported on all SBS Mirror API products. A program may assume that this function exists and works as described on any SBS API product.

An example of a function that is only supported on a given family of products is bt_tas(). All NanoBus-based products, including Model 1003 XE ":specific extensions" , support this function. However, products based on other hardware designs, such as the NanoPort family of hardware, may not support this program. To help programs determine at compile time which family-based functions are available, every Mirror API product defines a preprocessor symbol that indicates the family. For example, all NanoBus-based products define the preprocessor symbol BT_NBUS_FAMILY. Programs can test for the existence of these functions:

ifdef BT_NBUS_FAMILY

bt_tas(btd, addr, prev_val_p);

else /* BT_NBUS_FAMILY */

error This program only supports NanoBus-based programs!

endif /* BT_NBUS_FAMILY */

The function bt_gettrace() function is not supported on Model 1003; however, to achieve similar functionality for code specific to Model 1003, test for the preprocessor symbol BT1003.

8.8.2.2.2 BT_ENOSUP Error Return Value

A supported function may return BT_ENOSUP XE "BT_ENOSUP" , a special error return value that indicates a requested service is not available. Common reasons this may occur are:

[image: image192.wmf]
Using the function bt_ctrl() to access an unsupported ioctl() call. No ioctl() calls are supported by the Model 1003; therefore, all calls to bt_ctrl() will return BT_ENOSUP.

[image: image193.wmf]
Attempting to open an unsupported device. For example, the Node I/O device that is a legal device in the NanoBus family but is not supported on the Model 1003. Attempting to open this device will cause bt_open() to return BT_ENOSUP.

[image: image194.wmf]
Attempting to use bt_bind() on a product that does not currently support it.

8.8.2.3 ICBR Context Restrictions

ICBRs give implementations flexibility. Some products, including most UNIX implementations, use signals for interrupts. Some like the Model 1003 use events, monitored by separate threads. Some even call the ICBRs during interrupt context. Because of the wide range of contexts the ICBR XE "ICBR" may be called in, strict limitations are placed on what can be done within an ICBR. Only the functions bt_chkerr() XE "bt_chkerr()" , bt_clrerr() XE "bt_clrerr()" , and bt_strerror() XE "bt_strerror()" are guaranteed to be callable from ICBR context. No other functions are guaranteed.

8.8.3 Extending Or Modifying The Example Applications

8.8.3.1 Modifying bt_icbr Code Structure

There are three ways to extend bt_icbr XE "bt_icbr:extending" : allow it to receive other types of interrupts, have it do something other than simply print a message when an interrupt occurs, and improve the mechanism by which it sleeps waiting for interrupts.

To receive interrupt types other than error interrupts, change the arguments to the call bt_icbr_install(). Only error interrupts are supported on all Mirror API products. Other interrupt types such as IACK interrupts and programmed interrupts are NanoBus-specific. See section 4.5 for more information. The switch statement in main() that determines how to respond to the interrupt to properly handle the new type of interrupt will also need to be modified.

The program structure is slightly odd. It is limited in what it is guaranteed to do in an ICBR. Consequently, the bt_icbr only puts the information into a FIFO queue that the main program reads data from and then acts upon the data. The functions queue_insert() and queue_remove() are used to maintain the queue.

There is no way in ISO Standard C to poll standard in; even the function sleep() is not part of the ISO standard. To maintain the portability of the program, the main function uses getchar() to sleep. Every time input is read, it polls the FIFO queue for new interrupts. Programs with less stringent portability requirements may use sleep(), select(), or similar functions. Programs that only need to run on Linux may assume the ICBR is run in a separate thread and do all processing in the ICBR.

8.9 Tracing And Logging

This section describes how to enable tracing and to view and log the tracing information.

Tracing may be enabled in the driver by the bt_info application. See the driver code file include\btngpci.h for the trace flag definitions (BT_TRC_XXX). To turn on all detailed tracing without hardware tracing issue “bt_info –p TRACE –v 0x2fffffff”.

The trace information is then logged via klogd. To view trace information perform “cat < /proc/kmsg” from an unused window. This information may then be piped to a file. Alternatively, refer to the man pages for klogd and syslog for other methods.

8.9.1 Trace Format

The trace output shows entries in the following format:

Log line: <5>btp0: btp_open: btp_open.c#154: bt_status = 0x2037006
· First entry – device - i.e btp0
· Second entry – routine - i.e. btp_open:
· Third entry – driver file and line number - i.e. bt_open.c line number 154
· Fourth entry and beyond – trace description - i.e. bt_status = 0x2037006
8.10 64-bit Addressing Support
The 1003 Linux product adds 64-bit addressing support for non-Linux targets using dataBLIZZARD cards in the target (remote) system. When 64-bit addressing is used, two new remote mapping registers are loaded with A32-A62 addressing bits. A63 is a flag which is set to enable 64-bit addressing by the driver.
[image: image195.wmf] This support is not IA-64 support as provided by the Linux operating system.

Prior to performing a DMA or PIO in this environment the API bt_set_info() must set the parameter A64_OFFSET with a zero to use 32-bit addressing. To use 64-bit addressing set the parameter A64_OFFSET bits 0-30 with the desired upper address (A32-A62) and set the flag bit 31 to enable 64-bit addressing, to use 64-bit addressing. Since bit 31 is used as a flag, the card is really capable of only 63-bit addressing.
[image: image196.wmf] DMA or PIO transfers which cross the 32-bit to 64-bit addressing must be programmed in two pieces, the 32-bit portion with A64_OFFSET set to zero and the 64-bit portion with A64_OFFSET starting at 0x80000000.

8.11 Linux Bind Support
The 1003 XE "1003:bind" Linux product performs a different sequence to bind memory because user buffers obtained with malloc are not physically contiguously allocated in 4k pages as the hardware requires.
See the src/bt_bind.c file for a complete example of this sequence.

The following steps must be performed to bind memory:

1. Open the device using bt_open().

2. Obtain the BT_INFO_BIND_ALIGN parameter using bt_get_info().

3. Align the desired length.

4. Set the BT_INFO_KMALLOC_SIZ parameter to the desired buffer size using bt_set_info().

5. Allocate a kernel buffer with the BT_INFO_KMALLOC_BUF parameter using bt_get_info(). Use the value returned as the input for bt_mmap() to map the kernel buffer to user space.
6. Bind the memory using bt_bind().

7. Lock the unit using bt_lock().

To remove the binding and free the memory perform the following steps:

1. Unlock the unit using bt_unlock().

2. Remove the binding using bt_unbind().

3. Release the user mapping using bt_unmmap().

4. Free the kernel buffer with the BT_INFO_KFREE_BUF parameter using bt_set_info().

5. Close the device using bt_close().

Chapter 9: Model 993 For VxWorks

[image: image197.wmf]
9.0 Introduction

Chapter 9 describes installation of Model 993 XE "993" . It includes general information about the installation procedure, and gives a brief description of how to verify that the adapter is installed correctly and the device driver is loaded properly.

Model 993 Support Software for VxWorks provides a loadable device driver, a library implementing the SBS Mirror API, and example applications to help applications programmers with hardware and system configuration. Model 993 currently supports:

[image: image198.wmf]
All dataBLIZZARDs.

[image: image199.wmf]
810, 820, 830 VME64 bus adapters.

[image: image200.wmf]
Model 618 and 618-3 fiber-optic adapters with Slave Mode and Controller Mode DMA for PCI bus to VMEbus interconnection.

[image: image201.wmf]
Model 620 and 620-3 fiber-optic adapter with Slave Mode and Controller Mode DMA for PCI bus to VMEbus interconnection (no loopback diagnostics).

[image: image202.wmf]
Model 616 that connects a PCI computer to an A32 VMEbus system.

[image: image203.wmf]
All 7X2 CompactPCI/PCI adapters.

[image: image204.wmf]
All 7X3 CompactPCI/PCI adapters (no loopback diagnostics).

[image: image205.wmf]
Model 617 with Slave Mode and Controller Mode DMA for PCI bus to VMEbus interconnection.

[image: image206.wmf]
Model 628 fiber-optic adapter with Slave Mode and Controller Mode DMA for CompactPCI bus to VMEbus interconnection.

[image: image207.wmf]
Model 630 fiber-optic adapter with Slave Mode and Controller Mode DMA for CompactPCI bus to VMEbus interconnection (no loopback diagnostics).

9.0.1 System And Hardware Requirements

xe “requirements: system”

xe “requirements: hardware”[image: image208.wmf]
Tornado(2.0 / VxWorks(5.4 with the pc486 Board Support Package (BSP) for a Intel/Cyrix/AMD (80486 or greater) PCI system.

xe “requirements: system”

xe “requirements: hardware”[image: image209.wmf]
A VMEbus or PCI/CompactPCI remote chassis.

xe “requirements: system”

xe “requirements: hardware”[image: image210.wmf]
SBS bus adapter and appropriate cable.

9.1 Installation

9.1.1 Installation Notes

[image: image211.wmf]
See section 2.0 for information about locating downloadable software on the SBS web site.

[image: image212.wmf]
Refer to the README filexe "README file" for revision historyxe "revision history" information.

[image: image213.wmf]
Files are storedxe "media" in tar format.

[image: image214.wmf]
Filexe "file names"

xe "directory names" or directory names in the form ./filespec relate to the directory in which the Support Software is installed. All files are located in a directory that is named for the software model and version number. For example, if version 1.0 of the software is installed in the /usr/local directory, the full path specification for the ./src directoryxe "src directory" is /usr/local/993/v1.0/src.

9.1.2 Installing Support Software

Before extracting filesxe "installation: extracting files"

xe "extracting files":

1.
Make sure the Tornado environment and your BSP are already installed on the host system.

2.
Login on the host system to an account that allows access and modification to the directories where the Tornado environment is installed.

3.
If you are using Microsoft Windows as a host, open a Command Prompt window and execute the TorVars command to initialize the Tornado environment. This must be done to use the tar command provided with the Tornado environment.

4.
Create a directory for Support Software files. Use the following commands (# denotes system prompt):

cd /usr/local

mkdir SBS

5.
Change directories to make the directory you just created the default directory. Use the following command:

cd SBS

6.
Retrieve the archive file from SBS’s web site (www.sbs.com), and extract it using the following command.

tar –xf 85221950.tar
7.
Make sure the sub-directories and files listed on the following page were created.
xe "sys directory"

xe "src directory"

xe "directories: ./sys"

xe "directories: ./src"
	SUB-DIRECTORY
	File
	CONTENTS

	993/vx.x/sys/

(vx.x = version number)
	
	

	
	btp.stub.c
	Example of installing a remote bus interrupt handler

	
	readme
	Text file that contains release notes for the 993 driver

	993/vx.x/src/
	
	

	
	bt_icbr.c
	Example program to test the receiving of error interrupts

	
	bt_info.c
	Example program to get and set an INFO parameter

	
	bt_main.c
	Routine to make a single main program in VxWorks to set up command line arguments

	
	bt_sendi.c
	Example program to send a programmed interrupt to the remote bus

	
	bt_xyint.c
	Example program for interrupt notification

	
	bt_xypol.h
	Defines data structures and constants used by bt_xyint.c

	
	datachk.c
	Example program to perform a data pattern transfer and verify the data

	
	dumpmem.c
	Example program to memory map remote memory

	
	readmem.c
	Example program to read remote memory

	
	bt_bind.c
	Binds a buffer to the remote bus, waits for user input, and then prints the first 256 bytes of the bound buffer.

	
	bt_cat.c
	Example program that allows reading from and writing to the remote bus from standard in/out.

	
	bt_revs
	Example program that prints the software driver version and the hardware firmware version.

	993/vx.x/include/
	
	

	
	btapi.h
	Header file for the SBS API

	
	btdef.h
	Header file for shared definitions

	
	btio.h
	Header file used by all drivers

	
	btngpci.h
	Header file for dataBLIZZARD products

	
	btpapi.h
	Header file for PCI specific products

	
	btpdef.h
	Header file for specific adapters

	
	btpio.h
	Header file for specific drivers

	
	bt_bsp_unique.h
	Header file for BSP unique definitions

(Table continued on next page.)

 (Table continued from previous page.)

	SUB-DIRECTORY
	File
	CONTENTS

	993/vx.x/object
	btppentiumdd.obj
	SBS’ 993 device driver for the PC Pentium CPU

	
	btpmcp750dd.obj
	SBS’ 993 device driver for the mcp750 CPU

	
	btpk2dd.obj
	SBS’ 993 device driver for the k2 CPU

	
	btprl4dd.obj
	SBS’ 993 device driver for the RL4 CPU

	
	pentiumsrc.out
	Example programs for the pcPentium CPU

	
	mcp750src.out
	Example programs for the mcp750 CPU

	
	k2src.out
	Example programs for the k2 CPU

	
	rl4src.out
	Example programs for the RL4 CPU

	
	btpk2dd.a
	The SBS 993 device driver for the K2 CPU

	
	btpmcp750dd.a
	The SBS 993 device driver for the mcp750

	
	btppentiumdd.a
	The SBS 993 device driver archive for the pcPentium CPU

	
	btprl4dd.a
	The SBS 993 device driver archive for the RL4 CPU

	
	lib993k2.a
	The SBS 993 device driver archive library for the K2 CPU

	
	lib993mcp750.a
	The SBS 993 device driver archive library for the mcp750 CPU

	
	lib993pentium.a
	The SBS 993 device driver archive library for the pcPentium CPU

	
	lib993rl4.a
	The SBS 993 device driver archive library for the RL4 CPU

	993/vx.x/porting
	btpppc604dd.obj
	CPU only portion of SBS’ 993 device driver for PowerPC 604 CPUs

	
	bt_bsp_unique.c
	BSP only portion of SBS’ 993 device driver

	
	btpx86dd.obj
	CPU only portion of SBS’ 993 device driver for pcPentium CPUs

	
	lib993ppc403.a
	Archival library that provides the Mirror API interface for the PPC403 driver

	
	lib993ppc604.a
	Archival library that provides the Mirror API interface for the PPC604 driver

	
	lib993x86.a
	Archival library that provides the Mirror API interface for the Pentium 993 driver

	
	btppc403dd.ojb
	CPU only portion of the SBS 993 device driver for PowerPC 403 CPUs

9.1.3 Initializing The Adapter Card In VxWorks

To use the device driver and software, the VxWorks system configuration must be adjusted. These files are stored in the directory for your specific BSP (pc486) under the $(WIND_BASE)/target/config directory.

9.1.4 Configuring VxWorks Memory Space

[image: image215.wmf]
The sysLib.c XE "sysLib.c" file must be modified if you are using a BSP that does not support auto PCI configuration, for example, the pcPentium BSP. For mcp750, k2 and other BSPs that support auto PCI configuration, this step is not required. Including the INCLUDE_SHOW_ROUTINE and running the pciDeviceShow() and PCIHeaderShow() commands, however, is very useful.

xe "configuration: VxWorks memory space"

xe "VxWorks memory space: configuration"The adapter card's memory space must be located in a non-cacheable memory area. This area is created in the data structure sysPhysMemDesc[]xe "sysPhysMemDesc[]" defined in the sysLib.c BSP file. The sysPhysMemDesc[] is an array of structures that define the physical memory in the system, including the physical address, virtual address, initial state of the memory, and a mask defining which state bits in the state value are to be set.

xe "configuration: VxWorks memory space"

xe "VxWorks memory space: configuration"
Most BSPs include an example of how to configure VxWorks memory space. The entry from the pc486 BSP looks like this:

PHYS_MEM_DESC sysPhysMemDesc [] =

 {

 /* adrs and length parameters must be page-aligned (multiples of 0x1000) */

 /* lower memory */

 {

 (void *) LOCAL_MEM_LOCAL_ADRS,

 (void *) LOCAL_MEM_LOCAL_ADRS,

 0xa0000,

 VM_STATE_MASK_FOR_ALL,

 VM_STATE.FOR_MEM_OS

 },

 /* video ram, etc */

 {

 (void *) 0xa0000,

 (void *) 0xa0000,

 0x60000,

 VM_STATE_MASK_FOR_ALL,

 VM_STATE_FOR_.IO

 },

 /* upper memory */

 {

 (void *) 0x100000,

 (void *) 0x100000,

 LOCAL_MEM_SIZE - 0x180000,
/* it is changed in sysMemTop() */

 VM_STATE_MASK_VALID | VM_STATE_MASK_WRITABLE | VM_STATE_MASK_CACHEABLE, VM_STATE_MASK_FOR_ALL,

 VM_STATE_VALID | VM_STATE_WRITABLE | VM_STATE_CACHEABLE, VM_STATE_FOR_MEM_APPLICATION

 },

PHY_MEM_DESC sysPhysMemDesc [] =

{

/* adrs and length parameters must be page-aligned (multiples of 4KB/4MB) */

#if (VM_PAGE_SIZE == PAGE_SIZE_4KB)

/* lower memory */

{

(void *) LOCAL_MEM_LOCAL_ADRS,

(void *) LOCAL_MEM_LOCAL_ADRS,

0xa0000,

VM_STATE_MASK_FOR_ALL,

VM_STATE_FOR_MEM_OS

},

/* video ram, etc */

{

(void *) 0xa0000,

(void *) 0xa0000,

0x60000,

VM_STATE_MASK_FOR_ALL,

VM_STATE_FOR_IO

},

/* upper memory for OS */

{

(void *) 0x100000,

(void *) 0x100000,

0x080000,

VM_STATE_MASK_FOR_ALL,

VM_STATE_FOR_MEM_OS

},

/* upper memory for Application */

{

(void *) 0x180000,

(void *) 0x180000,

LOCAL_MEM_SIZE – 0x180000, /* it is changed in sysMemTop() */

VM_STATE_MASK_FOR_ALL,

VM_STATE_FOR_MEM_APPLICATION

},

Assume that a VxWorks kernel with INCLUDE_PCI and INCLUDE_SHOW_ROUTINES defined has been made. Install the PCI adapter card into the system, power up and launch a windsh window to access the PCI system. Execute the following command in the window that displays information about each PCI device on PCI bus number 0 (use a different bus number if appropriate):

-> pciDeviceShow(0)
Scanning function 0 of each PCI device on bus 0

Using configuration mechanism 1

	bus
	device
	function
	vendorID
	deviceID
	class

	0000 0000
	0000 0007
	0000 0000
	0000 8086
	0000 7110
	0001 0600

	0000 0000
	0000 000a
	0000 0000
	0000 9005
	0000 001f
	0000 0100

	0000 0000
	0000 000e
	0000 0000
	0000 108a
	0000 0040
	0080 0600

	0000 0000
	0000 000f
	0000 0000
	0000 1042
	0000 3030
	0000 0600

value = 0 = 0x0

->

The SBS connectivity products vendorID XE "vendorID" is 0x108a. Model 616 has a deviceID XE "deviceID" of 3; the Model 617 has a deviceID of 1; Model 618 has a deviceID of 0x10. Please make note of the device number (0x0e for this example), function number, and bus number of the dataBLIZZARD adapter. Now execute a pciHeaderShow() command using the bus number, device number, and function number that was previously determined:

-> pciDeviceShow(1)

Scanning function 0 of each PCI device on bus 1

Using configuration mechanism 1

bus
device
function
vendorID
deviceID
class

00000001
00000013
00000000
0000108a
00000040
00800600

value = 0 = 0x0

-> pciHeaderShow (1, 0x13, 0)

vendor ID =
0x108a

device ID =
0x0040

command register =
0x0017

status register =
0x0400

revision ID =
0x41

class code =
0x06

sub class code =
0x80

programming interface =
0x00

cache line =
0x08

latency time =
0xe0

header type =
0x00

BIST =
0x00

base address 0 =
0x00001801

base address 1 =
0xfa700000

base address 2 =
0xfa780000

base address 3 =
0xfc000000

base address 4 =
0x00000000

base address 5 =
0x00000000

cardBus CIS pointer =
0x00000000

sub system vendor ID =
0x0000

sub system ID =
0x0000

expansion ROM base address =
0x00000000

interrupt line =
0x09

interrupt pin =
0x01

min Grant =
0x00

max Latency =
0x00

value =
0 =
0x0

->

Edit the sysPhysMemDesc[] XE "sysPhysMemDesc[]" array in your BSP’s $(WIND_BASE)/target/config/<BSP>/syslib.c file. Insert the following text before “#ifdef INCLUDE_PCI”, substituting the base addresses displayed by the previous execution of pciHeaderShow() for the variables base_addr_1 (CSR), base_addr_2 (mapping registers) and base_addr_3 (memory windows):

#define base_addr_1 0xfa700000

#define base_addr_2 0xfa780000

#define base_addr_3 0xfc000000

 {

 (void *) base_addr_1,

 (void *) base_addr_1,

 0x1000,

 VM_STATE_MASK_VALID | VM_STATE_MASK_WRITABLE | VM_STATE_MASK_CACHEABLE,

 VM_STATE_VALID | VM_STATE_WRITABLE | VM_STATE_CACHEABLE_NOT

 },

 {

 (void *) base_addr_2,

 (void *) base_addr_2,

 0x80000, /* 0x10000 for non-dataBLIZZARD H/W */

 VM_STATE_MASK_VALID | VM_STATE_MASK_WRITABLE | VM_STATE_MASK_CACHEABLE,

 VM_STATE_VALID | VM_STATE_WRITABLE | VM_STATE_CACHEABLE_NOT

 },

 {

 (void *) base_addr_3,

 (void *) base_addr_3,

 0x2000000,

 VM_STATE_MASK_VALID | VM_STATE_MASK_WRITABLE | VM_STATE_MASK_CACHEABLE,

 VM_STATE_VALID | VM_STATE_WRITABLE | VM_STATE_CACHEABLE_NOT

 },

9.1.5 Allocating PCI Memory

dataBLIZZARD may require more PCI memory than currently configured in VxWorks. The mcp750 uses a define to determine the size of the PCI memory space XE "PCI memory space" that is mapped in the sysPhysMemDesc[] XE "sysPhysMemDesc[]" array for PCI auto configuration.

[image: image216.wmf]
For mcp750 BSO v1.2/2 and less: Edit the file mv2600.h and change the define CPC_PCI_MEM_SIZE at 0x04000000.

[image: image217.wmf]
For mcp750 BSP v1.2/3 and higher: Edit the file config.h and change the define PCI_MSTR_MEMIO_SIZE to 0x04000000.

9.1.5.1 mcp750 J Fix

mcp750 version J XE "mcp750 version J" will not function because of a running change made to the super I/O chip from PC87307 to PC97307. To use the cards, you will need to follow Wind River system SPR #67558 to resolve the problems in ns8730xSuperIo.h and ns8730xSuperIo.c.

9.1.5.2 Rebuilding VxWorks

After completing changes to the sysLib.c configuration file, the system must be rebuilt. We recommend rebuilding VxWorksXE "rebuilding VxWorks" and booting the system with this new configuration before attempting to load the device driver. Follow directions in the Tornado User's Guide for "Building a VxWorks System Image".

If this has already been done once, there should be an entry under the Tornado's "Projects" menu to make your BSP. Look under the Projects menu for the name of your BSP. A VxWorks Targets menu should be under the Projects menu. The Targets menu has separate menu items for each of the various binary formats you can create.

9.1.6 Installing The Library And Device Driver

After VxWorks is configured, install XE "installation:library"

 XE "installation:header files"

 XE "installation:device driver"

 XE "library:installation"

 XE "header files:installation" the library, header files, and device driver.

1.
Change directories to the ./sys directory:

#cd /usr/local/SBS/993/vx.x/sys
2.
Load the device driver for your CPU type:

-> cd “<installdir>/993/vx.y/objects”

-> ld <btppentiumdd.obj

or

Id <btpppc604dd.obj

9.1.6.1 Configuring The Device Driver

xe "device driver: installation"

xe "installation: device driver"Two routines are used to configure the device driver: btpDrv()xe "btpDrv()" and btpDevCreate()xe "btpDevCreate()". Both routines can be used at any time after exception handling is initialized.

The btpDrv() routine adds the device driver entry points to the system table.

Prototype:

void btpDrv(void);

The btpDevCreate() configures each physical unit and adds the device to the I/O system.

Prototype:

STATUS btpDevCreate(unsigned int unit, int isr_prio, int isr_stack, size_t lm_size);

Arguments are listed and described below.
	ARGUMENT
	DESCRIPTION

	unitxe "unit"
	The unit number between 0 and 15 inclusive.

	isr_prioxe "isr_prio"
	The VxWorks task priority at which the Interrupt Service Routine (ISRxe "ISR") should run. The device driver uses a separate task to do all interrupt processing, only waking the ISR task is done at the hardware interrupt level.

The ISR task name is in the format "t%s_isr", where %s is replaced by the device name.

	isr_stackxe "isr_stack"
	Total stack size for the ISR task. Zero causes the software to use the default size. All normal methods provided by VxWorks can be used to track stack usage by the task.

	lm_size
	Size of the local memory device.

Example of the call to btpDevCreate()xe "btpDevCreate()":

status = btpDevCreate(0, 55, 0, 0x40000)

This would add a device named '/btp0' to the system, create a task with priority 55 and with a local memory device of 0x40000 bytes that would normally be pending.

The iosDevShowxe "iosDevShow" function can be used to display the device.

An example session that shows configuring the driver and one unit would have output similar to the following (> denotes the WindShell prompt):

>btpDrv()
value = 9 = 0x9

>btpDevCreate (0, 55, 0, 0x4000)
value = 0 = 0x0

 -> iosDevShow
drv name

 0 /null

 1 /tyCo/0

 1 /tyCo/1

 2 /pcConsole/0

 2 /pcConsole/1

 7 risky:

 8 /vio

 9 /btp0

value = 0 = 0x0

->

9.1.7 Compiling Example Applications

XE "example applications: compiling"
To compile the example applications:

1.
Create a project by selecting New Project from the Tornado pull down menu.
[image: image394.wmf]

2.
Select Create downloadable modules for VxWorks, click OK.

[image: image395.wmf]
3.
Name the project and define its location to be the directory to which the driver was extracted.

Also, name the workspace file and its location.

[image: image396.wmf]
4.
Select a toolchain based on the processor family you are porting to. Use PENTIUMgnu for CT7 or Pentium BSPs; and use PPC604gnu for k2 and mcp750 BSPs.

[image: image397.wmf]5.
Select Finish to complete the project and workspace definitions.

[image: image398.wmf]6.
Define the build environment and properties for the project by selecting the Build tab in the Workspace window and right click on the Toolchain. From the Toolchains pull down window double click on Properties.

[image: image399.wmf]7.
Select the C/C++ Compiler tab from the Properties window and add the following options:

	Driver
	Option

	All
	-I c:/usr/local/SBS/993/vx.x/include

	
	-I c:/tornado/host/x86 –win32/u386_pc_mingw32/sys_include

	
	-D _ _vxworks

	
	-DBT993

	
	-Dmain = $*_x

	mcp750
	-DMCP750_BSP

	
	-I c:/tornado/target/config/mcp750

	k2
	-Dk2_BSP

	
	-I c:/tornado/target/config/powerk2

	pcPentium
	-DPCPENTIUM_BSP

	
	-I c:/tornado/target/config/pcPentium

8.
Add the src example applications to the project by selecting Add/include files from the Project menu.

[image: image400.wmf]
[image: image401.wmf]
Select the example application .c files contained in the src directory.

9.
Build the dependencies for the example application by selecting Dependencies from the Build menu.

[image: image402.wmf]
[image: image403.wmf]10.
Compile the example application by selecting Rebuild all from the Build menu.

9.1.8 Checking The Installation

XE "installation: checking"After the device driver is loaded, example programs compiled, and the pcpentium_src.out file downloaded, you can use example applications to check the installation XE "check the installation" and that the software can correctly access the local hardware:

-> cd “c:/usr/local/SBS/993/vx.x/objects:

 pentium.src.out

or

mcp750_src.out

To check that the driver is installed and is communicating with the remote adapter card, run the bt_info program:

-> bt_main (“bt_info –p REM_PN”)
The call should return the part number of the remote adapter card. If you get an error, check your cables and try this command:

-> bt_main (“bt_info –p TRACE”)

The call should return the current driver trace flags. If you get an error, the driver was unable to open the local adapter card. Reboot your system and reload the driver.

9.1.9 Running The Example Applications

xe "example applications: running"The example applications can be run after initializing the adapter card. All example programs assume a traditional command line interface. Because VxWorks does not have this type of command line interface, a routine is needed to set up passing argc and argv arguments to the example applications.

The program bt_main passes these arguments to the example applications. It accepts a single string as an argument. The program parses the string and creates the argc and argv arguments before calling an example application. For example:

bt_main("datachk -t DP -l 0x8000")

will call datachk with argc = 5 and argv = {"datachk", "-t", "DP", "-l", "0x8000"}. These are the same values the program would expect on a system with command line processing.

9.2 Direct Access To The Device Driver

xe "direct device access"Section 9.2 describes how to directly access the SBS device driver instead of using the Mirror API library and documents use of lseek(), read(), write(), and a few select available ioctl() functions. If more than these functions are needed, use the Mirror API library. There is no significant performance advantage to directly accessing the device driver.

To directly access the device driver, you will need to use routines contained in the VxWorks ioLibxe "ioLib" library. You should already be familiar with these routines. In addition, you will need to include the btio.h header file that comes with the Model 993 Support Software.

9.2.1 Accessing The Correct Logical Device

The device driver uses the same concept of logical devices as the Mirror API. To access a specific logical device, call open()with the device name corresponding to that device. Section 4.1 explains logical devices and includes the device name used for each logical device.

For VxWorks, use the bt_gen_name()routine from the library to create the correct device name. Provided that the return value is not NULL, use this in the open() call.

After opening the device driver, use the lseek(), read(), and write() calls to transfer data between the system and that logical device. In addition, there are a limited number of ioctl() calls that can be called directly from an application.

9.2.2 read() And write() Functions

The read()xe "read()" and write()xe "write()" functions are the older method for transferring data from a device to an application. Developers of current software should use the bt_read and bt_write functions; read() and write() functions are only included for backwards compatibility with existing applications. These functions provide serialization of all requests and automatically update the current position within the device as data are transferred.

Using a combination of lseek(), read(), and write() functions, data can be positioned anywhere within the logical device address space. The read() and write() interface updates the current position so that subsequent calls to read() or write() are offset by the length of the last read() or write(). Pipes to the device driver can be maintained.

The read() and write() functions are affected in the same way by all device configuration controls that affect bt_read() and bt_write(). These include the controls for the DMA threshold, address modifier used, and data transfer size used. Use the bt_info example application to change these parameters.

The read() and write() functions return the number of bytes transferred. If an error prevents any data from being transferred, ERROR is returned. If the amount transferred is less than the amount requested, a partial transfer completed before the error occurred.

Three ioctl() functions provide additional information about the type of error encountered; see section 9.2.4.

9.2.3 lseek() Function

The lseek()xe "lseek()" function is used to position read() or write() operations to a specific Remote Bus Memory address. Here, lseek() is used differently than in a standard UNIX file; all lseek() references are based from a physical memory address rather than a file offset.

The address referenced when the device performs a lseek() of SEEK_SET to zero depends on the logical unit used.

	LOGICAL DEVICE
	ADDRESS

	Remote Dual Port
	Start of the Remote Dual Port Memory

	Remote Bus I/O
	Bus address 0, A16 address space

	Remote Bus Memory
	Bus address 0, A32 address space

	Remote A24 space
	Bus address 0, A24 address space

One drawback to using lseek() is that the offset parameter to the function is a signed integer. Fortunately, VxWorks does not look at the sign bit when doing a lseek(), allowing the device driver to treat it as an unsigned quantity.

Using lseek() to SEEK_SET uses the offset given as the address to reference. The offset parameter is treated as an unsigned quantity. This allows the full 4G bytes of A32 space on the remote bus to be accessed.

Using lseek() to SEEK_CUR adds the offset given to the current position (address) to determine the new address to reference. A positive value causes the device driver to reference a higher address. A negative address positions the device at a lower address. The device driver treats the result as an unsigned quantity.

Example:

{

current_location = lseek(file, 10, SEEK_SET);

/* Address 10 */

current_location = lseek(file, 10, SEEK_CUR);

/* Address 20 (10 + 10) */

current_location = lseek(file, -5, SEEK_CUR);

/* Address 15 (20-5) */

current_location = lseek(file, -5, SEEK_SET);

/* Address 0xfffffffb (-5 treated as an unsigned value) */

current_location = lseek(file, -5, SEEKCUR);

/* Address 0xfffffff6 (0xfffffffb-5) */

current_location = lseek(file, 16, SEEK_CUR);

/* Address 0x6 (overflowed the offset) */

}

Be aware that the device driver and operating system both ignore underflow and overflow when using lseek() with SEEK_CUR. This can result in the value ERROR being indistinguishable from the offset 0xffffffff, the last address in A32 space.

Using lseek() to SEEK_END is undefined for the Model 993 device driver.

9.2.4 Checking For And Handling Errors

xe "error handling"Although a number of ioctl() functions are provided by the device driver, most are intended to only be used by the Mirror API library. The following ioctl()s are documented for direct device accessxe "direct device access":

	ioctl()
	FUNCTION

	BIOC_INITxe "BIOC_INIT"
	Initializes the device driver. Equivalent to the bt_init() routine in the library.

	BIOC_CHKERRxe "BIOC_CHKERR"
	Checks if errors occurred on the NanoBus adapter. This includes detecting if the cable is disconnected or the remote bus is switched off. Equivalent to the bt_chkerr() routine in the library.

	BIOC_CLRERRxe "BIOC_CLRERR"
	Clears any errors on the interface. Equivalent to the bt_clrerr() routine in the library.

If more error checking and handling functions than these are needed, we strongly recommend using the Mirror API library. The library provides a portable interface between the application and the device driver.

9.2.4.1 Initializing The Adapterxe "initialization: adapter"
BIOC_INITxe "BIOC_INIT"
	FUNCTION
	Restores the local and remote adapter cards to a known (default) state. Causes the device driver to determine the part number of the remote adapter card.

	ARGUMENT
	bt_error_t

	EQUIVALENT MIRROR API
	bt_init()xe "bt_init()"

Example:

bt_error_t retval;

if (ERROR == ioctl(file, BIOC_INIT, &retval)) {

 perror("BIOC_INIT failed");

 return FAILED;

}

if (BT_SUCCESS != retval) {

 /* Need to run makeStatTbl before this

 will work. */

 errnoSet(retval);

 perror("BIOC_INIT detected an error");

}

9.2.4.2 Check For Adapter Errors

BIOC_CHKERRxe "BIOC_CHKERR"
	FUNCTION
	Checks if any errors have occurred on the adapter since the last time they were cleared. An error during a read() or write() would be detected during the transfer and indicated at that time.

	ARGUMENT
	bt_error_t

	EQUIVALENT MIRROR API
	bt_chkerr()xe "bt_chkerr()"

Example:

bt_error_t retval;

if (ERROR == ioctl(file, BIOC_CHKERR, &retval)) {

 perror("BIOC_CHKERR failed");

 return FAILED;

}

if (BT_SUCCESS != retval) {

 if (retval == BT_ENOPWR) {

 printf("Please check that the cable is connected and"

 " that the remote system is powered on.");

 return POWER_BAD;

 } else {

 /* Need to run makeStatTbl before

 this will work. */

 errnoSet(retval);

 perror("BIOC_INIT detected an error");

 return FAILED;

 }

}

9.2.4.3 Clear Error Status On The Adapter

BIOC_CLRERRxe "BIOC_CLRERR"
	FUNCTION
	Clears any accumulated errors on the adapter interface.

	ARGUMENT
	bt_error_t

	EQUIVALENT MIRROR API
	bt_clrerr()xe "bt_clrerr()"

Example:

bt_error_t retval;

if (ERROR == ioctl(file, BIOC_CLRERR, &retval)) {

 perror("BIOC_INIT failed");

 return FAILED;

}

if (BT_SUCCESS != retval) {

 /* Need to run makeStatTbl before this

 will work. */

 errnoSet(retval);

 perror("BIOC_INIT detected an error");

}

9.3 dataBLIZZARD Device Driver Porting

The dataBLIZZARD XE "dataBLIZZARD:porting"

 XE "porting dataBLIZZARD" device driver can be ported to any PPC604, PPC403, or pcPentium VxWorks BSP. The drive driver is shipped with the CPU-only portion of the driver btpppc604dd.obj, btppc403dd.obj, and btppentiumdd.obj in the porting directory. The BSP portion of the device driver is delivered in source format in the file bt_bsp_unique.c, a file that must be customized for your specific BSP.

Functions that need to be customized for your BSP:

[image: image218.wmf]
bt_cpu2pci_advs() must be modified to convert an address seen from the CPU to the equivalent PCI address.

[image: image219.wmf]
bt_pci2cpu_advs() must be modified to convert an address seen from the PCI bus to a CPU address.

[image: image220.wmf]
bt_connect_irq() must be modified to connect a ‘C’ routine to a hardware interrupt.

[image: image221.wmf]
bt_enable_irq() must be modified to enable a hardware interrupt.

[image: image222.wmf]
bt_disable_irq() must be modified to disable a hardware interrupt.

[image: image223.wmf]
bt_get_model_name() and bt_get_bsp_rev() should be modified to return the model name of your BSP and the revision. Because these two routines are not required to support driver operation, not customizing them will not affect driver function.

[image: image224.wmf]
bt_get_sys_clk_rate() must be modified to return the system clock rate.

Details of how to modify the functions listed above and examples for the mcp750, pcPentium, CT7 and k2 are included in the source file bt_bsp_unique.c file.

[image: image404.wmf]9.4 Compiling vx_bsp_unique.c

XE "vx_bsp_unique.c: compiling"
To compile the vx_bsp_unique.c:

1.
Create a project by selecting New Project from the Tornado pull down menu.
2.
Select Create downloadable modules for VxWorks, click OK.

[image: image405.wmf]
3.
Name the Project and define the project location, and name the workspace.

[image: image406.wmf]4.
Select the toolchain based on the processor family you are porting to.

5.
Select Finish to complete the project and workspace definitions.

[image: image407.wmf]6.
Define the build environment and properties for the project by selecting the Build tab in the Workspace window and right click on the toolchain. From the Toolchains pulldown window, double click on Properties.

[image: image408.wmf]7.
Select the C/C++ compiler tab from theProperties window.

Add the following options:

	Driver
	Option

	All
	-I c:/usr/local/SBS/993/vx.x/include

	
	-I c:/tornado/host/x86 –win32/u386_pc_mingw32/sys_include

	
	-D _ _vxworks

	
	-Dmain = $*_x

	mcp750
	-DMCP750_BSP

	
	-I c:/tornado/target/config/mcp750

	k2
	-Dk2_BSP

	
	-I c:/tornado/target/config/powerk2

	pcPentium
	-DpcPentium.BSP

	
	-I c:/tornado/target/config/pcPentium

8.
Add the bt_bsp_unique.c file to the project by selecting Add/include files from the Project menu.

[image: image409.wmf]

Select the file bt_bsp_unique.c contained in the Porting directory.

9.
Build the dependencies for bt_bsp_unique.c by selecting Dependencies from the Build menu.

[image: image410.wmf]
[image: image411.wmf]
Select All Project files.

[image: image412.wmf]10.
Compile the bt_bsp_unique.c file by selecting Rebuild all from the Build menu.

11.
The file vx_bsp_unique.c, the BSP-independent portion of the driver, allows the user to port the SBS BSP independent device driver to any VxWorks BSP.

a.
Load the CPU portion of the driver into VxWorks. The driver object file will have unresolved symbols without the BSP independent driver object.

b.
Load the vx_bsp_unique.obj file that you modified for your BSP and compile.

c.
Reload the CPU portion of the driver to resolve any unresolved symbols.

d.
Load the device driver as outlined in section 9.1.6.

Chapter 10: Model 984 For Windows 2000/XP

[image: image225.wmf]
10.0 Introduction

Chapter 10 describes installation of Model 984 Support. It includes general information about the installation procedure, and gives a brief description of how to verify that the adapter is installed correctly and the device driver is loaded properly.

SBS Model 984 XE "984" Support Software for IntelSYMBOL 212 \f "Symbol" x86-compatible PCI bus computers provides a device driver for Microsoft Windows 2000/XP XE "Windows 2000/XP" and example applications to help application programmers with adapter
[image: image226.wmf]
All dataBLIZZARDs.

[image: image227.wmf]
810, 820, 830 VME64 bus adapters.

[image: image228.wmf]
Model 618 and 618-3 fiber-optic adapters with Slave Mode and Controller Mode DMA for PCI bus to VMEbus interconnection.

[image: image229.wmf]
Model 620 and 620-3 fiber-optic adapter with Slave Mode and Controller Mode DMA for PCI bus to VMEbus interconnection (no loopback diagnostics).

[image: image230.wmf]
Model 616 that connects a PCI computer to an A32 VMEbus system.

[image: image231.wmf]
Model 617 with Slave Mode and Controller Mode DMA for PCI bus to VMEbus interconnection.

[image: image232.wmf]
Model 628 fiber-optic adapter with Slave Mode and Controller Mode DMA for CompactPCI bus to VMEbus interconnection.

[image: image233.wmf]
Model 630 fiber-optic adapter with Slave Mode and Controller Mode DMA for CompactPCI bus to VMEbus interconnection (no loopback diagnostics).

10.0.1 Components

SBS Support Software consists of the following componentsXE “components”:

[image: image234.wmf]
A device driver with automatic installation script for Windows 2000/XP.

[image: image235.wmf]
Example applications dumpmem, btxyint, bt_bind, readmem, bt_info, bt_reset, bt_sendi, bt_cat, datachk, and bt_icbr that demonstrate using the Mirror API.

[image: image236.wmf]
An example application, dumptrc that demonstrates printing trace messages from the driver.

[image: image237.wmf] An example user Interrupt Service Routine (ISR).
[image: image238.wmf]
Windows XP Embedded support scripts and components. Please read this chapter carefully as it will be very helpful to understanding XP Embedded. See the next chapter for details on Windows XP Embedded support.

10.0.2 System And Hardware Requirements

XE “system: requirements”

XE “hardware: requirements”

XE “requirements: system”

XE “requirements: hardware”Windows:XE “Windows: requirements”

XE “requirements: Windows”
Intel x86-compatible computer with a PCI bus with Windows 2000/XP.

[image: image239.wmf]
For developing Windows applications –

Required: Windows compatible 32-bit compiler.

 Recommended: Visual Studio .NET 2003 professional

 or greater as the 32-bit compiler. Microsoft Development Network (MSDN) Professional membership.

For user interrupt handlersXE “interrupt: handlers: user” a Driver Development Kit October 2000 Edition is also required.
VMEbus:
XE “VMEbus: requirements”

XE “requirements: VMEbus”The remote reset jumperXE “remote: reset: jumper”

XE “VMEbus: remote reset jumper” (SYS-5) on the VMEbus adapter card must be in place to use the remote VMEbus reset function.

The Address Modifier Register jumperXE “Address Modifier Register: jumper” (SYS-1) on the VMEbus adapter card must be removed.XE “VMEbus: address modifier: register jumper”
MULTIBUS I:
No special requirements.XE “MULTIBUS I: requirements”

XE “requirements: MULTIBUS I”
10.1 Installation

10.1.1 General Installation Notes

[image: image240.wmf]
See section 2.0 for information about locating downloadable software on the SBS web site.

[image: image241.wmf]
Refer to the README fileXE “README file” for revision history information.

· Before example applicationsXE “example applications” will run successfully, the device driver must be installed, the cable connected, and the remote system powered on.

· If you have a Model 983 XE "983" version of the driver, follow that version’s procedure to uninstall the driver before installing the 984 version.

10.1.2 Obtain The Driver Software.

After installing your adapter cards and booting Windows 2000/XP:

1.
Select Do not install a driver in the New Hardware Found dialog. Click Cancel.

2.
Double click the Windows desktop My Computer icon to view the drives available on your computer.

3.
Select a drive on which to create a temporary directory.

4.
Create a File/New/Folder in which to download the software.

5.
Close all windows.

6.
Retrieve the Model 984 software from the web (www.sbs.com).

7.
Unzip the obtained software into your download location. (see www.winzip.com)

8.
Double click the My Computer icon.

9.
Open the download directory by double clicking.

10.
Run the installshield installation program by double clicking Model_984.exe; this will extract and install the files.

10.1.3 Windows 2000 Installation XE "Windows 2000 installation"
1.
Start Model_984.exe and click on Next to continue the installation XE "installation"

 XE "installation:Windows 2000" .
[image: image242.png]Welcome to the InstallShield Wizard for Model_984

The InstallShield® Wizard will install Model_884 on your
computer. To continue, dlick Next

<Back [T N> Cancel

2.
Select Complete and click on Next.

[image: image243.png]Mo InstaliShield Wizard

Setup Type
Selectthe setup type to install

Please selecta setup type.

& Complets
@ All program features will be installed. (Requires the most disk space)

© Custom

@ Selectwhich program features you want installed. Recommended for advanced

users

InstallShield

<Back Next>

Cancel

3.
After the files are installed click Finish.

[image: image244.png]InstaliShield Wizard Complete

The InstallShield Wizard has successiully installed Modlel_984
Click Finish to exitthe wizard.

<Back | Finish Cance|

4.
Right click on My Computer on the desktop and select Manage.

[image: image245.png]=

=lolx|

=il System Tools
{gl Event Viewer
Qg System Information
& Performance Logs and Ale
3 Shared Folders
8 Device Manager
#G Local Users and Groups
=& Storage
Disk Management.
& Disk Defragmenter
& Logical Drives
& Removable Storage
%4 Services and Applications

Name.

i System Tooks
| Sstorage
| @aservices and Appiications

5.
Select Device Manager. Under Other Devices, find the SBS Bridge Device (if this is a reinstall, the device may be SBS Bus Adapter). Right click on the device and select Properties.

[image: image246.png]Computer Management

=lolx|

| acton vew || - | BI@ S B | =
Tree | -8 ED-2KCB
[3 Corpute angerent Gocay | =1 B Computer
= i System Tooks Disk ciives
(@ Event iewer g Display adapters
% System Information ‘% D‘VD/ CZ’T’M d”vﬁs
& Performance Logs and Ale Floppy disk controlers
3 Shared Folders &9 Floppy disk drives
3 Device Manager 2 IDE ATA/ATAPI controllers
Local Users and Groups @ Keyboards
& & Storage 8 Mice and other pointing devices
Disk Management: Moritors
1§ Disk Defragmenter Network adapters
© Logical Drives 5 4 Other devices
& Removable Storage
{8 Services and Applcations o Ports (CoMELPT)
& 5C51 and RAID controlers
| Solind, video and game controlers
System devices
& Uriversal Seria Bus controlers

KT |

6.
Click on the Driver tab.
[image: image247.png]her PCI Bridge Device Properties

General | Driver | Piesaurces |

\> Other PCI Bridge Device

Device type: Other devices
Manufacturer Unknawn
Location PCISlot4 (PCl bus 4 device 1. function 1)

Device status

[This device is not configured carrectly: (Cade 1)

[To reinstall the drivers for this device, click Reinstall Driver.

Reinstall Driver

Device usage:

Use this device (enable)

7.
Click Update Driver.

[image: image248.png]her PCI Bridge Device Properties 2| %

General Driver | Resaurces |

\> Other PCI Bridge Device

Driver Provider: Unknown
Driver Date Not evailable
Driver Version Not evailable
Digtal Signer. Not digitally signed

No driver files are required or have been loaded for this device. To uninstall the
diiver files for this device, click Uninstall. To update the driver files for this device,
click Update Driver.

Driver Details Uninstall | " Update Driver. |
oK Cancal

8. Click Next when the Upgrade Device Driver Wizard is shown.

[image: image249.png]Upgrade Device Driver Wizard

X

Welcome to the Upgrade Device Driver
Wizard

This wizard helps you upgrade & device driver for a hardware
device.

To continue, click Next.

<Back [Next> Cancel

Tiiver Deials

Urinstall e 1 |

oK Cancel

9. Select “Search for a suitable driver for my device” and click Next.

[image: image250.png]Upgrade Device Driver Wizard

Install Hardware Device Drivers
A device driveris a software program that enables a harcware device to work with an
operating syster

This wizard upgrades drivers for the following hardware device:

1 Other PCI Bridge Device

Upgrading to a newer version of a device driver may add functionalityto or improve the
performance of this device.

What do you want the wizard to do?

& Bearch for a sutable driver for iy device (recommended)

 Display a listafthe known drivers for this device so that| can chaose & specific driver

<Back Next>

Cancel

X

DriverDetale Uninstall [Useebmer.]

oK Cancel

10.
Do not check any Optional search locations and click Next.

[image: image251.png]Upgrade Device Driver Wizard

Locate Driver Files
Where do you want Windows ta search for diver files?

Search for driver fles for the fallowing hardware device:

1 Other PCI Bridge Device

The wizard searches for suitable drivers in its driver detabase an your computer and in any of
the following aptional search locations thatyou specify

To startthe search, click Next ffyou are searching on a floppy disk or CD-ROM drive, insertthe
flappy disk or CD before clicking Next.

Optional search locations:
I~ Fioppy disk drives
I~ CO-ROM drives
I Specify a location
I MicrosoftWindows Update

<Back Next> Cancel

X

DriverDetale Uninstall [Useebmer.] — 1

oK Cancel

11. The bt984.inf driver should be shown on your system disk, click Next to continue.

[image: image252.png]Upgrade Device Driver Wizard

Driver Files Search Results
The wizard has finished searching for driver fles for your hardware device.

The wizard found a driver for the follawing device:

1 Other PCI Bridge Device

Windaws found a driver that is a closer match for this device than your current driver. To install
the driver Windows found, click Next

=) ewinntinfbt984int

<Back [Hed> cancel |

DriverDetale Uninstall [Useebmer.] — 1

X

oK Cancel

12. After the driver installs, click Finish.

[image: image253.png]Upgrade Device Driver Wizard

X

Completing the Upgrade Device Driver
Wizard

\> Model 616/620/dataBlizzard

Windaws has finished installing the software for this device.

To close this wizard, click Finish

<Back |["Finish Cance|

Tiiver Deials

Urinstall e 1 |

oK Cancel

13.
Close the Properties window.

14.
After installation, the device is identified and placed under an SBS icon. The Computer Management window may be closed.

[image: image254.png]|

tion

w || & >

EIEED

=lolx|

Tree |

| =) computer Management (Local)
=il System Tools
{gl Event Viewer
Qg System Information
& Performance Logs and Ale
3 Shared Folders
), Device Manager
#G Local Users and Groups
=& Storage
Disk Management.
& Disk Defragmenter
& Logical Drives
& Removable Storage
%4 Services and Applications

KT |

-8 ED-2KCB
1= computer
2 Disk rives

Display adapters
£} DVD/CD-ROM drives
&35 Floppy disk controllers
& Floppy disk drives
2 IDE ATA/ATAPI controllers
& Keyboards
Mice and other pointing devices
Moritors
Network adapters
5 Ports (COM& LPT)
- SBS Bus Adapter

== SCSI and RAID controllers
| Sound, video and game cortrolers

System devices
-6 Universal Serial Bus controlers

15. Reboot your system.

[image: image255.png]@ wWhat do you want the computer to do?

Ends your session, shuts down Windaws, and starts

Windows again

Cancel Help

10.1.4 Windows 2000 Uninstall XE "Windows 2000 Uninstall"

1.
Right click on My Computer on the desktop and select Manage. Right click on the Device and select Uninstall XE "Uninstall"

 XE "Uninstall:Windows 2000" .
[image: image256.png]|

ew || & =

EIEED

=lolx|

Tree |

=il System Tools
{gl Event Viewer
Qg System Information
& Performance Logs and Ale
3 Shared Folders
), Device Manager
#G Local Users and Groups
=& Storage
Disk Management.
& Disk Defragmenter
& Logical Drives
& Removable Storage
%4 Services and Applications

| =) computer Management (Local)

-8 ED-2KCB
1= computer
2 Disk rives
Display adapters
£} DVD/CD-ROM drives
&35 Floppy disk controllers
& Floppy disk drives
2 IDE ATA/ATAPI controllers
& Keyboards
Mice and other pointing devices
Moritors
Network adapters
5 Ports (COM& LPT)
- SBS Bus Adapter

== SCSI and RAID controllers
| Sound, video and game cortrolers

System devices
-6 Universal Serial Bus controlers

2.
Click OK to the Confirm Device Removal window.

[image: image257.png]\> Model 618/620/dataBlizzard

Warning: You are abautto uninstall this device from your system

onfirm Device Removal 20x|

DK Management

& Disk Defragmenter

& Logical Drives

& Removable Storage
%4 Services and Applications

Network adapters
5 Ports (COM& LPT)
> 985 Bus Adapter
N0Z Vodel 6 5
& 5C51 and RAID controlers
|- Sound, video and game controlers

System devices
Universal Serial Bus controlers

=lolx|

3.
The device will uninstall and if it was the last device, the SBS icon will also be removed from the Device Manager. Close the Device Manager window.

[image: image258.png]|

=lolx|

Tree |

| =) computer Management (Local)
=il System Tools
{gl Event Viewer
Qg System Information
& Performance Logs and Ale
3 Shared Folders
), Device Manager
#G Local Users and Groups
=& Storage
Disk Management.
& Disk Defragmenter
& Logical Drives
& Removable Storage
%4 Services and Applications

1= Computer
2 Disk rives
Display adapters
£} DVD/CD-ROM drives
&35 Floppy disk controllers
& Floppy disk drives
2 IDE ATA/ATAPI controllers
& Keyboards
Mice and other pointing devices
Moritors
Network adapters
5 Ports (COM& LPT)
& 5C51 and RAID controlers
| Solind, video and game controlers

System devices
-6 Universal Serial Bs controliers

4.
Open the Control Panel and double click Add/Remove Programs.

[image: image259.png]Control Panel

Fle Edt View Favorites Tooks Hep

“Back v & v

| @search GuFolders B[S % X =

Address [Control Panel

Name * [

Comment

[Accessbiity Options
Sadd/Remove Hardw.
a
Adrministrative Tools
% Automatic Updates
(lDate/Time

S Folder Options

2,Game Controlers
Dlnternet Options
|@keyboard

(TS Tookit
©Mouse

Network and Diaup.
|BPhone and Modem
Y Power Options

(@ Printers

| @Regional Options

@ scanners and Came.
(@15cheduled Tasks
4-Sounds and Multime.
S system

DoUsers and Passwords

Custormizes accesshilt.
Installs, removes, and
Installs and removes p.
Configures admiristrat.
Configures Automatic
Sets the date, time, a
Custormizes your desk.
Custormizes the displa
Displays and manages.
Adds, removes, and c.
Configure your Intern,
Custormizes yor keyb.
Configure MKS Tookit:
Custormizes your mo,
Cormects to other co.
Configures your telep.
Configures energy-sa.
Adds, removes, and c.
Custornizes settings fo.
Configures instaled sc.
Schedles computer .
Assigrs sounds to eve.
Provides system nfor.
Maniages Users and pa

1 object(s) selected

5.
Select Model_984 and click Change/Remove.

[image: image260.png]iz Add/Remove Programs - ERE] -o]x|
Currently installed programs: Sort by [Name I

98 Microsoft NET Framework 1.1 Size oave -] T éw

@ Microsoft Infernet Explorer & SPL See 14908

43 McrosoRt Vil 3¢ NET Redieibutable
Package 1.1

43 Merosot Vil St KT Profscional
2002 - Englkh

W 1S Tookit 8.5 Size 15108

= Model_984

Size 12,08

Size 86

am or remave it

| @Regional Options Customizes settings fo.
@ Scanners and Came... Configures installed sc,

Schedled Tasks Schedles computer .
<6 Sounds and Multime... Assigns sounds to eve.
S system Provides system infor,
D> Users and Passwords Manages Users and pa.

1 object(s) selected

6.
Select Remove and click Next.

[image: image261.png][Model_984 - InstaliShield Wizard

Welcome

Modify. repair, or remove the prograrm

Welcome to the Model_384 Setup Maintenance program. This prograrm lets you modify the current
installation. Click ane of the aptions below.

© Moty

@ Selectnew program features to add or select curently installed features to
remove

Reinstall all program features installed by the previous setup.

Remove allinstalled features.

InstallShield]
<Back Next> Cancel
oo &
@ Scanners and Came... Configures installed sc,
(515cheduled Tasks Schedules compuiter t.
<6 Sounds and Multime... Assigns sounds to eve.
S system Provides system infor.

D> Users and Passwords Manages Users and pa.

1 object(s) selected

7.
Click Yes to completely remove the driver and software.

[image: image262.png][Model_984 - InstaliShield Wizard

Do you wartt to completely remove the selected appication and al of s features?

Yes

o |

ify the current

THSTalTaTan. CcK one of e opians BeTaw,

© Moty

@ Selectnew program features to add or select curently installed features to
remove

InstallShield

Remove allinstalled features.

Reinstall all program features installed by the previous setup.

<Back Next> Cancel

oo
@ scanners and Came.
(@15cheduled Tasks
4-Sounds and Multime.
S system

DoUsers and Passwords

&
Configures instaled sc.
Schedles computer .
Assigrs sounds to eve.
Provides system nfor.
Maniages Users and pa

1 object(s) selected

8.
Click Finish when the InstallShield finishes removing the files.

[image: image263.png][Model_o84

Maintenance Complete

-] @eo
InstallShield Wizard has finished performing maintenance i
operations on Model_384

<Back | Finish Cance|

o s
@ Scanners and Came... Configures installed sc,
Scheduled Tasks Schedles computer t
<6 Sounds and Multime... Assigns sounds to eve.
System Provides system infor.

D> Users and Passwords Manages Users and pa.

1 object(s) selected

10.1.5 Windows XP XE "Windows XP:install" Install
1.
Double click on Model_984.exe, then click on Next to continue the installation XE "installation:Windows XP" .
[image: image264.png]B4 - InstaliShield Wizard

Welcome to the InstallShield Wizard for
Model_984

The InstalShielde Wizard il nstal Madl_384 on your
computer. To continue, cick Nex.

2.
Select Complete and click on Next.

[image: image265.png]Model_984 - InstallShield Wizard

Setup Type
Selectthe setup ype 1o instal.

Please select 2 selup type.

ol
@ Allrogam featreswil b nstaled. Peies the most ik space)

O Custom

Select which program features you want installed. Recommended for
advanced users

3.
Click Install.

[image: image266.png]Model_984 - InstallShield Wizard

Ready to Install the Progiam
The wizard i ready to begin instaltion.

Cick Instl to begin the instaliation.

1 you want o eview o change any of your nstalaton setings,clck Back. Cick Cancel to ext
the wizard

4. After the InstallShield is done copying files, click Finish.

[image: image267.png]B4 - InstaliShield Wizard
InstaliShield Wizard Complete

The InstalShield Wizard has successfll installed Model_984
Clck Firsh to st the wizard

o oot

5.
Right click on My Computer on the desktop and select Manage.

[image: image268.png][EE

=) Hle acton vew window el
« = (@ &= 2
= e
= B, Svstem Took: svstem Took
@ =
Shared Flders
e S s

Devie Manager
o &y siorage
Removale torage
Dk Defragnenter
Dbk Management
o Servces and Aplcatons

g Performance Logs and Alerts

6.
Select Device Manager. Locate the SBS Bridge Device under Other Devices. (If this is a reinstall, the device may be found under SBS instead). Right click on the device and select Install.

[image: image269.png]O computer Management

EED
-

action view Window

ClENEENE]

Help

=%

Computer Management (Local)
= i System Tooks
@ Evert viwer
) Shared Folders
o 8 Lol Users and Groups
g Peformance Logs and Al
Device Mansger
= 3 sorage

Removale torage
Dk Defragnenter
Dk Hansgemert

@ Services and Appicaions

=Bow
« 13 Computer
< Dikdives
2 Disply adepters
2 DVDJCD-ROM drives:
2 Flgpy disk contolers
T3 Foppy dis dives
2 IDE ATAJATAPI controlers
S Keyboards
") Mice and other pointing devices
Woniors
B Network adapters
G Other devices

. Ports (COMELPT)

A Processors

& 5051 and RAID cotrollers

@ Sound, video and game controlrs

g System devices

Universal Seral Bus cortrolers

7.
Select “Install the software automatically” and click Next.

[image: image270.png]‘Welcome to the Hardware Update
Wizard

This wizard helps you nstal software for

Other PO Biidge Device

1If your hardware came with an installation CD
&2 or floppy disk. insert it now.
What do you want the wizard o do?

rstal i saivare autsmatoaly (Hessmmandsdl
Instalrom a st or speciic locaton (Advanced)

Clck Net o contiue.

[EE

<Back

T SeATE Caalers

8.
Click Finish when the Hardware Update Wizard is done installing the driver.

[image: image271.png]Completing the Hardware Update [T

Wizard

The wizard has frished instaling the saftware fo.

\> Model 618/620/dateBlzzard

Clck Firsh to close the wizard.

<ok =

T SeATE CaaleTs

9.
Right click My Computer and select Manage. Select Device Manager. The SBS Bridge Device should be found under Other Devices. (If this is a reinstall, the device may be found under SBS Bus Adapter). Right click on the device and select Install.

[image: image272.png]O computer Management

EED
-

action view Window

ClENEENE]

Help

=%

Computer Management (Local)
= i System Tooks
@ Evert viwer
) Shared Folders
o 8 Lol Users and Groups
g Peformance Logs and Al
Device Mansger
= 3 sorage

Removale torage
Dk Defragnenter
Dk Hansgemert

@ Services and Appicaions

SHow
13 Computer
o Disk hives
@ Dispay adapters
2 DVDJCD-ROM drives:
S Floppy disk controlers
3. Floppy dk drves
2 IDE ATAJATAPI controlers
S Keyboards
") Mice and other pointing devices
Moniors
8 Network adapters
2 ports (ComaLPT)
A Processors
< 585 Bus Adepter

@ 551 and RAID cotrolers
@ Sound, o and game cotrlers

g System devices

Universal Seral Bus cortrolers

[image: image413.wmf]10.
After the device is installed, reboot the system.

10.1.6 Windows XP XE "Windows XP:uninstall" Uninstall

1.
Right click on My Computer on the desktop and select Manage. Select Device Manager. Under SBS Bus Adapter right click on the device to remove. Select Uninstall XE "uninstall:Windows XP" .

[image: image273.png]O computer Management

EED
-

action view Window

ClENEENE]

Help

=%

Computer Management (Local)
= i System Tooks
@ Evert viwer
) Shared Folders
o 8 Lol Users and Groups
g Peformance Logs and Al
Device Mansger
= 3 sorage

Removale torage
Dk Defragnenter
Dk Hansgemert

@ Services and Appicaions

SHow
13 Computer
o Disk hives
@ Dispay adapters
2 DVDJCD-ROM drives:
S Floppy disk controlers
3. Floppy dk drves
2 IDE ATAJATAPI controlers
S Keyboards
") Mice and other pointing devices
Moniors
8 Network adapters
2 ports (ComaLPT)
A Processors
< 585 Bus Adepter

@ 551 and RAID cotrolers
@ Sound, o and game cotrlers

g System devices

Universal Seral Bus cortrolers

2.
Click OK for the Confirm Device Removal window.

[image: image274.png]Confirm Device Removal.

\> Model 618/620/dataBlizzard

Watning: You are about to uinstal this device from your system.

G Dk Defagmenter T e and othe painting devices
55 Disk Management @ 3 Monitors
) 5 Services and Applcations) B8 Network adapters

. Pots (Com &.LPT)

) 9 Processars

=1 585 Bus Adapter

G 5651 snd RAID contolers
@, Sound, video and game controllers.

- 14 System devices
1 6 Liversal Serial Bus contrallers

3.
The device will uninstall and if it is the last device the SBS icon will be removed from the Device Manager. Close the Device Manager window.

[image: image275.png]O computer Management

EED
-

action view Window

CIEIENE]

Help

Computer Management (Local)
= i System Tooks

@ Evert viwer

) Shared Folders

o 8 Lol Users and Groups
g Peformance Logs and Al

Device Mansger

= 3 sorage

= 9 Removabe Strage
Dk Defragnenter
Ok ansgement

g

@ Services and Appicaions

3 Computer
o Disk hives
@ Dispay adapters
L DUDJCDROM drves
S Floppy disk controlers
3. Floppy dk drves
S IDE ATAIATAP] controlrs
S Keyboards
) Mice and ther pointing devices
Moniors
8 Network adapters
. ports (Comaten)
A Processors
€& 5CS and RAID controllrs
D Sound, video and game controlers

g System devices

Universal Seral Bus cortrolers

4.
Open the Control Panel and double click Add or Remove Programs.

[image: image276.png]& Control Panel

Ele Edt View Favortes Toos Help

O~ © B3| P s [% BB

aderess B contrl panel
&, Accessiky Optons

% Add Hardnere

{25 Add r Remove Prograns
[epem———

Change the appearance of your deskiop, such as the backgraund, screen saver,
color, Font sizes, and screen resoluton.

5 Game Controllers
Drncermet options
et

) Mouse.

@ network connections

L Phone and Hodem options
| @ poer optons

% Printers and Faxes

@ regionsl snd Langoage Optons
S scomers and comeras

| scheded Tasks

9 5ourcs anc pucio Dvies

et e st ens
68 accoees

5.
Select Model_984 and click Change/Remove.

[image: image277.png]8 Add or Remove Programs

Guraeor || a1 vpey Orver

Programs

6.
Select Remove and click Next.

[image: image278.png]Model_984 - InstallShield Wizard

Welcome
Moy, repai, o remove the progiam.

FEX SEX

‘Welcame ta the Model 984 Setup Mainiznance program. This program lts you madiy the
curent installaton. Cick ane of the apions below.

O Modiy

@ Select new program feaures to add o slect curerily sl feaures to
O Repair

ﬁ Reinstall ol rogram features installed by the previous setup

folrer]

@ Remave al installed features.

insalShield

7.
Click Yes to “Completely remove the selected application”.
[image: image279.png]Model_984 - InstallShield Wizard

Corent etalaton. G one f e cptors belom
O Modiy

@ Select new program feaures to add o slect curerily sl feaures to
O Repair

ﬁ Reinstall ol rogram features installed by the previous setup

folrer]

@ Remave al installed features.

insalShield

FEX SEX

8.
When InstallShield is done removing files, click Finish.

[image: image280.png]Model_984 - InstalShield Wizard
Maintenance Complete

Instalhisld Wizaid has fished performing maintenance:
operalins an Mode| 984,

o oot

9.
Close the Add or Remove Programs window.

[image: image281.png]8 Add or Remove Programs

Graeor 1 aTI Display Driver

Programs

o this program or remave i fram your ¢

wputer, cick C

10.1.7 Verifying The Installation

 XE "installation:verification"

 XE "installation:presence of driver" Assuming setup completed successfully, there are several tests that can be performed to make sure the driver is installed and functioning correctly.

10.1.7.1 Presence Of The Driver

[image: image282.wmf]
The bt_revs XE "dumpmem" program can be used to access the driver and adapters. The “Show Revs” shortcut may be used.

10.1.7.2 Driver Functioning

 XE "installation:driver functioning" If executable images of the example applications were installed, several can be used to test how the device driver is functioning:

[image: image283.wmf]
The datachk XE "datachk" program can be used to test remote bus accesses. See section 3.4. Use the “Bind Memory” shortcut on one system and the “Data Check Bound Memory” shortcut on the other system cabled to this system’s adapter. (This assumes a Windows to Windows system environment).

[image: image284.wmf]
The dumpmem XE "dumpmem" program can be used to test remote bus accesses. See section 3.1.

[image: image285.wmf]
The readmem XE "readmem" program can be used to test remote bus accesses. See section 3.2.

[image: image286.wmf]
The bt_cat XE "bt_cat" program can be used to test remote bus accesses. See section 3.3.

[image: image287.wmf]
The dumptrc XE "dumptrc" program can be used to view log messages. After booting, these messages should include the driver probing the PCI buses and finding any cards installed. See section 10.2.2.

10.2 Model 984 XE "984:example applications" Specific Example Applications XE "example applications:984"
10.2.1 Building The Model 984 Specific Example Applications

Visual Studio .NET 2003 Professional or greater should be installed as the 32-bit compiler to build the example applications.

To build example applications, open a Visual Studio command prompt:

1.
Select Start.
2.
Go to Program Files.

3.
Select from the menu Microsoft Visual Studio .NET 2003, then select Visual Studio .Net tools and Visual Studio .NET 2003 command prompt.
At the command prompt type:

C:\> make all

or

C:\> make <example application name>

10.2.2 Tracing and Logging.
The dumptrcXE "example applications: dumptrc"

XE "dumptrc" program (Generate Log shortcut) is a simplistic console application that continuously reads any trace messages produced by the driver and prints them to standard output. dumptrc sleeps between each call to get the trace messages. The sleep length is set via the -s option. To exit the program, press q.

The “Enable Tracing” shortcut should be used prior to this application to turn on the appropriate level of tracing. After tracing is complete use the “Disable Tracing”shortcut to turn off tracing.

10.3 Porting Applications

10.3.1 Porting Applications From Previous Windows Drivers

 XE "porting" There are many changes that only require simple textual substitutions; for example, BT_Read becomes bt_read. Some changes require more complex code changes. These are:

[image: image288.wmf]
Programs should include btapi.h instead of directly including btwapi.h.

[image: image289.wmf]
The semantics of opening a device have changed. If bt_gen_name()is not called in the call to bt_open()(see section 5.1.3), the return value must be kept and used in the call to bt_open(). It is possible for the return value of bt_gen_name() to be not equal to NULL and not be the array passed in.

[image: image290.wmf]
The access flags and the pointer to the map pointer arguments to bt_mmap have been exchanged. In addition, any map length to any map address is now supported. It is no longer necessary to map extra and then adjust the pointers.

[image: image291.wmf]
The functions BT_Setup(), BT_ClrStatus(), and BT_Reset(), all of which optionally return the device status, are no longer supported. The functions bt_init(), bt_clrerr(), and bt_reset()should be used. If the status is needed after one of these calls, the function bt_status() can be called.

[image: image292.wmf]
Interrupt handling is simpler than before. The functions BT_CreateInterrupt(), BT_DestroyInterrupt(), BT_RegisterInterrupt(), BT_UnregisterInterrupt(), BT_SignalInterrupt(), BT_WaitforInterrupt(), and BT_AcquireInterrupt() are no longer supported. Instead the functions bt_icbr_install()and bt_icbr_remove()should be used. The Model 984 driver has the ICBRs running in their own threads. For example, the code that responds to the interrupt can simply be placed into the ICBR.

10.3.2 Porting Applications From UNIX

 XE "porting:from UNIX" Somewhat more work is required to port applications from the old UNIX interface to the Mirror API on Windows. The Mirror API provides the function bt_ctrl() that on UNIX is an interface to the ioctl() call.
[image: image293.wmf] ioctl() XE "porting:using Mirror API"

 XE "porting:using extensions" cannot be called with a bt_desc_t. As the Model 984 driver has no ioctl() interface, bt_ctrl() returns BT_ENOSUP. Consequently, every ioctl() call in the UNIX application will have to be rewritten to use the appropriate Mirror API call instead.

In addition, many of the comments in section 10.4.1 are applicable.

10.4 Extending Or Modifying The Example Applications

10.4.1 Modifying bt_icbr Code Structure

There are three ways to extend bt_icbr XE "bt_icbr:extending" : allow it to receive other types of interrupts, have it do something other than simply print a message when an interrupt occurs, and improve the mechanism by which it sleeps waiting for interrupts.

To receive interrupt types other than error interrupts, change the arguments to the call bt_icbr_install(). Only error interrupts are supported on all Mirror API products. Other interrupt types such as IACK interrupts and programmed interrupts are NanoBus-specific. See section 4.5 for more information. The switch statement in main() that determines how to respond to the interrupt to properly handle the new type of interrupt will also need to be modified.

The program structure is slightly odd. It is limited in what it is guaranteed to do in an ICBR. Consequently, the bt_icbr only puts the information into a FIFO queue that the main program reads data from and then acts upon the data. The functions queue_insert() and queue_remove() are used to maintain the queue.

There is no way in ISO Standard C to poll standard in; even the function sleep() is not part of the ISO standard. To maintain the portability of the program, the main function uses getchar() to sleep. Every time input is read, it polls the FIFO queue for new interrupts. Programs with less stringent portability requirements may use sleep(), select(), or similar functions. Programs that only need to run on Windows may assume the ICBR is run in a separate thread and do all processing in the ICBR.

10.5 User Written Interrupt Handlers

You can extend the 984 device driver's internal Interrupt Service Routine (ISRXE "ISR") by writing your own interrupt XE "interrupt:handlers" handlers. This is done through a user written kernel mode device driverXE "kernel mode device driver" that must be installed in the system along with the 984 device driver.

Writing a kernel mode device driver for Windows 2000/XP is a complex task requiring knowledge of Windows 2000/XP operating system internals. This chapter assumes you are knowledgeable in writing 2000/XP drivers.

The source code for a driver that incorporates several sample user interrupt handlers is located in the .\src directory. The .\src directory contains the following files:

[image: image294.wmf]
bit3uisr.cXE "bit3uisr.c": Main driver moduleXE "driver: module" that implements several user interrupt handlers and the code to register them with the 984 driver.

[image: image295.wmf]
bit3uisr.hXE "bit3uisr.h": Header fileXE "header files" for the driver.

[image: image296.wmf]
makefileXE "makefile": The standard Windows 200/XP make file for building the kernel mode device drivers.

[image: image297.wmf]
sourcesXE "sources": A file used with the Microsoft build utility containing macrosXE "macros" that describe the driver directories and file names.

The bit3uisr driver requires the Microsoft Windows DDK and compiler. These items must be installed on your system in order to build the bit3uisr device driver. Any discussions in this chapter assume use of these tools.

[image: image298.wmf]
The 984 driver's internal ISR is referred to as the 984 ISR in the remainder of this chapter.

10.5.1 Types Of User Interrupt Handlers

XE "interrupt: handlers: types of"There are three types of user interrupt handlers: error, programmed, and cable (IACK). Each is called directly by the 984 ISR in the interrupt context. The user driver need not implement all three types, only those actually registered with the Model 984 driver will be called.

10.5.1.1 Error Interrupt Handlers

Error handlers are called if the 984 ISR detects that an error interrupt XE "interrupt: handlers: error"occurred. Any registered error handlers are called before the 984 ISRXE "ISR" clears the error condition. If there is an error interrupt, programmed and cable interrupt handlers are not called.

10.5.1.2 Programmed Interrupt Handlers

XE "interrupt: handlers: programmed"Programmed interrupt handlers are called if the 984 ISR detects that a PT or PR interrupt occurred. First, a PT interrupt is checked for, and if it is active, any registered programmed handlers are called before clearing the PT interrupt. Next, a PR interrupt is checked for, and if active, any registered programmed handlers are called before clearing the PR interrupt.

10.5.1.3 Cable (IACK) Interrupt Handlers

XE "interrupt: handlers: cable"

XE "interrupt: handlers: IACK"Cable interrupt handlers (IACK handlers) are called if the 984 ISR detects a cable interrupt is active but no PT interrupt occurred. Cable handlers are called only if the cable interrupt level they were registered for matches an active cable interrupt number returned in the Interrupt Status Register.

Cable interrupts (except for PT) are generated on the remote bus. Consequently, the 984 ISR has no knowledge of how to clear such an interrupt and cable interrupt handlers are responsible for clearing the interrupt on the remote bus. When a cable handler handles the interrupt it must return a non-zero return value.

10.5.2 Registering User Interrupt Handlers

Before a user interrupt handler can be called, it must be registered with the 984 driver by the user. XE "interrupt: handlers: registering"
10.5.2.1 When To Register A User Interrupt Handler

The 984 driver is loaded during Windows initialization. It supports registration of user interrupt handlers at any time after it is loaded.

The best way to ensure that the 984 driver is present when registering is to load the user driver after the 984 driver. This is done by controlling the driver load order with the ServiceGroupOrder key in the registry.

The 984 driver is assigned the group name of PCI Configuration. This group name is listed in the registry under the List value of the key \HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\ControlXE "HKEY_LOCAL_MACHINE\\SYSTEM\\CurrentControlSet\\Control\"\

ServiceGroupOrder. Assign your user driver its own group name, and then place this group name after the PCI Configuration group name of the List value. Refer to section 10.5 for an example of how this is done.

For further information refer to section Method 1 in the Microsoft Win32 Knowledge Base article Two Methods to Control Device Driver Load Order (ID Number Q115486). This article is included on the Microsoft Developer's Network Library CD.

10.5.2.2 How To Register A User Interrupt Handler

User driver registration is accomplished by sending an IOCTL_BTBRIDGE_REGISTER_UISRXE "IOCTL_BTBRIDGE_REGISTER_UISR" internal device control request to the 984 driver using IoCallDriver()XE "IoCallDriver()". The function RegisterUserIsr()XE "RegisterUserIsr()", provided in bit3uisr.c, shows how this is done. We recommend that RegisterUserIsr() be used rather than calling IoCallDriver directly.

The DriverEntry function in bit3uisr.c demonstrates use of RegisterUserIsr().

First, initialize a unicode string with the name of the device object in the 984 driver for the unit to register with; use RtlInitUnicodeString()XE "RtlInitUnicodeString()". The device object name string passed to RtlInitUnicodeString() has the form:

L"\\Device\\BtwControl"

Next, IoGetDeviceObjectPointer()XE "IoGetDeviceObjectPointer()" is called to obtain the device object of the unit to register on. The first argument takes the device object name unicode string described above. Always check the return value to ensure that the 984 driver is loaded and the desired unit exists.

Finally, RegisterUserIsr()XE "RegisterUserIsr()" is called once for each user interrupt handler being registered. More than one of each type of handler can be installed. When an interrupt occurs for a given unit number and handler type, the 984 ISR will call the handlers in the order registered until a handler indicates that it has handled the interrupt by returning a non-zero value.

10.5.2.2.1 RegisterUserIsr()

	PROTOTYPE
	BOOL RegisterUserIsr (PDEVICE_OBJECT

 pDeviceObject, PBT_UISR_REGR pRegr,

 PBT_UISR_INFO pInfo)

	PURPOSE
	XE "RegisterUserIsr()"Register a user interrupt handler with the 984 driver.

	ARGUMENTS
	PDEVICE_OBJECT pDeviceObject\: Pointer to the device object of the driver and unit to register with. This can be obtained with IoGetDeviceObjectPointer(). Always register with the A32 logical device of the desired unit.
PBT_UISR_REGR pRegr: Pointer to the user ISRXE "ISR" registration structure. The caller must fill this structure as follows:

	
	[image: image299.wmf] pRegr->btIntrFlagXE "pRegr->btIntrFlag": Type of interrupt. Must be one of BT_INTR_ERR, BT_INTR_PRG, or BT_INTR_IACK.

[image: image300.wmf] pRegr->dwCIntLevelXE "pRegr->dwCIntLevel": Cable interrupt level being registered for on BT_INTR_IACK registrations. If bt_IntrFlag = BT_INTR_IACK this must be one of BT_CINT1 through BT_CINT7, otherwise it must be BT_CINT_NONE.

[image: image301.wmf] pRegr->pHandlerXE "pRegr->pHandler": Pointer to user's interrupt handler.

[image: image302.wmf] pRegr->pParamXE "pRegr->pParam": Parameter that will be passed to user's interrupt handler. This value is determined by the writer of the user interrupt handler.

PBT_UISR_INFO pInfoXE "PBT_UISR_INFO pInfo": Pointer to user ISRXE "ISR" info struct. This will be filled in by the 984 driver. It contains information needed by the user interrupt handler when accessing the adapter hardware.

	RETURNS
	BOOL: TRUE if successful; otherwise, FALSE.

	COMMENTS
	The user interrupt handler must be implemented in same driver that calls this function.

This function sends an IOCTL_BTBRIDGE_REGISTER_UISRXE "IOCTL_BTBRIDGE_REGISTER_UISR" internal device control request to the 984 driver using IoCallDriver().

	WARNING
	All user ISRs must be unregistered before the user driver is unloaded.

10.5.2.2.2 BT_UISR_INFO Structure

XE "BT_UISR_INFO"PBT_UISR_INFO pInfoXE "PBT_UISR_INFO pInfo" is the third argument of RegisterUserIsr()XE "RegisterUserIsr()". Each user interrupt handler requires one of these structures. It will be filled by the 984 driver when registration is done.

The BT_UISR_INFO structure contains pointers to adapter resources. Section 10.5.4.2 explains how to use this information.

10.5.3 Unregistering A User Interrupt Handler

XE "interrupt: handlers: unregistering"If your user driver cannot be unloaded, it is usually unnecessary to unregister user interrupt handlers. An exception is if the interrupt handling requirements change at run time.

[image: image303.wmf]
If your user driver can be unloaded, it is essential that all user interrupt handlers be unregistered before the driver is unloaded. If this is not done, the 984 ISRXE "ISR" may attempt to call a handler that will use resources that are no longer present, resulting in a system crash.

10.5.3.1 How To Unregister A User Interrupt Handler

Unregistration of user interrupt handlers is accomplished by sending an IOCTL_BTBRIDGE_UNREGISTER_UISRXE "IOCTL_BTBRIDGE_UNREGISTER_UISR" internal device control request to the 984 driver using IoCallDriver()XE "IoCallDriver()". The function UnregisterUserIsr()XE "UnregisterUserIsr()", provided in bit3uisr.c, shows how this is done. We recommend that UnregisterUserIsr() be used rather than calling IoCallDriver() directly.

10.5.3.2 UnregisterUserIsr()

	PROTOTYPE
	BOOL UnregisterUserIsr (PBT_UISR_REGR pRegr)

	PURPOSE
	XE "UnregisterUserIsr()"Unregister a user interrupt handler previously registered with RegisterUserIsr()XE "RegisterUserIsr()".

	ARGUMENTS
	PDEVICE_OBJECT pDeviceObjectXE "PDEVICE_OBJECT pDeviceObject": Pointer to the device object of the driver and unit to unregister with. This can be obtained with IoGetDeviceObjectPointer(). Always unregister with the A32 logical device of the desired unit.
PBT_UISR_REGR pRegrXE "PBT_UISR_REGR pRegr": Pointer to the user ISR registration structure. The contents of this structure should be the same as the pReg structure passed in an earlier call to RegisterUserIsr().

	RETURNS
	BOOL: TRUE if successful, otherwise FALSE.

10.5.4 Writing A User Interrupt Handler

When writing a user interrupt handler, keep in mind that it will run in interrupt context. This means you must follow all rules for programming ISRs, including:

[image: image304.wmf]
Observe IRQL requirements when calling NT support routines.

[image: image305.wmf]
Never block.

[image: image306.wmf]
Never access pageable memory.

[image: image307.wmf]
The handler code must be non-pageable.

[image: image308.wmf]
Keep the handler as short and fast as possible.

[image: image309.wmf]
Limit the amount of stack space used.

[image: image310.wmf]
Do not touch the local adapter card's DMA registers. These are controlled by the 984 driver.

Also, be aware that the handler is invoked through a function call from the 984 driver's ISR, and it will return execution to that ISR when complete.

10.5.4.1 User Interrupt Handler Definition

	PROTOTYPE
	DWORD UserInterruptHandler

 (ULONG ulUnitNum,

 PVOID pParam,

 BT_INTRFLAG btIntrFlag)

	PURPOSE
	XE "interrupt: handlers: user: definition"User interrupt handler.

	ARGUMENTS
	ULONG ulUnitNumXE "ULONG ulUnitNum": Unit number.

PVOID pParamXE "PVOID pParam": User defined parameter. This value is obtained from the pRegr->pParam argument passed to RegisterUserIsr().

BT_INTRFLAG btIntrFlagXE "BT_INTRFLAG btIntrFlag": Type of interrupt. Will be one of BT_INTR_ERR, BT_INTR_PRG, or BT_INTR_IACK

	RETURNS
	DWORDXE "DWORD":

0: Interrupt not handled.

Otherwise: Return value indicating interrupt serviced.

	WARNING
	This function is called in an interrupt context.

10.5.4.2 Accessing The Adapter Hardware

XE "adapter: hardware: accessing"

XE "hardware: accessing"To access the adapter hardware, information about adapter resources is needed. This information is provided in the BT_UISR_INFOXE "BT_UISR_INFO" structure that is filled when the handler is registered (see section 10.5.2.2.2). Refer to the cable interrupt handler, SDmaHandler()in bit3user.c for an example of how this information can be used.

The adapter hardware resources available to user interrupt handlers are:

[image: image311.wmf]
A 4K byte window into the remote bus.

[image: image312.wmf]
A single mapping register to set up the base address and other characteristics of the remote 4K byte window.

[image: image313.wmf]
The local adapter card's node I/O registers.

10.5.4.2.1 Remote Bus Window

XE "remote: bus: window"The pWin member of the BT_UISR_INFO structure is a pointer to the base of the 4K byte window into the remote bus. This allows the user interrupt handler to access any valid I/O or memory space on the remote bus.

Before using the remote bus window, the Mapping Register must be initialized (see section 10.5.4.2.2).

The user interrupt handler cannot use the remote bus windowXE "remote: bus: window" unless the local adapter card is configured as a transmitter.

10.5.4.2.2 Mapping Register

XE "Mapping Register"A single window Mapping Register in the adapter hardware is reserved for use by user interrupt handlers. The pMapReg member of BT_UISR_INFO is a pointer to this Mapping Register.

The 984 driver initializes the Mapping Register to invalid at DriverEntryXE "DriverEntry" time. This is the only time the 984 driver will touch this register.

The user written driver must load the Mapping Register with the base address of the 4K byte remote bus window before that window can be accessed. Use the LOAD_MAPREGXE "LOAD_MAPREG" macro (defined in btwuser.hXE "btwuser.h") to load the Mapping Register.

The user interrupt handler should load the Mapping Register every time it executes. The only exception to this rule is if the Mapping Register contents will never change through the life the user driver. In that case, the Mapping Register can be loaded once before the remote bus window is accessed for the first time.

10.5.4.2.3 Node I/O Registers

The pNodeIo XE "Node I/O Registers"member of the BT_UISR_INFO structure is a pointer to the adapter hardware's node I/O registers in kernel virtual memory space. pNodeIo is a pointer to BT_REGMAP that gives a memory mapped representation of the node I/O registers. Individual registers can be accessed by de-referencing the appropriate member of BT_REGMAP.

For example, reading the Local Status Register into variable by LSR is coded as:

BT_UISR_INFO pInfo;
// assume this has been initialized by RegisterUserIsr()

BYTE byLSR;
// contents of local status register

byLSR = pInfo->pNodeIo->byLocStatus;
// read the register

[image: image314.wmf]
The BT_UISR_INFO structure must have byte packing. Therefore, be sure to set your compiler options or use packing pragmas appropriately before including bit3user.h. An example of how to do this is shown in bit3uisr.h.

10.5.4.3 Return Values

When a user interrupt handlerXE "interrupt: handlers" XE "return values"is invoked, it must determine if it should handle the interrupt. Function XYCOMHandler()XE "SDmaHandler()" in bit3uisr.c shows how this is done in the case of a Xycom card interrupting. If the user interrupt handler does not handle the interrupt, it must return a zero value. If it handles the interrupt, a non-zero value should be returned.

For a given unit number and interrupt type, more than one handler can be registered. The 984 ISRXE "ISR" will call each handler in the order it was registered until a non-zero value is returned, indicating the interrupt was handled. Once the interrupt has been handled, no more handlers of that type on that unit will be called during that instance of the 984 ISR.

[image: image315.wmf]
For error and programmed interrupt handlers, it is not essential that a user handler clear the interrupting condition because the 984 ISR will handle this task. However, for cable interrupts (except PT) the 984 ISR cannot clear the interrupt on the remote bus. Therefore, it is essential that a cable interrupt handler clear the interrupt and that it return a non-zero value to indicate that the interrupt has been handled. If the 984 ISR determines an active cable interrupt has not been handled, it will disable further interrupts to avoid hanging the system in an interrupt loop.

For programmed and cable interrupt handlersXE "interrupt: handlers", the return value is saved along with other state information for later retrieval by application programs. These return values are passed to the ICBRs as the vector argument.

10.5.5 Installing A User Written Driver

XE "driver: user written: installing"The subject of device driver installation in Windows 2000/XP systems is beyond the scope of this manual. However, we suggest one simple installation method.

1.
Install the 984 driver.

2.
Copy bit3uisr.sys into the %SystemRoot%\system32\drivers directory.

3.
Using the registry editor (regedt32.exe), add a key with the same name as your driver (for usrisr, Bit3uisr the .sys is left off) to HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services.

4.
Using the registry editor, add the following values to the key created in step 3:

Start: REG_DWORD: 0x00000001

Type: REG_DWORD: 0x00000001

Group: REG_SZ: Bit3_User_ISR

5.
Using the registry editor, locate the key: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\

Service GroupOrder.

Edit the List value of this key, and add the string Bit3_User_ISR after the existing string PCI_Configuration.

6.
Reboot the system.

For further information on driver installation, refer to the Windows DDK.

Chapter 11: Model 984 For Windows XP Embedded

[image: image316.wmf]
11.0 Introduction

Chapter 11 describes installation of Model 984 Support Software for Windows XP Embedded XE "Windows XP Embedded"

 XE "XP Embedded" . The installation procedure and a brief description of how to verify that the adapter is installed correctly and the device driver is loaded properly is included.

The installation procedure applies to:

[image: image317.wmf]
All dataBLIZZARDs.

[image: image318.wmf]
810, 820, 830 VME64 bus adapters.

[image: image319.wmf]
Model 618 and 618-3 fiber-optic adapters with Slave Mode and Controller Mode DMA for PCI bus to VMEbus interconnection.

[image: image320.wmf]
Model 620 and 620-3 fiber-optic adapter with Slave Mode and Controller Mode DMA for PCI bus to VMEbus interconnection (no loopback diagnostics).

[image: image321.wmf]
Model 616 that connects a PCI computer to an A32 VMEbus system.

[image: image322.wmf]
Model 617 with Slave Mode and Controller Mode DMA for PCI bus to VMEbus interconnection.

[image: image323.wmf]
Model 628 fiber-optic adapter with Slave Mode and Controller Mode DMA for CompactPCI bus to VMEbus interconnection.

[image: image324.wmf]
Model 630 fiber-optic adapter with Slave Mode and Controller Mode DMA for CompactPCI bus to VMEbus interconnection (no loopback diagnostics).

[image: image325.wmf]
For this chapter, it is assumed that Chapter 10 is fully understood. The Windows XP Embedded 984 driver image is the same image as used in Windows 2000/XP systems.
[image: image326.wmf]
The Windows XP Embedded install depends on a successful install onto a Windows XP (non-embedded) system. The non-embedded Windows XP serves as the base for the XP Embedded install. Please follow the install instructions in Chapter 10 before continuing.

11.0.1 Components
SBS Support Software consists of the following componentsXE “components”:

[image: image327.wmf]
A device driver with automatic installation script for Windows 2000/XP.

[image: image328.wmf]
Example applications dumpmem, btxyint, bt_bind, readmem, bt_info, bt_reset, bt_sendi, bt_cat, datachk, and bt_icbr that demonstrate using the Mirror API.

[image: image329.wmf]
An example application, dumptrc that demonstrates printing trace messages from the driver.

[image: image330.wmf] An example user Interrupt Service Routine (ISR).
[image: image331.wmf]
Windows XP Embedded support scripts and components.

11.0.2 System And Hardware Requirements

XE “system: requirements”

XE “hardware: requirements”

XE “requirements: system”

XE “requirements: hardware”Windows:XE “Windows: requirements”

XE “requirements: Windows”
Intel x86-compatible computer with a PCI bus with Windows 2000/XP.

[image: image332.wmf]
For developing Windows applications –

Required: Windows compatible 32-bit compiler.

 Recommended: Visual Studio .NET 2003 professional

 or greater as the 32-bit compiler. Microsoft Development Network (MSDN) Professional membership.

For user interrupt handlersXE “interrupt: handlers: user” a Driver Development Kit October 2000 Edition is also required.

VMEbus:
XE “VMEbus: requirements”

XE “requirements: VMEbus”The remote reset jumperXE “remote: reset: jumper”

XE “VMEbus: remote reset jumper” (SYS-5) on the VMEbus adapter card must be in place to use the remote VMEbus reset function.

The Address Modifier Register jumperXE “Address Modifier Register: jumper” (SYS-1) on the VMEbus adapter card must be removed.XE “VMEbus: address modifier: register jumper”
MULTIBUS I:
No special requirements.XE “MULTIBUS I: requirements”

XE “requirements: MULTIBUS I”
[image: image333.wmf]
SBS recommends that any development for Windows XP Embedded first be done on XP non-embedded and be thoroughly tested before running on XP Embedded.

11.1 Installation

11.1.1 General Installation Notes

[image: image334.wmf]
See section 2.0 for information about locating downloadable software on the SBS web site.

[image: image335.wmf]
Refer to the README file for revision history information.

11.1.2 Installing Embedded XP

[image: image336.wmf]
It is assumed that the same computer will serve as the host development system, the Windows Embedded Server and the embedded target server. XE "Embedded XP"

 XE "Embedded XP:installation"

 XE "installation:Embedded XP"
[image: image337.wmf]
If Windows 2000 is the host system, you will need to install the Windows Installer from Disk 1 of the Windows Embedded XP CD-ROM set.

[image: image338.wmf]
For more information, see the appropriate Embedded XP documentation.

[image: image414.wmf]1.
Insert Disk 1 of the Windows XP Embedded CD-ROM set into the appropriate drive. The Set Up the Tools window will appear on your screen.
2.
Click on Tools Setup. When asked about which computer will be used as the Windows Embedded Server, select the default, This Computer.

[image: image415.wmf]3.
Click on Database Engine Setup and continue the installation.
4.
Click on Database Setup. Continue installation.

[image: image416.wmf]
[image: image417.wmf]
When the Setup window appears asking to create a read-only share, click Yes.

11.1.3 Verify Adapter Install

Verify that the SBS adapter is installed. If it is not installed, install it now.
11.1.4 Prepare SBS 984 Driver XP Embedded Components
1.
Open a command shell:

cd C:\Program Files\SBS Technologies\Model_984\Embedded

2.
Run mkrepos.bat to populate the XP Embedded SBS 984 components with the proper files by copying files from the non-embedded parts of the driver.

11.1.5 Obtain Target Configuration
The host and target machines are the same making it very convenient to run the Target Analyzer Probe. This utility is used to take a snapshot of the hardware platform as a baseline for what XP Embedded components are needed to run on the machine. The utility creates a file named devices.pmq that specifies the platform specific hardware configuration. This file is used as input for the Target OS image build.

11.1.6 Run Target Analyzer Probe

 XE "target analyzer probe" 1.
Change directories:

cd C:\Program Files\Windows Embedded\utilities

2.
Run tap.exe to create the files devices.pmq in this directory.

The file devices.pmq is an XML file. It may be opened using a regular text editor such as Notepad. You may examine this file to verify that your expected hardware is included in the configuration.

11.1.7 Convert Target Configuration to XP Embedded Component
 XE "target configuration" 1.
Open the Component Designer by left clicking Start then select All Programs (Microsoft Windows Embedded (Component Designer.
[image: image418.wmf]
2.
Select Import from the “File” menu.
3.
Select the devices.pmq generated when the Target Analyzer Probe was run (see section 11.1.6). Your windows should appear similar to the windows shown here.
[image: image419.wmf]
[image: image420.wmf]4.
Click Open. You will see this window.
[image: image421.wmf]5.
Click Start to begin the import. This may take quite a while, depending on your machine and its configuration. As the progress bar advances the window will appear similar to this:

[image: image422.wmf]
When the import is complete, the window will look like this:
6.
Click Close.

7.
Select devices.sld in the left pane of the Component Designer main window then select Windows XP Embedded Client (x86) (Components (devices….
[image: image423.wmf]

The Component Designer window will now appear as:

8.
Change the Name under Component Properties to MyDevices as shown above. In the left pane, collapse Components, then re-expand to see the name change become effective. The window should now look like this:
[image: image424.wmf]
[image: image425.wmf]9.
Make sure MyDevices is selected in the left pane, then click the Browse button located under Component Properties and to the right of the Prototype field.
[image: image426.wmf]
 This window should appear:

10.
Select Software (Test & Development (Selector Prototype Component… then click OK.
The will appear as below (note that the Prototype field now contains a value):

[image: image427.wmf]
11.
Create a directory C:\winxpe-dev to which the newly imported component definition will be saved.
[image: image428.wmf]12.
Select File (Save As in the Component Designer window. Navigate to the C:\winxpe-dev directory created in step 11. Type MyDevices into the Name field. The following window will appear:
13.
Click Save.
14.
Exit the Component Designer.

11.1.8 Import XP Embedded Components Into the Database

[image: image429.wmf]The component describing the platform target hardware configuration must be imported into the XP Embedded Component Database to be used in an XP Embedded OS build. Also, this must be done with the SBS supplied 984 XP Embedded Components (driver and sample applications).

1.
Open the Component Database Manager by left clicking Start then selecting All Programs (Microsoft Windows Embedded (Component Database Manager. This window will be displayed:

2.
Select Import. Type C:\winxpe-dev\MyDevices.sld into the SLD file field.

[image: image430.wmf]3.
Type into the SLD file field or navigate to C:\Program Files\SBS Technologies\Model_984\Embedded\bt984.sld and click the Import button to import the driver component. The window should appear similar to the one shown below.

4.
Repeat step 3 for the file C:\Program Files\SBS Technologies\Model_984\Embedded\bt984app.sld. This imports the sample applications component.

5.
Exit the Component Database Manager by clicking Close in the Import SLD window, then clicking Close in the main Component Database Manager window.

11.2 Build XP Embedded OS Image with 984 Driver

11.2.1 General Build Notes

[image: image339.wmf]
Information in this section will step you through building a minimal XP Embedded OS build that supports the 984 driver and all devices for the hardware configuration component generated and installed in section 11.1.
[image: image340.wmf]
Builds of other configurations are beyond the scope of this manual. Refer to the appropriate Windows XP Embedded documentation for details on tailoring the build for your application needs.

11.2.2 Create A Disk Partition For Embedded XP
It is necessary to create a disk partition for the Embedded XP OS image to reside in and boot from. One method for doing this is presented here.

11.2.2.1 Bring Up Disk Manager
1.
Left click Start.
2.
Right click My Computer.
[image: image431.wmf]3.
Select Manage.
4.
Click on Disk Management. A window similar to this will be displayed.
5.
Right click on the Unallocated portion of Disk 0.

6.
 Select Partition. The Partition Wizard will come up.
7.
Select Primary Partition.

Set size to 400MB.

Accept the given driver letter and remember it for use later.

Format FAT (Quick Format should suffice).

After completion of the Partition Wizard, the Computer Management window should appear.
[image: image432.wmf]
11.2.3 Gen The Embedded XP Image

1.
Start the Target Designer by left clicking Start.

[image: image433.wmf]2.
Select All Programs (Microsoft Windows Embedded (Target Designer.
3.
Select File (New then type MyConfig into the Configuration Name field. Click OK. The window appears as:

[image: image434.wmf]4.
In the left upper pane, right click on the MyDevices component in the left upper pane.

Select Add. After adding the component, this window will appear:

5.
Test the driver by using the sample applications. To do this, add the 984 application component. In the upper left pane, expand Software (Applications (Other.

Select bt984 – Model … Application Samples .

Right click and select “Add”.

[image: image435.wmf]
6.
Set the location for where OS gen will reside.

 In the upper middle pane, select Settings under MyConfig.

In the upper right pane, select Target Device Settings then click Show to expand.
[image: image436.wmf]
For the fields Boot Drive through Documents and Settings folder change the drive letter to the one created in earlier steps for the purpose of booting into XP Embedded.

For the field Boot ARC path, change the partition to 2 or whatever is appropriate for the location of the XP Embedded boot file system.

For the field Boot Partition size, enter 400 or the appropriate size for the partition you created. The window should look similar to this.
[image: image437.wmf]7.
Check the dependencies for the current configuration. From the menu select Configuration (Check Dependencies. As the dependency check progresses you will see the window similar to below:

[image: image438.wmf]This window will be displayed when the dependency check completes:

[image: image439.png]gil= 5
Fite nstall Selected Spftware Panes Help
Available Software:

@ 8| | Lookup

' Default Installation

1 Customize Installation

1 Manage Installed Software

Install Automatically

Stream: Feature

Specify the location of the software to install and press "Lookup”
the drop pocket or type the pathname of a directory in the "Available Software” area above.)

(Drag an icon into

o
Status Disk Space Tusr =
§ iliad is an IP30 running IRIXG4 release 6.5 W used SERHEBR
ClFree 2,711,852 K
Tiaize Trstal Post inetal
Command
Log
Y
v

Click Close. The main window will appear as:

The unresolved dependencies you have, should be similar to what you see on this screen; however, they may not be in the same order. The type of PC you are targeting may also change the specific messages you see. The general dependency resolution needed should be the same as here.

8.
Select the item labeled Standard PC…requires and additional or ACPI Multiprocessor PC…requires an additional… (do not check the checkbox) in the lower pane under the Tasks tab.
9.
Right click on the item, select Action. Check the NT Loader checkbox of the window that appears. The window will appear [image: image440.png]Fie jnstall Selected Software Panes Help
Avallable Software: I — —— o
[# |[[/ns-home/snemi11a/work/965/va 1 /dist &| | Lookup
1 Default Installation ~ Customize Installation .. || 1 Manage Installed Software
Software Inventory Stream: Feature
Install Product [sms miodel 955 or X 65— v Status Size (KB) Type
I 2 B rosuer 0o bhssns v e ot e o O
A @ se ssesoman = st w
IR R — o = o
A @ sb Rt e s o
G
Start o
Status Disk Space Tusr =
j Press "Start” to begin installation. W used SRR R
ClFres 271,808 K
Dl e 4365 K
[overhsad 11298 K
—
Tiaize Trstal Post inetal
Command
Log
Setting distribution to /nfs-home/smemilla/uwork/965/v3.1/dist :

as:

10.
Click Add and the main window will appear as:

[image: image441.png]‘Software Manager

. [@uestion

Installations and removals were successful.
You must restart your system to complete the installation.

You may continue with installations or quit now.

< Continue with installations
< Extt Installations completed

< Restart the system now

oK

11.
Right click on the item labeled Standard PC … requires at least one additional … or ACPI Multiprocessor PC … requires at least one additional … and select Action.
[image: image442.png]£ Tornado
Fle Edit

Create Project in New/Existing Workspace:

Alt+F4

£ Tornado
D

In this new window check the boxes for CDFS, FAT, and NTFS. Click Add.
12.
Right click on the item labeled “Compression and Expansion Tools…requires at least one additional…” and select “Action”.
[image: image443.png]Tornado

[N &= E

[create downloadable application modules for VxWorks: stepd

wind Rive
£ Tornado
D

[image: image444.png]Tornado

[create downloadable application modules for VxWorks: step >

suld you like aur project on:

yind Ri

£ Tornado
i)

In this new window, check the boxes for CDFS, FAT, and NTFS. Click “Add”.

[image: image445.png]Tornado

[N &= E

[create downloadable application modules for VxWorks: step

wind Rive
£ Tornado
D

13.
Right click on the item labeled Regional and Language Options…requires at least one additional… and select Action.

In the new window check the box for the languages you prefer. Click Add.

[image: image446.png]£ Tornado - Workspace: Workspace = =]x]

[PPCe4

Properties,

wind Rive

2 Tornado - Works..
D

14.
Right click on the item labeled Session Manager…requires an additional… and select Action.

In the new window, check the box for the Windows Logon. Click Add.

15.
Right click on the item labeled User Interface Core…requires at least one additional… and select Action.

[image: image447.png]= workspace: Workspace0

= 8@ Workspace0
&% src_project Builds

PNPPCeo4gnul

Vind Ri

Properties: build specification PPC604gnu’

linker

v+ compiler

2 Tornado - Work

D

1144 AM
Bl RN o

In the new window check the box for the FAT Format. Click Add. This will take you back to the main window.
[image: image448.png]£ Tornado - Workspace: Workspace0
Fle Edit

4

Exciude

2 Tornado - Works..
D

16. Check the dependencies for the current configuration again. From the menu, select Configuration (Check Dependencies.
[image: image449.png]Tornado - Workspace: Workspace0

[add Source File to src_project

wind River

2 Tornado - Works..
D

After the dependency check completes, a window similar to the one shown here will appear.
Note that the dependency check reports “No errors or warnings”.
Click Close.

[image: image450.png]£ Tornado - Workspace: Workspace0
Fle Edit

2 Tornado - Works..
D

17.
Build the target OS image.

From the menu in the main Target Designer window, select Configuration (Build Target Image …

Set the Destination field to D:\ or some embedded boot partition. Be sure to include the “\”. If you are rebuilding the image, it may be convenient to reformat the embedded partition prior to doing the build.

Click Build.

[image: image451.png]£ Tornado - Workspace: Workspace = =]x]

Window Hep

= 8@ Workspace0
&% src_project Files

o readmem.o
o

[B Y o

2 Tornado - Work |f 11:41 AM
D

As the build progress the window will look like this.
[image: image452.png]£ Tornado
Fle Edit

Create Project in New /Existing Workspace:

Alt+F4

& Tornado B vi

D mmand Pro

When the build completes, the window should look like the one shown here.
Click Close and main menu will be displayed (see window on next page).
[image: image453.png]Tornado

[N &= E

[create downloadable application modules for VxWorks: stepd

Driver: Pr

wind River

A Tornado B vib

D

Note that four warnings were given. One concerns the licensing of the runtime and points out that it is a time limited runtime license.
[image: image454.png]Tornado

[create downloadable application modules for VxWorks: step >

suld you like aur project on:

yind Ri

Evib

The other three warnings are about building components that are unreleased and pertain to use of the SBS supplied components.

You can now exit the Target Designer. As you can see, there are OS files on the partition you created and specified for the Windows XP Embedded OS.

11.3 Boot XP Embedded OS Image With 984 Driver

11.3.1 General Boot Notes

[image: image341.wmf]
This section will step you through booting a minimal XP Embedded OS build that supports the 984 driver generated and installed in section 11.2.

[image: image342.wmf]
The boot is to the same disk on the same machine on which the development was done. Booting to other devices on other than the development platform is beyond the scope of this manual. Refer to the appropriate Windows XP Embedded documentation for details on alternate boot methods.

11.3.2 Modify BOOT.INI To Support Booting The Embedded XP OS Image
[image: image455.png]£ Tornado - Workspace: vx_bsp_workspace = =]x]

Properties,

wind Rive

BOOT.INI must be modified so that it can boot into the XP Embedded OS. You may use Notepad to make the changes. The file should appear similar to the following:

Note that the partition number for the embedded OS is changed to 2.
11.3.3 Boot The Embedded XP Image

1.
Reboot your machine.

2.
 Select the Windows XP Embedded partition to boot.

On the first boot after installing a Windows XP Embedded image, the First Boot Agent (FBA) will run. The FBA will complete the install of Windows XP Embedded without user intervention and will automatically cause a reboot when it is done. For all following boots of the same OS image, the FBA will not be involved.

3.
Select the Windows XP Embedded partition to boot when the boot selector appears. A boot progress screen will appear followed by a “Welcome” screen, then a full screen command shell.
11.3.4 Verify The Driver In The Embedded XP Image
1.
Change directories to D:\Program Files\SBS Technologies\Model_984\bin
2.
Run bt_revs. The output will look similar to the following:

Local board PN: xxxxxxxx

Remote board PN: 0

Local board’s firmware version: F, 0x46

Driver version: 984 1p0p1

3.
Run bt_info –p LM_SIZE. The following output will be displayed:

Value of LM_SIZE is 65536 (0x10000)

This is the default value.

4.
Run bt_info –p LM_SIZE –v 0x20000. You should see the following output:

LM_SIZE was set to 0x20000

This sets the value into the registry entry to be used on the next driver load.

If you ran bt_info –p LM_SIZE again, you would see the following output:

Value of LM_SIZE is 65536 (0x10000)

This is because the value is taken from the driver’s current setting. Setting the value places it into the Windows registry. When the driver loads, it uses the value in the registry to set the value in the driver. So a reboot is needed for the set value to take effect in the driver.

5.
Reboot.

6.
Change directories to D:\Program Files\SBS Technologies\Model_984\bin
7.
Run bt_info –p LM_SIZE. You will see the following output:

Value of LM_SIZE is 131072 (0x20000)

The value set earlier is now effective.

Chapter 12: Model 951 For LynxOS

[image: image343.wmf]
12.0 Introduction

Chapter 12 details installation of the 951 XE "951" software including general information about the installation procedure and how to verify that the adapter is installed correctly and the device drive is installed properly.

Model 951 provides a loadable device driver for LynxOS XE "LynxOS" , a library that implements the SBS Mirror API, and example applications that should help application programmers with adapter and system configuration. All tools, including memory mapping, for accessing dual port and remote memory space from an application are provided to allow memory sharing between a PCI bus computer and another system.

Currently supported SBS adapters XE "LynxOS:supported adapters" :

· dataBLIZZARD communication interfaces

· 810, 820, 830 VME64 bus adapters

· 618-3 and 620-3 PCI to VMEbus fiber-optic adapters

· 618 and 620 PCI to VMEbus fiber-optic adapters

· 617 PCI to VMEbus adapters

· 616 PCI to VMEbus adapters (no DMA)

Model 951 software features the Mirror API, an application programming interface that provides the routines required to access all adapter resources. Remote memory and Dual Port RAM, if configured, can be shared between the two systems. Programmed interrupts can be exchanged. Devices on the remote system can be controlled from LynxOS and remote bus memory can be accessed.
The device driver supports direct mapping to Dual Port RAM and/or remote bus memory without software. Mirror API also provides routines to map VMEbus addresses to an application’s memory. After setup, all accesses are handled by hardware – the memory responds to all VMEbus accesses.

Example applications included in the 951 software demonstrate features of the adapter hardware and software, and are useful tools for:
· Debugging

· Uploading and downloading binary data

· Receiving and counting error interrupts

· Testing hardware

Subroutines and example applications may be modified for your specific hardware configuration or application’s requirements.
12.0.1 Components

Model 951 consists of the following components XE "LynxOS:components" :

· A dynamic device driver object file with installation script for LynxOS 4.0

· The Mirror API Library to access the device

· Example applications that demonstrate using the Mirror API

12.0.2 System And Hardware Requirements
· LynxOS 4.0 with an Intel x86-compatible computer with a PCI bus XE "LynxOS:requirements"
· A VMEbus or PCI/CompactPCI remote chassis

· An SBS bus adapter and appropriate cable

12.1 Installation
12.1.1 Installation Notes

[image: image344.wmf]
See section 2.0 for information about locating downloadable software on the SBS web site.

[image: image345.wmf]
Refer to the README filexe "README file" for revision historyxe "revision history" information.

[image: image346.wmf]
Files are storedxe "media" in tar gzipped format with a .tgz extension.

[image: image347.wmf]
Filexe "file names"

xe "directory names" or directory names in the form ./filespec relate to the directory in which the Support Software is installed. All files are located in a directory that is named for the software model and version number. For example, if version 1.0 of the software is installed in the /usr/local directory, the full path specification for the ./src directoryxe "src directory" is /usr/local/sbs/951/v1.0/src.

[image: image348.wmf]
Chapter 3 lists the contents of the ./src directory and describes the function of each file.

[image: image349.wmf]
Before example programs can run successfully, the device driver must be installed, the PCI and remote adapter cards must be installed, the adapter cable connected, and the remote system powered on.

12.1.2 Installing Support Software
[image: image350.wmf]
denotes a system prompt.

Before extracting files: XE "LynxOS:installation"
1.
Login as root

2.
Create a directory for 951 tar files. Use the following commands:

cd /usr/local

mkdir sbs

3.
Change directories to the one you just created. Use the following command:

cd sbs

4.
Retrieve the archive file from the SBS web site (www.sbs.com), and extract it using the following command:

tar –vxzf [LynxOS_tar_distribution_file].tgz

5.
Make sure the following sub-directories and files were created:

include

•
bt_error.h
•
btdef.h
•
btpio.h
•
libbtp.a
•
bt_time.h

•
btio.h
•
btpapi.h
•
btapi.h
•
btdbpci.h
•
btpdef.h

src

•
bt_bind.c
•
bt_info.c
•
bt_sendi.c
•
readmem.c
•
bt_cat.c

•
bt_reset.c
•
datachk.c
•
makefile
•
bt_icbr.c
•
bt_revs.c

•
dumpmem.c

sys

•
btp_adapter_info.c
•
datablizzard.o
•
install

•
instructions

•
makefile
•
readme
•
uninstall

12.1.3 Installing Device Driver

[image: image351.wmf]
You must be logged in as root and in the usr/local/sbs directory before installing the device driver XE "LynxOS:driver installation" .
1.
Move to the SBS ./sys directory:

cd 951/vx.x/sys

(vx.x = version number)

Check that the adapter is installed correctly; the following command

should list all SBS (vendor_id = 108a) adapters (device_id = 1, 2, 3, 10, or 40):

drm_stat | grep -A 16 -B 2 108a

** Begin screen capture **

devices $ drm_stat | grep -A 16 -B 2 108a

Device ID = 10

Vendor ID = 108a

Primary Buslayer ID = 1

Secondary Buslayer ID = 0

Node type = 10

State = 5

Interrupt Controller = 0

Interrupt Line = 9

BusNo = 1

DevNo = 1

FuncNo = 0

0: Vaddr = 0, Paddr = b400, Baddr = b400, Size = 20, Al = 100

1: Vaddr = fa9e0000, Paddr = fe9e0000, Baddr = fe9e0000, Size = 10000, Al = 1000

0

2: Vaddr = fa990000, Paddr = fe990000, Baddr = fe990000, Size = 10000, Al = 1000

0

3: Vaddr = f8000000, Paddr = fc000000, Baddr = fc000000, Size = 2000000, Al = 20

00000

4: Vaddr = 0, Paddr = 0, Baddr = 0, Size = 0, Al = 0

5: Vaddr = 0, Paddr = 0, Baddr = 0, Size = 0, Al = 0

 ** End screen capture **
2.
Use the following command to install the device driver and related system files:

make install

The make install command executes all other commands required to configure and install the device driver on your system. The following screen capture shows the device driver installed with one SBS bus adapter or one dataBLIZZARD installed on the target system.

 ** Begin screen capture **

sys $

sys $

sys $ make install

cd ../src ; make ; cd ../sys

gcc -I. -I../include -DBT951 -D__lynxos -D_POSIX_C_SOURCE -D_REENTRANT -O2

-g -DDEBUG -Wall -Wstrict-prototypes readmem.c -o readmem -L../include –lbtp

 -mthreads

gcc -I. -I../include -DBT951 -D__lynxos -D_POSIX_C_SOURCE -D_REENTRANT -O2

-g -DDEBUG -Wall -Wstrict-prototypes dumpmem.c -o dumpmem -L../include -lbtp

-mthreads

 gcc -I. -I../include -DBT951 -D__lynxos -D_POSIX_C_SOURCE -D_REENTRANT -O2

-g -DDEBUG -Wall -Wstrict-prototypes datachk.c -o datachk -L../include -lbtp

-mthreads

gcc -I. -I../include -DBT951 -D__lynxos -D_POSIX_C_SOURCE -D_REENTRANT -O2

-g -DDEBUG -Wall -Wstrict-prototypes bt_info.c -o bt_info -L../include -lbtp

-mthreads

gcc -I. -I../include -DBT951 -D__lynxos -D_POSIX_C_SOURCE -D_REENTRANT -O2

-g -DDEBUG -Wall -Wstrict-prototypes bt_icbr.c -o bt_icbr -L../include -lbtp

-mthreads

gcc -I. -I../include -DBT951 -D__lynxos -D_POSIX_C_SOURCE -D_REENTRANT -O2

-g -DDEBUG -Wall -Wstrict-prototypes bt_cat.c -o bt_cat -L../include -lbtp

-mthreads

gcc -I. -I../include -DBT951 -D__lynxos -D_POSIX_C_SOURCE -D_REENTRANT -O2

-g -DDEBUG -Wall -Wstrict-prototypes bt_reset.c -o bt_reset -L../include –lbtp

 -mthreads

gcc -I. -I../include -DBT951 -D__lynxos -D_POSIX_C_SOURCE -D_REENTRANT -O2

-g -DDEBUG -Wall -Wstrict-prototypes bt_revs.c -o bt_revs -L../include -lbtp

-mthreads

gcc -I. -I../include -DBT951 -D__lynxos -D_POSIX_C_SOURCE -D_REENTRANT -O2

-g -DDEBUG -Wall -Wstrict-prototypes bt_bind.c -o bt_bind -L../include -lbtp

-mthreads

gcc -I. -I../include -DBT951 -D__lynxos -D_POSIX_C_SOURCE -D_REENTRANT -O2

-g -DDEBUG -Wall -Wstrict-prototypes bt_sendi.c -o bt_sendi -L../include –lbtp

-mthreads

gcc -I ../include -D__lynxos -DBT951 max_unit.c -o max_unit_program

gcc -I ../include btp_adapter_info.c -o info_program

./info_program > btp_dev

./install

Checking install requirements...

Installing SBS bus adapter/dataBLIZZARD driver...

... SBS bus adapter driver installed

SBS Driver object and ID are ./datablizzard.o 35

SBS Device 0 is installed

Making the device nodes...

Device /dev/btp0 created

Device /dev/btp32 created

Device /dev/btp64 created

Device /dev/btp96 created

Device /dev/btp128 created

Device /dev/btp160 created

Device /dev/btp192 created

Device /dev/btp224 created

sys $

 ** End screen capture **

Additional files created during the install process include:
· btp_dev

· drvid
· devidN (potential multiple instances)

· info_program

· max_unit_program

[image: image352.wmf]
Do not remove from the system files created during the install process unless instructed to do so by technical support.

3.
Check that the adapter is installed correctly. Use the command:

drivers

This should list the device driver datablizzard.o. If the command fails to list datablizzard.o, the driver did not load. An example screen capture is shown below.

** Begin screen capture **

blackcat src $ drivers

 id
type
major devs.
start
size
name

 0
char
1
0
 0
null

 1
char
1
0
0
mem

 2
char
1
0
 0
zero

 3
char
1
0
0
ctrl drvr

 4
char
1
0
0
kdconsole

 5
char
2
0
0
serial

 6
char
1
0
0
RAW IDE

 7
block
1
0
0
BLK IDE

 8
char
1
0
0
Raw floppy

 9
block
1
0
0
Floppy

 10
char
1
0
0
SIM1542 RAW SCSI

 11
block
1
0
0
SIM1542 BLK SCSI

 12
char
1
0
0
SIM2940 RAW SCSI

 13
block
1
0
0
SIM2940 BLK SCSI

 14
char
1
0
0
SIMASCSI RAW SCSI

 15
block
1
0
0
SIMASCSI BLK SCSI

 16
char
1
0
0
Rsimncr.obj

 17
block
1
0
0
simncr.obj

 18
char
1
0
0
Rsim53c.obj_a

 19
block
1
0
0
sim53c_a.obj

 20
char
1
0
0
Rsim53c.obj_b

 21
block
1
0
0
sim53c_b.obj

 22
char
32
0
0
pty

 23
char
1
0
0
parallel I/O

 24
char
1
0
0
PS/2 mouse

 25
char
1

0
0
hbtcpip

 26
char
4
0
0
bpf

 27
char
1
0
0
elxl

 28
char
1
0
0
unfs

 29
char
1
0
0
nfssvc

 30
char
1
0
0
nfs_cache

 31
char
1
0
0
lock

 32
char
1
0
0
Lynx Filesystem

 33
char
1
0
0
ISO9660 Filesystem

 34
char
1
0
0
kernel syslog messages

 35
char
1
b83d5c10
317696
datablizzard.o

blackcat src $

** End screen capture **

If the driver fails to load, check that the PCI adapter card is installed and firmly seated in the bus slot.

When the driver is installed correctly, the sample programs are compiled and ready to use.

12.1.4 Loading The Driver
The make load option is available for users needing to load a previously unloaded driver. The make install XE "LynxOS:driver loading" command will also load the device driver.
The makefile in the ./sys directory can be used to load the device driver and create the /dev/btp* device nodes.

The command to load the device driver is:

make load

12.1.5 Unloading The Driver

The makefile XE "LynxOS:driver unloading"

 XE "LynxOS:configuring software" in the sys directory can be used to unload the device driver and delete the /dev/btp* device nodes.
The command to unload the device driver is:

make unload

12.2 Configuring The Software
[image: image353.wmf]
Do not modify the trace_level variable unless directed to do so by SBS technical support.

[image: image354.wmf]
Use caution when modifying btp_adapter_info.c because the device may become inoperable if modifications are not made correctly.

[image: image355.wmf]
The lmem_size value gives the size in bytes of the local memory device; a value of 0 disables it. By default, local memory is enabled with a default size of 64KB.

1.
Modify the default configuration. In most cases, the default settings do not need to be changed. If no reconfiguration is required, go to step 2.

Default Configuration:

· Local memory enabled and sized at 64KB

· Driver only displays error and warning messages, error messages resulting from programming errors will not be displayed.

· The default interrupt queue size is used

Make sure that you are in the ./sys directory before beginning to make configuration changes.

Make a backup copy of the btp_adapter_info.c file. Use the command:

cp btp_adapter_info.c btp_adapter_info.c.save

Using your editor of choice, edit the btp_adapter_info.c file that contains the following configuration structure:

bt_adapter_info_t btp_info = {} ;
This structure is compiled during driver installation and passed to the driver by LynxOS when loading the device driver.

bt_adapter_info_t structure in btdbpci.h:

 /*

** Structure to pass the configuration information into the driver

*/

typedef struct bt_adapter_info_s {

char data[256]
/* Reserved for the device driver */

bt_data32_t lmem_size;
/* Local memory device size (bytes) */

bt_data32_t trace_level;
/* Trace level */

 } bt_adapter_info_t ;
2.
Reconfigure the driver by rerunning the make install command in the ./sys directory after adding, removing or moving SBS PCI adapter to different PCI slots.
3.
Rebuild and re-install the device driver if any changes were made during steps 1 and 2.

[image: image356.wmf]
The LynxOS driver should be unloaded at this point.

[image: image357.wmf]
Make sure you are in the correct directory before executing make install. Typically, your working directory should be /usr/local/sbs/951/vx.y/sys.

Use the following command:

make install

The make install command executes all commands required to configure and install the device driver on your system.
12.3 Compiling Example Programs

[image: image358.wmf]
Example programs XE "example programs:LynxOS"

 XE "LynxOS:compiling example programs" are compiled the first time the driver is installed.

1.
Change directories to the ./src directory that contains the example programs.

cd /usr/local/sbs/951/vx.x/src

(vx.x = version number)

2.
Use the following commands to compile the example programs:

make all

To recompile a specific program that has been changed, use the command:

make filename

12.3.1 Running The Example Programs

[image: image359.wmf]
See Chapter 3 for more information about example programs XE "example programs:LynxOS"

 XE "example programs:running"

 XE "LynxOS:example programs" .

The example programs can be run after initializing the adapter card. All example programs assume a command line interface.
After the driver is loaded and the example programs compiled, the example applications can be used to check the installation of the driver and verify the driver can correctly access the local hardware. If the LynxOS driver has been installed correctly, the sample programs in the ./src directory should work.
To test connectivity between the two bus adapter cards:

1.
Change directories to the ./src directory of the device driver.

2.
Issue the command:

./bt_revs

The following screen capture uses the example program bt_revs when two dataBLIZZARD cards are connected. In this example, the Remote board PN is very important; if the value is not zero (0), the connection with the remote adapter card has been established.

** Begin screen capture **

 # ./bt_revs

 Local board PN: 85911020

Remote board PN: 85911020

Local board's firmware revision: F, 0x46

Driver version: 951

#

** End screen capture **

12.4 Removing The SBS Support Software
In certain instances, the 951 software may need to be XE "removing software:LynxOS"

 XE "LynxOS:removing software" removed from the system; for example, to install the software on a different system in compliance with the software license.

To remove the software from a system:

1.
Remove all SBS adapters from the system and reboot.

2.
Change directories to the ./sys directory. Use the following command:

cd /user/local/sbs/951/vx.x/sys

3.
Remove the device driver and configuration information from the system.

[image: image360.wmf]
You must be logged in as root.

Use the command below:

make uninstall

4.
Change directories to the top level directory in which the software was originally installed. Use one of two commands:

cd ../../..

Or

cd /usr/local/sbs

5.
Remove all versions of the SBS software. Use the following command:

rm –rf 951

12.5 Building Applications With The Mirror API
The Mirror API XE "Mirror API"

 XE "Mirror API:LynxOS"

 XE "LynxOS:Mirror API" is implemented as a library. To build your application, link it with the btp library. With the GNU compilers and binary utilities, this is accomplished by specifying –lbtp on the command line. The preprocessor symbol BT951 needs to be defined before including btapi.h either by having
define BT951

 within the source code, or having
-DBT951

on the command line.

12.6 Extending Or Modifying The Example Applications
12.6.1 Modifying bt_icbr Code Structure
bt_icbr XE "bt_icbr" XE "LynxOS:bt_icbr" can be extended by:

· Allowing it to receive other types of interrupts
· Having it do something other than simply print a message when an interrupt occurs

· Improving the mechanism by which it sleeps waiting for interrupts

To receive interrupt types other than error interrupts, change the arguments to the call bt_icbr_install(). Only error interrupts are supported on all Mirror API products. Other interrupt types such as IACK interrupts and programmed interrupts are NanoBus-specific. See section 4.5 for more information. The switch statement in main() that determines how to respond to an interrupt will also need to be modified to handle the new type of interrupt.
The program structure is unusual in that it is limited as to what it is guaranteed to do in an ICBR. Consequently, the bt_icbr only puts the information into a FIFO queue from which the main program reads data, then acts upon the data. The functions queue_insert() and queue_remove() are used to maintain the queue.

ISO Standard C does not provide a way to poll standard in; even the function sleep() is not part of the ISO standard. To maintain the program’s portability, the main function uses getchar() to sleep. Each time input is read, it polls the FIFO queue for new interrupts. Programs with less stringent portability requirements may use sleep(), select(), or similar functions. Programs that only need to run LynxOS may assume the ICBR is run in a separate thread and do all processing in the ICBR.
Chapter 13: General Software Issues

[image: image361.wmf]
13.0 General Software Issues

13.1 Porting Applications From UNIX Direct Device Interface

 XE “porting:from UNIX” Somewhat more work is required to port applications from the old UNIX interface to the Mirror API. This only applies to Models 946 and 965 because the other software models always use Mirror API.

In addition, many of the comments in section 13.2 are applicable.

To convert a program from the direct driver interface to the Mirror API:

1.
Change the program to use bt_gen_name(), and bt_str2dev() routines to generate the device names. Include the btapi.h header file in addition to the btio.h header file.

2.
Remove all the calls to BIOC_LOCK and BIOC_UNLOCK and replace with operating system specific mechanisms if required.

3.
Change the open() and close() routines to use bt_open() and bt_close(). Change the program to use a bt_desc_t to identify the device instead of an integer.

4.
Change the mmap() and munmap() routines to use bt_mmap() and bt_unmmap().

5.
Rewrite any code that used signal handlers for interrupt notification to use ICBRs. This should simplify the code and make the driver more efficient when notifying an application.

6.
Convert all other ioctl() calls to use bt_ioctl(). This is only a temporary measure to allow you to get the program running.

7.
Debug.

8.
Change the bt_ioctl() calls to the equivalent Mirror API routines, after which, you will no longer need to include the btio.h header file.

13.2 Writing Portable Applications Using The Mirror API

This section deals with the issues arising from using the SBS API in a portable way.

13.2.1 Using NanoBus Or Model Specific Extensions

When writing code that will be ported and that uses the Mirror API, be aware of the generality of the functions used. All functions in the Mirror API fall into one of three categories: supported on all SBS products, supported on all SBS products of the same family, and supported only on one or a small set of SBS products.

For example, bt_open() is a function that is supported on all SBS Mirror API products. A program may assume that this function exists and works as described on any SBS API product.

An example of a function that is only supported on a given family of products is bt_tas(). All NanoBus-based products support this function. However, products based on other hardware designs, such as the NanoPort family of hardware, may not support this program. To help programs determine at compile time which family-based functions are available, every Mirror API product defines a preprocessor symbol that indicates the family. For example, all NanoBus-based products define the preprocessor symbol BT_NBUS_FAMILY. Programs can test for the existence of these functions:

ifdef BT_NBUS_FAMILY

bt_tas(btd, addr, prev_val_p);

else /* BT_NBUS_FAMILY */

error This program only supports NanoBus-based programs!

endif /* BT_NBUS_FAMILY */

Some functions only exist on a specific model. The token BT<MODEL#> can be used to test for all model specific functions. For example, the function bt_gettrace() function is only supported on Model 984; therefore, before using bt_get_trace(), you must test for the BT984 token. Use code similar to that above.

13.2.2 BT_ENOSUP Error Return Value

A supported function may return BT_ENOSUP XE “BT_ENOSUP” , a special error return value that indicates a requested service is not available. Common reasons this may occur are:

[image: image362.wmf]
Using the function bt_ctrl() to access an unsupported ioctl() call. No ioctl() calls are supported by the Model 965; therefore, all calls to bt_ctrl() will return BT_ENOSUP.

[image: image363.wmf]
Attempting to open an unsupported device. For example, the Node I/O device that is a legal device in the NanoBus family but is not supported on all models. Attempting to open this device will cause bt_open() to return BT_ENOSUP.

[image: image364.wmf]
Attempting to use bt_bind() on a product that does not currently support it.

13.3 Be Careful Of Optimization

The C compiler provided with SGI UNIX supports the volatile type modifier defined by the ANSI C standard. However, other compilers may not provide this support. The only way to prevent some cc compilers from optimizing out successive accesses to the adapter registers or memory sections is to restrict the types of optimizationXE “optimization”. The highest level of optimization may cause the compiler to remove the necessary data references.

One example of where optimization could cause problems, is a mailboxXE “mailbox” using a special flag to indicate that data are changing. Applications using this type mailbox may have code similar to the following:

while (mailbox_p‑>is_ok != TRUE) /* Empty while loop */ ;

Because the program has no code that changes the value at the pointer, the compiler may assume it only has to read the flag once. This assumption is logically valid, but does not apply when the value can be modified by something outside the application, such as another process on the PCI system or remote bus system. To prevent this optimization, the type qualifier volatileXE “volatile type qualifier” is used in the type declaration for the mailbox_pXE “mailbox_p” variable.

13.4 Using Structures

Care must be taken when passing structuresXE “structures” between systems. Make sure all data types are the same bit length and that there are no holes in the structure, since different processors and compilers can generate different structure alignments.

The following structure demonstrates a few possible problems:

struct foo {

int xyz;

char abc[3];

long lmn;

} *bar;

If this structure is used with an adapter to pass data between a PCI computer and a remote bus system, it may not produce identical results under all compilers. Some processors require that long data types be aligned on 4-byte boundaries. Others require alignment on a 2-byte boundary or have no alignment requirements.

Also, if the structure above uses the int data type, results may vary. Some compilers use a 16-bit integer, others use 32-bit integers, and some allow a compile-time switch to determine the size of integer types.

To find size and alignment problems, use the sizeof operatorXE “sizeof operator”. If the two compilers generate different sizes for the same data structure, there is an alignment or data size problem.

One solution is to explicitly define any filler space required. Also, if the size of the integer type differs between the compilers, use either the short or long data typesXE “data: types” since most compilers use a 16-bit short and a 32-bit long data type.

If more control is needed, create your own data types for each data size using typedef statementsXE “typedef statements”. Then programs can use your custom data types instead of those defined in the C programming language.

C compilersXE “compilers” usually begin structures on 4-byte boundaries. Also, standard memory allocation routines usually allocate on 4-byte boundaries. Determine if this is true of all systems you are using.

The example structure on the previous page works on many compilers when changed to the following:

struct foo {

short xyz;
/* assumed 16‑bit data
*/

short filler1;
/* always align on 4‑byte boundary
*/

char abc[3];

char filler2;
/* always align on 4‑byte boundary
*/

long lmn;

} *bar;

There may be more compact ways to store the data, but if every element is aligned, this method makes it is easier to confirm correctness.

13.4.1 Memory Modifying Functions With Memory-Mapped Addresses

Take care when attempting to use a vendor’s C library routines for performing memory-to-memory, file-to-memory, or similar types of memory movement or initialization operations with the SBS device. None of these routines are guaranteed to consistently use the same transfer size when accessing data. In particular, special care should be taken when using the types of routines listed below. XE "memory modifying functions"

 XE "functions:memory modifying"
[image: image365.wmf]
memcpy() XE "memcpy()" , memmove() XE "memmove()" , memset() XE "memset()"
[image: image366.wmf]
strcpy() XE "strcpy()" , strncpy() XE "strncpy()"
[image: image367.wmf]
read() XE "read()" , write() XE "write()" , fread() XE "fread()" , fwrite() XE "fwrite()"
When source or destination addresses supplied to these routines are actually memory mapped locations corresponding to the SBS adapter itself, problems may occur. These problems result from the freedom each vendor has with respect to those functional implementation details within the library itself. How these routines are implemented may vary between versions of a manufacturer’s operating system or across different platform models.

Understandably, a vendor may choose to take advantage of its own intimate knowledge of the underlying hardware and associated memory subsystem to code these routines for maximum efficiency. Unfortunately, the assumptions made do not always hold true for memory mapped devices that are inherently dependent on actual access width for proper program and/or device operation.

A vendor may use special instructions or hardware that does not allow access to the interface bus (where the SBS or other hardware devices are located). Vendors may also make optimizations that are only valid when the destination address is system memory.

For example, a version of memcpy() that checks the length of data to be copied may behave differently, dependent on how much data are to be moved. When small amounts of data are to be transferred, it may move the data as bytes. When larger amounts of data are transferred, it may attempt to use the floating point registers or special cache control instructions. Not all implementations allow the floating point unit to access the interface bus, nor guarantee that any other special hardware that works on the processor’s internal bus will be supported out to the internal bus.

For these reasons, as well as to increase code portability, we recommend that you avoid using these types of routines when working with memory mapped pointers to the SBS device.

13.5 Extending or Modifying The Example Applications

13.5.1 Modifying The bt_icbr Code Structure

There are three ways to extend bt_icbr XE "bt_icbr"

 XE "bt_icbr:modifying" : allow it to receive other types of interrupts, have it do something other than simply print a message when an interrupt occurs, and improve the mechanism by which it sleeps waiting for interrupts.

To receive interrupt types other than error interrupts, change the arguments to the call bt_icbr_install(). Only error interrupts are supported on all Mirror API products. Other interrupt types such as IACK interrupts and programmed interrupts are NanoBus-specific. See section 4.5 for more information. The switch statement in main() that determines how to respond to the interrupt to properly handle the new type of interrupt will also need to be modified.

The program structure is slightly odd. It is limited in what it is guaranteed to do in an ICBR. Consequently, the bt_icbr only puts the information into a FIFO queue that the main program reads data from and then acts upon the data. The functions queue_insert() and queue_remove() are used to maintain the queue.

There is no way in the ISO Standard C to poll standard in; even the function sleep() is not part of the ISO standard. To maintain the portability of the program, the main function uses getchar() to sleep. Every time input is read, it polls the FIFO queue for new interrupts. Programs with less stringent portability requirements may use sleep(), select(), or similar functions. Programs that only need to run on Linux may assume the ICBR is run in a separate thread and do all processing in the ICBR.

Appendix A: GlossaryXE “glossary”

[image: image368.wmf]
The following terms are used throughout this manual:

“0”: Zero.

“1”: One.

Adapter Node Input/OutputXE “adapter node input/output: definition”: Any access to the I/O registers contained on either the PCI or remote bus adapter card. These are referred to as local node I/O and remote node I/O, respectively.

Address ModifierXE “address modifier: definition”: A code designating the type of access (short, standard, or extended; non-privileged or supervisory) to occur on the VMEbus. VMEbus devices must receive their correct address modifier as well as the correct address or they will not respond to an access.

BitXE “bit: definition”: A single digit in a binary number (0 or 1).

ByteXE “byte: definition”: 8 bits.

Cable InterruptXE “cable interrupts: definition”: An interrupt sent from a device on the remote busXE “remote bus: interrupt” system across the interface cable. The PT programmed interrupt also comes across the interface cable, but is considered as separate from the other cable interrupts.

Direct Memory Access Transfers XE “Direct Memory Access transfer: definition”

XE “DMA: definition”(DMA): The adapter may be programmed to transfer large blocks of data across the cable to or from the remote bus chassis, rather than requiring a processor to move data.

DLL XE "DLL"

 XE "DLL:definition" : Dynamically linked library.

Dual Port RAMXE “Dual Port RAM: definition”: An optional dual-port memory card attached to remote bus adapter card.

Exchanging InterruptsXE “exchanging interrupts: definition”: Sending interrupts to and receiving interrupts from the remote bus chassis. Also includes any processing an application should do to acknowledge the receipt of an interrupt.

G byteXE “G byte: definition”: Gigabyte. Two to the thirtieth power (exactly 1,073,741,824 bytes).

HexXE “hex: definition”: Hexadecimal notation. A numbering system that uses 16 digits (0123456789ABCDEF) to denote a number.

K byteXE “K byte: definition”: Kilobyte. Two to the tenth power (exactly 1024) bytes.

LocalXE “local: definition”: Pertaining to the system accessing the adapter. Implies that it is not necessary to go across the interface cable to access the resource.

LongwordXE “longword: definition”: 32 bits.

M byteXE “M byte: definition”: Megabyte. Two to the twentieth power (exactly 1,048,576) bytes.

M Bytes/secXE “M Bytes/sec: definition”: Megabytes per second. Exactly 1,000,000 bytes per second.

MDI XE “MDI: definition”: Multiple document interface.

msecXE “msec: definition”: Millisecond. 1/1,000 of a second.

nsecXE “nsec: definition”: Nanosecond. 1/1,000,000,000 of a second.

Physical AddressXE “physical address: definition”: The actual or machine address of an item or device.

PIOXE “PIO: definition”: Programmed I/O.

PR InterruptsXE “PR interrupts: definition”: See Programmed Interrupts.

Programmed InterruptsXE “programmed interrupts: definition”: Interrupts caused by setting a flip‑flop in one of the adapter Node I/O registers. The two types of programmed interrupts are the PT (Programmed to Transmitter) interrupt and the PR (Programmed to Receiver) interrupt.

PT InterruptsXE “PT interrupts: definition”: See Programmed Interrupts.

ReceiverXE “receiver: definition”: An adapter card that is not allowed to transmit messages across the interface cable. Consequently, preventing it from accessing the Remote Node I/O, Remote Bus I/O, and Remote Bus memory, or a remotely‑installed Dual Port RAM card.

RemoteXE “remote: definition”: Pertaining to the system accessing the adapter. Implies that the resource is located at the other end of the adapter interface cable.

Remote Bus Input/Output:XE “remote bus: input/output: definition” Any access to the I/O registers of devices that are physically located in the remote bus chassis (not the remote adapter card). For VMEbus this is the A16 address space.

Remote Bus Interrupts:XE “remote bus: interrupt: definition” Interrupts generated by devices on the remote bus that are passed, via cable interrupt lines, to software residing in the PCI computer.

Remote Bus Memory: XE “remote bus: memory: definition” Any access to the memory space in the remote bus chassis: a shared memory section, a device buffer, or any device that responds to a memory access. Dual Port RAM located on the remote bus adapter card is not included.

Transmitter:XE “transmitter” An adapter card that is allowed to initiate message transfers across the interface cable. There must always be at least one transmitter in any pair of adapter cards.

usecXE “usec: definition”: Microsecond. 1/1,000,000 of a second.

Virtual AddressXE “virtual address: definition”: An address that references a location in a virtual address space.

Virtual Address Space:XE “virtual address space: definition” A contiguous range of virtual memory locations.

Virtual MemoryXE “virtual memory: definition”: A facility whereby the effective range of addressable memory locations provided to a process is independent of the size of main memory. The virtual address space of a process is independent of the size and location of physical memory.

Window:XE “window: definition” A range of addresses that the adapter responds to for a specific function; a reserved area of main memory.

WordXE “word: definition”: 16 bits.

Appendix B: Conventions Used In This ManualXE “conventions used in manual”

[image: image369.wmf]
[image: image370.wmf]
File or directory names in the form ./filespecXE “./filespec” relate to the directory in which Support Software is installed. All files are located in a directory named for the software model and version number. For example, if version 2.0 of the software is installed in the /usr/local directory, the full path specification for the ./src directory is /usr/local/965/v2.0/src.

[image: image371.wmf]
name() denotes a function. For example, mmap() denotes a function named mmap. These functions may require an argument.

[image: image372.wmf]
 _t indicates typedef; names a data structure.

[image: image373.wmf]
 # indicates a system prompt.

[image: image374.wmf]
| indicates exclusive or, choose exactly one option from the list.

[image: image375.wmf]
All numbers use C programming language conventions for denoting radix. A leading non‑zero digit indicates decimal. A leading 0 indicates octal. A leading 0x indicates hexadecimal.

Appendix C: ioctl() Summary

[image: image376.wmf]
Appendix C is a list of all ioctl() commandsXE “ioctl() commands” supported by the btpdd device driver. All ioctl() commands and structure definitions are declared in the <sys/btpio.h> file.

The device driver supports the following ioctl() commands:

General User CommandsXE “general user commands”

XE “ioctl() commands: general user”
BIOC_SETUP

XE “BIOC_SETUP”

XE “ioctl() commands: BIOC_SETUP”
	FUNCTION
	Restores the PCI adapter card, remote bus adapter card, and device driver to a known (default) state and returns the status of the adapter.

	ARGUMENT
	bt_status_t

BIOC_STATUS

XE “ioctl() commands: BIOC_STATUS”

XE “BIOC_STATUS”
	FUNCTION
	Returns the status of the device driver.

	ARGUMENT
	bt_status_t

BIOC_CLR_STATUS
XE “ioctl() commands: BIOC_CLR_STATUS”

XE “BIOC_CLR_STATUS”
	FUNCTION
	Returns and clears the status of the device driver.

	ARGUMENT
	bt_status_t

BIOC_IOREG
XE “ioctl() commands: BIOC_IOREG”

XE “BIOC_IOREG”
	FUNCTION
	Allows reads and writes to an adapter Node I/O register; however, user privilege is required to perform writes.

	ARGUMENT
	bt_ioaccess_t

BIOC_BIND
XE “ioctl() commands: BIOC_BIND”

XE “BIOC_BIND”
	FUNCTION
	Binds the user buffer to the I/O bus allowing remote bus devices to directly read from or write to the buffer.

	ARGUMENT
	bt_bind_t

BIOC_UNBIND
XE “ioctl() commands: BIOC_UNBIND”

XE “BIOC_UNBIND”
	FUNCTION
	Unbinds the user buffer from the I/O bus so that further remote bus device access to the buffer is invalid.

	ARGUMENT
	bt_bind_t

BIOC_RESET
XE “ioctl() commands: BIOC_RESET”

XE “BIOC_RESET”
	FUNCTION
	Performs a system reset on the remote bus, if configured, and performs a BIOC_SETUP returning the status of the adapter.

	ARGUMENT
	bt_status_t

Atomic TransactionsXE “atomic transaction commands”

XE “ioctl() commands: atomic transaction”
BIOC_TAS
XE “ioctl() commands: BIOC_TAS”

XE “BIOC_TAS”
	FUNCTION
	Provides an atomic Test And Set operation either on the remote bus or to remote Dual Port RAM.

	ARGUMENT
	bt_tas_t

BIOC_CAS
XE “ioctl() commands: BIOC_CAS”

XE “BIOC_CAS”
	FUNCTION
	Provides an atomic Compare And Swap either on the remote bus or to remote Dual Port RAM.

	ARGUMENT
	bt_cas_t

Interrupt ManagementXE “interrupt management commands”

XE “ioctl() commands: interrupt management”
BIOC_THREAD_REG

XE “ioctl() commands: BIOC_THREAD_REG”

XE “BIOC_THREAD_REG”
	FUNCTION
	Registers an ICBR thread with the driver. This process creates a unique ID for the thread and places the thread on the thread list.

	ARGUMENT
	bt_thread_reg_t

BIOC_THREAD_UNREGXE “ioctl() commands: BIOC_THREAD_UNREG”

XE “BIOC_THREAD_UNREG”
	FUNCTION
	Removes the given thread from the thread list and destroys any associated resources.

	ARGUMENT
	bt_thread_reg_t

BIOC_THREAD_ADDXE “ioctl() commands: BIOC_THREAD_ADD”

XE “BIOC_THREAD_ADD”
	FUNCTION
	Increments the count for the given thread for the given interrupt type.

	ARGUMENT
	bt_thread_add_t

BIOC_THREAD_DELETEXE “ioctl() commands: BIOC_THREAD_DELETE”

XE “BIOC_THREAD_DELETE”
	FUNCTION
	Decrements the count for the given thread for the given interrupt type.

	ARGUMENT
	bt_thread_add_t

BIOC_THREAD_WAITXE “ioctl() commands: BIOC_THREAD_WAIT”

XE “BIOC_THREAD_WAIT”
	FUNCTION
	Waits on the thread_event for the next interrupt.

	ARGUMENT
	bt_thread_wait_t

BIOC_THREAD_WAKEXE “ioctl() commands: BIOC_THREAD_WAKE”

XE “BIOC_THREAD_WAKE”
	FUNCTION
	Wakes an ICBR thread so it can be canceled.

	ARGUMENT
	bt_thread_wait_t

BIOC_SND_INTR

XE “ioctl() commands: BIOC_SND_INTR”

XE “BIOC_SND_INTR”
	FUNCTION
	Sends a programmed interrupt to the remote bus.

	ARGUMENT
	void

Control and ConfigurationXE “control and configuration commands”

XE “ioctl() commands: control and configuration”
BIOC_SET_PRIVXE “ioctl() commands: BIOC_SET_PRIV”

XE “BIOC_SET_PRIV”

	FUNCTION
	Disables privilege checking in the device driver.

	ARGUMENT
	void

BIOC_CLR_PRIVXE “ioctl() commands: BIOC_CLR_PRIV”

XE “BIOC_CLR_PRIV”

	FUNCTION
	Restores privilege checking in the device driver.

	ARGUMENT
	void

BIOC_PARAM

XE “ioctl() commands: BIOC_PARAM”

XE “BIOC_PARAM”
	FUNCTION
	Modifies several internal driver parameters.

	ARGUMENT
	bt_param_t

BIOC_DEV_ATTRIB
XE “ioctl() commands: BIOC_DEV_ATTRIB”

XE “BIOC_DEV_ATTRIB”
	FUNCTION
	Returns values for many device driver internal parameters.

	ARGUMENT
	bt_param_t

BIOC_LOG_ERRORXE “ioctl() commands: BIOC_LOG_ERROR”

XE “BIOC_LOG_ERROR”

	FUNCTION
	Logs to the system error log any status error interrupts that occur.

	ARGUMENT
	void

BIOC_NOLOG_ERRORXE “ioctl() commands: BIOC_NOLOG_ERROR”

XE “BIOC_NOLOG_ERROR”
	FUNCTION
	Discontinues logging status error interrupts to the system error log. The device driver continues to log other errors. This only affects the logging of status error interrupts.

	ARGUMENT
	void

BIOC_CFG
XE “ioctl() commands: BIOC_CFG”

XE “BIOC_CFG”
	FUNCTION
	Configuration routine used to access PCI configuration registers. To be used only by SBS personnel for testing and debugging.

	ARGUMENT
	bt_ioaccess_t

Device Access Control CommandsXE “device: access control commands”

XE “ioctl() commands: device access control”
BIOC_LOCK
XE “ioctl() commands: BIOC_LOCK”

XE “BIOC_LOCK”
	FUNCTION
	Always returns success.

	ARGUMENT
	bt_lock_t

BIOC_UNLOCK
XE “ioctl() commands: BIOC_UNLOCK”

XE “BIOC_UNLOCK”
	FUNCTION
	Always returns success.

	ARGUMENT
	none

Hardware Access RoutinesXE “hardware: access routines”

XE “ioctl() commands: hardware access routines”
BIOC_HW_READ
XE “ioctl() commands: BIOC_HW_READ”

XE “BIOC_HW_READ”
	FUNCTION
	Read data from a given bus address to a given logical device.

	ARGUMENT
	bt_hw_xfer_t

BIOC_HW_WRITE
XE “ioctl() commands: BIOC_HW_WRITE”

XE “BIOC_HW_WRITE”
	FUNCTION
	Write data to a given bus address from a given logical device.

	ARGUMENT
	bt_hw_xfer_t

BIOC_HW_BIND
XE “ioctl() commands: BIOC_HW_BIND”

XE “BIOC_HW_BIND”
	FUNCTION
	Binds a given bus address to the adapter so the remote system can access it.

	ARGUMENT
	bt_bind_t

BIOC_HW_UNBIND
XE “ioctl() commands: BIOC_HW_UNBIND”

XE “BIOC_HW_UNBIND”
	FUNCTION
	Unbinds a given bus address previously bound.

	ARGUMENT
	bt_bind_t

Semaphore RoutinesXE “semaphore: routines”

XE “ioctl() commands: semaphore routines”
BIOC_SEMA_TAKE

XE “ioctl() commands: BIOC_SEMA_TAKE”

XE “BIOC_SEMA_TAKE”
	FUNCTION
	Get a semaphore for the application.

	ARGUMENT
	bt_sema_access_t

BIOC_SEMA_GIVE
XE “ioctl() commands: BIOC_SEMA_GIVE”

XE “BIOC_SEMA_GIVE”
	FUNCTION
	Release a semaphore taken by an application.

	ARGUMENT
	bt_sema_access_t

Appendix D: Kernel Functions

[image: image377.wmf]
bt_rembus_install()XE “kernel: functions: bt_rembus_install()”

XE “bt_rembus_install()” (Kernel Mode only)XE “kernel: mode”
	FUNCTION
	Registers a kernel-level interrupt handler to the device driver. Available in Kernel Mode only.

	PROTOTYPE
	int bt_rembus_install (btp_dev_t device,

 bt_rembus_intr_t *handler_p);

	ARGUMENTS
	device = Opaque type describing device.

	
	handler_p = Pointer to the bt_rembus_intr_t structure that describes the handler to be installed.

bt_rembus_remove()XE “kernel: functions: bt_rembus_remove()”

XE “ioctl() commands: bt_rembus_remove()”

XE “bt_rembus_remove()” (Kernel Mode only)

	FUNCTION
	Removes the kernel interrupt registration from the device driver lookup table. Available in Kernel Mode only.

	PROTOTYPE
	int bt_rembus_remove (btp_dev_t device,

 bt_rembus_intr_t *handler_p);

	ARGUMENTS
	device = Opaque type describing device.

	
	handler_p = Pointer to the bt_rembus_intr_t structure that describes the handler to be removed.

bt_kmap()XE “kernel: functions: bt_kmap()”

XE “ioctl() commands: bt_kmap()”

XE “bt_kmap()” (Kernel Mode only)XE “kernel: mode”
	FUNCTION
	Returns information necessary to access the adapter from the interrupt context. Available in Kernel Mode only.

	PROTOTYPE
	int bt_kmap (btp_dev_t device, bt_kmap_t *kmap_p);

	ARGUMENTS
	device = Opaque type describing device.

	
	kmap_p = Pointer to the bt_kmap_t structure.

bt_kunmap()XE “kernel: functions: bt_kunmap()”

XE “ioctl() commands: bt_kunmap()”

XE “bt_kunmap()” (Kernel Mode only)
	FUNCTION
	Releases the resource allocated by the bt_kmap() call. Available in Kernel Mode only.

	PROTOTYPE
	int bt_kunmap (btp_dev_t device, bt_kmap_t *kmap_p);

	ARGUMENTS
	device = Opaque type describing device.

	
	kmap_p = Pointer to the bt_kmap_t structure.

Appendix E: DMA Operation

[image: image378.wmf]
When the device driver receives a request for a read()XE “read()” or write()XE “write()” to the remote bus, the length of that request is checked. If the length is greater than or equal to a user defined number of bytes, the device driver transfers the data using the PCI adapter card’s DMAXE “DMA” engine.

DMA is performed automatically during the read() or write() function and in no other function.

Several parameters can be adjusted or switched to change the default transfer mode:

[image: image379.wmf]
DMA_ADDR_MODXE “DMA_ADDR_MOD”: Address modifier can be changed so that VMEbusXE “VMEbus: address modifier”

XE “VMEbus: Block Mode” Block Mode devices can be serviced.

[image: image380.wmf]
THRESHOLDXE “THRESHOLD”: DMA threshold can be changed from 0 on up.

[image: image381.wmf]
DMA_POLL_SIZEXE “DMA_POLL_SIZE”: DMA poll size can be changed upwards from 0.

[image: image382.wmf]
DMA_PAUSEXE “DMA_PAUSE”: DMA pause can be set to pause after 16 transfers.

[image: image383.wmf]
DATA_SIZEXE “DATA_SIZE”: DMA will always be attempted using 32-bit quantities unless the DATA_SIZE parameter restricts it to 16- or 8-bit quantities. When DATA_SIZE is set to DATA16_SIZXE “DATA16_SIZ”, the PCI adapter uses 16-bit quantities for the DMA. When set to DATA8_SIZXE “DATA8_SIZ”, the PCI adapter does PIO only.

[image: image384.wmf]
Make sure the memory mapped pointersXE “memory mapped pointers” are not dereferenced or remote devices do not access PCI memory during a DMA. Use BIOC_LOCKXE “BIOC_LOCK” and BIOC_UNLOCKXE “BIOC_UNLOCK” to serialize these activities with the driver’s DMA feature.

If 32‑bit transfers are requested but the source and destination buffers cannot be aligned to a 4‑byte boundary, the driver attempts 16‑bit transfers. If 16‑bit transfers cannot be aligned to a 2‑byte boundary, the driver transfers in byte quantities.

XE “DMA”
Defaults:

	TRANSFER METHOD
	32-bit values

	ADDRESS MODIFIER
	Determined by the logical device in use

	THRESHOLD VALUE
	Defaults to start DMA process when a transfer is longer than or equal to 160 bytes

Index

[image: image385.wmf]
.
./filespec, 74, 100, 247

1
1003

bind, 113

9
951, 225

983, 146

984, 145

example applications, 187

993, 115

A
A16 space, 26

A24 space, 18

A32 space, 26

accessing the VMEbus, 87

adapter

hardware

accessing, 195

supported, 99

adapter node input/output

definition, 243

address modifier

definition, 243

Address Modifier Register

jumper, 100, 146, 200

API, 109

applications

building, 109

atomic transaction commands, 250

atomic transactions, 33

B
bigphysarea, 103

bigphysarea patch, 101

binding

buffer, 31

BIOC_BIND, 249

BIOC_CAS, 250

BIOC_CFG, 252

BIOC_CHKERR, 134, 136

BIOC_CLR_PRIV, 251

BIOC_CLR_STATUS, 249

BIOC_CLRERR, 134, 137

BIOC_DEV_ATTRIB, 252

BIOC_HW_BIND, 253

BIOC_HW_READ, 253

BIOC_HW_UNBIND, 253

BIOC_HW_WRITE, 253

BIOC_INIT, 134, 135

BIOC_IOREG, 249

BIOC_LOCK, 253, 257

BIOC_LOG_ERROR, 252

BIOC_NOLOG_ERROR, 252

BIOC_PARAM, 252

BIOC_RESET, 250

BIOC_SEMA_GIVE, 254

BIOC_SEMA_TAKE, 254

BIOC_SET_PRIV, 251

BIOC_SETUP, 249

BIOC_SND_INTR, 251

BIOC_STATUS, 249

BIOC_TAS, 250

BIOC_THREAD_ADD, 251

BIOC_THREAD_DELETE, 251

BIOC_THREAD_REG, 250

BIOC_THREAD_UNREG, 250

BIOC_THREAD_WAIT, 251

BIOC_THREAD_WAKE, 251

BIOC_UNBIND, 250

BIOC_UNLOCK, 253, 257

bit

definition, 243

bit3uisr.c, 190

bit3uisr.h, 190

bt_bind, 17, 23

bt_bind(), 31, 52

bt_cas, 17, 22

bt_cas(), 33

bt_cat, 187

bt_cfg_param_t

structure, 78

BT_CFG_TRANSMIT, 105

bt_chkerr(), 30, 40, 112, 136

bt_close(), 27, 29, 40

bt_clrerr(), 41, 112, 137

bt_ctrl(), 51

bt_ddi_add_intr, 97

bt_ddi_dma_buf_setup, 97, 98

bt_ddi_dma_free, 97

bt_ddi_dma_htoc, 97

bt_ddi_map_regs, 97, 98

bt_ddi_peek, 85

bt_ddi_peek16, 85, 97

bt_ddi_peek32, 85, 97

bt_ddi_peek64, 97

bt_ddi_peek8, 85, 97

bt_ddi_peekc, 97

bt_ddi_peekd, 97

bt_ddi_peekl, 97

bt_ddi_peeks, 97

bt_ddi_poke, 85

bt_ddi_poke16, 85, 97

bt_ddi_poke32, 85, 97

bt_ddi_poke64, 97

bt_ddi_poke8, 85, 97

bt_ddi_pokec, 97

bt_ddi_poked, 97

bt_ddi_pokel, 97

bt_ddi_pokes, 97

bt_ddi_remove_intr, 97

bt_ddi_unmap_regs, 97

BT_DEV_A16, 18

BT_DEV_A24, 18, 26

BT_DEV_A32, 18

BT_DEV_IO, 26

BT_DEV_LM, 26

BT_DEV_MEM, 26

BT_DEV_RDP, 26

bt_dev2str(), 51

BT_EINVAL, 71

BT_ENOSUP, 111, 238

bt_gen_name(), 26, 27, 38

bt_get_info(), 44, 66, 71

bt_get_io(), 57

bt_give_sema(), 65

bt_hw_bind(), 63

bt_hw_read(), 34, 61

bt_hw_unbind(), 64

bt_hw_write(), 34, 62

bt_icbr, 17, 20, 235, 241

extending, 112, 189

modifying, 241

bt_icbr_install(), 46

bt_icbr_remove(), 47

bt_info, 17, 21

BT_INFO_BIND_ALIGN, 71

BT_INFO_BIND_COUNT, 71

BT_INFO_BIND_SIZE, 71

BT_INFO_BLOCK, 66

BT_INFO_DATAWIDTH, 66

BT_INFO_DMA_AMOD, 66

BT_INFO_DMA_POLL_CEILING, 68

BT_INFO_DMA_THRESHOLD, 68

BT_INFO_DMA_WATCHDOG, 68

BT_INFO_ERROR_COUNT, 72

BT_INFO_EVENT_COUNT, 72

BT_INFO_IACK_COUNT, 72

BT_INFO_ICBR_Q_SIZE, 72

BT_INFO_INC_INHIBIT, 67

BT_INFO_KMEM_SIZE, 72

BT_INFO_LM_SIZE, 71

BT_INFO_LOC_PN, 71

BT_INFO_LOG_STAT, 71

BT_INFO_MMAP_AMOD, 67

BT_INFO_PAUSE, 66

BT_INFO_PIO_AMOD, 66

BT_INFO_REM_PN, 71

BT_INFO_REM_RESET_DELAY, 69, 70

BT_INFO_RESET_DELAY, 69, 70

BT_INFO_SWAP, 67

BT_INFO_TOTAL_COUNT, 72

BT_INFO_TRACE, 68

BT_INFO_TRANSMITTER, 69, 70

BT_INFO_UNIT_NUM, 72

BT_INFO_USE_PT, 68

bt_init(), 43, 135

BT_INTRFLAG btIntrFlag, 195

BT_IRQ_OVERFLOW, 30

bt_kmap(), 255

bt_kunmap(), 255

bt_lock(), 47

bt_major, 107

bt_mmap(), 29, 49, 67

prototype, 29

BT_MMap(), 18

bt_open(), 27, 39

bt_or_io(), 58

bt_perror(), 41

bt_put_io(), 57

bt_read(), 28, 43

prototype, 28

BT_Read(), 19

bt_reg2str(), 54

bt_rembus_install(), 255

bt_rembus_remove(), 255

bt_reset, 17, 23

bt_reset(), 59

bt_revs, 17, 24

bt_rom_read(), 56

bt_rom_size(), 55

bt_send_irq(), 59

bt_send_vector(), 60

bt_sendi, 17, 21

bt_set_info(), 45, 66, 71

bt_status(), 60

bt_str2dev(), 38

bt_strerror(), 30, 42, 112

bt_take_sema(), 64

bt_tas, 17, 22

bt_tas(), 33

BT_TRC_ERROR, 78

BT_TRC_INFO, 78

BT_TRC_WARN, 78

BT_UISR_INFO, 193, 195

bt_unbind(), 53

bt_unlock(), 48

bt_unmmap(), 29, 50

prototype, 29

BT_VECTOR_ALL, 30

bt_write(), 28, 44

prototype, 28

BT_Write(), 19

btapi.h, 25

btcat, 17

arguments, 19

btp_ddi_add_intr, 85

btp_ddi_dma_buf_setup, 85, 94

btp_ddi_dma_free, 85, 94

btp_ddi_dma_htoc, 85, 94

btp_ddi_get_iblock_cookie, 85

btp_ddi_map_regs, 85

btp_ddi_remove_intr, 85

btp_ddi_unmap_regs, 85

btpDevCreate(), 123, 124

btpDrv(), 123

btwuser.h, 196

buffer

binding, 31

byte

definition, 243

byte swapping, 28

C
cable interrupts

definition, 243

check the installation, 131

class property, 98

compilers, 240

components, 73, 145, 199

configuration

changes, 77, 78

default, 77, 106

parameters, 66, 67

read only, 72

software, 77, 106

VxWorks memory space, 119

control and configuration commands, 251

conventions used in manual, 247

conversion, 98

D
data

types, 240

DATA_SIZE, 257

DATA16_SIZ, 257

DATA8_SIZ, 257

dataBLIZZARD

porting, 137

datachk, 17, 20, 186

ddi_add_intr, 97

ddi_dma_buf_setup, 97

ddi_dma_free, 97

ddi_dma_htoc, 97

ddi_map_regs, 97

ddi_peek16, 97

ddi_peek32, 97

ddi_peek64, 97

ddi_peek8, 97

ddi_peekc, 97

ddi_peekd, 97

ddi_peekl, 97

ddi_peeks, 97

ddi_poke16, 97

ddi_poke32, 97

ddi_poke64, 97

ddi_poke8, 97

ddi_pokec, 97

ddi_poked, 97

ddi_pokel, 97

ddi_pokes, 97

ddi_remove_intr, 97

ddi_unmap_regs, 97

Default device, 26

default settings, 77, 106

descriptor, 27

device

access control commands, 253

device driver

example applications, 17

installation, 75, 104, 123

utility programs, 17

deviceID, 121

direct device access, 132, 134

Direct Memory Access transfer

definition, 243

directories

./src, 117

./sys, 117

directory names, 74, 100, 116, 226

DLL, 243

definition, 243

DMA, 28, 43, 44, 66, 68, 94, 257

definition, 243

DMA related routines, 94

DMA_ADDR_MOD, 257

DMA_PAUSE, 257

DMA_POLL_SIZE, 257

driver

loading, 108

module, 190

user written

installing, 197

DriverEntry, 196

Dual Port RAM, 18, 84

definition, 243

offset, 18

dumpmem, 17, 18, 105, 186, 187

dumptrc, 187

DWORD, 195

E
Embedded XP, 200

installation, 200

error handling, 134

example applications, 17, 146

984, 187

bt_bind, 17, 23

bt_cas, 17, 22

bt_icbr, 17, 20

bt_info, 17, 21

bt_reset, 17, 23

bt_revs, 17, 24

bt_sendi, 17, 21

bt_tas, 17, 22

btcat, 17

compiling, 125

datachk, 17, 20

dumpmem, 17, 18

dumptrc, 187

readmem, 17, 19

running, 132

usrisr, 109

example programs, 13, 73, 74, 100

compiling, 79, 108

LynxOS, 233

recompile, 108

running, 233

exchanging interrupts

definition, 243

extracting files, 74, 101, 116

F
file names, 74, 100, 116, 226

fread(), 240

functions

memory modifying, 240

fwrite(), 240

G
G byte

definition, 243

general user commands, 249

glossary, 243

H
hardware

access routines, 253

accessing, 195

requirements, 100, 146, 200

hardware access routines, 34

header files, 25, 190

installation, 123

help, 16

hex

definition, 243

HKEY_LOCAL_MACHINE\\SYSTEM\\CurrentControlSet\\Control", 192

I
ICBR, 30, 46, 107, 112

number of entries, 107

icbr_q_size, 107

initialization

adapter, 135

API, 27

device, 27

installation, 74, 82, 147

checking, 131

checking, 84

device driver, 75, 104, 123

device driver, 123

driver functioning, 186

Embedded XP, 200

extracting files, 74, 101, 116

header files, 123

library, 123

presence of driver, 186

software manager, 75

verification, 186

Windows 2000, 147

Windows XP, 169

interrupt, 30

handlers, 196, 197

cable, 191

error, 191

IACK, 191

programmed, 191

registering, 191

types of, 191

unregistering, 194

user, 146, 200

definition, 195

handlers, 190

handling, 109

Interrupt Call Back Routine. See ICBR

interrupt management commands, 250

interrupts, 92

IoCallDriver(), 192, 194

ioctl(), 110

ioctl() commands, 249

atomic transaction, 250

BIOC_BIND, 249

BIOC_CAS, 250

BIOC_CFG, 252

BIOC_CLR_PRIV, 251

BIOC_CLR_STATUS, 249

BIOC_DEV_ATTRIB, 252

BIOC_HW_BIND, 253

BIOC_HW_READ, 253

BIOC_HW_UNBIND, 253

BIOC_HW_WRITE, 253

BIOC_IOREG, 249

BIOC_LOCK, 253

BIOC_LOG_ERROR, 252

BIOC_NOLOG_ERROR, 252

BIOC_PARAM, 252

BIOC_RESET, 250

BIOC_SEMA_GIVE, 254

BIOC_SEMA_TAKE, 254

BIOC_SET_PRIV, 251

BIOC_SETUP, 249

BIOC_SND_INTR, 251

BIOC_STATUS, 249

BIOC_TAS, 250

BIOC_THREAD_ADD, 251

BIOC_THREAD_DELETE, 251

BIOC_THREAD_REG, 250

BIOC_THREAD_UNREG, 250

BIOC_THREAD_WAIT, 251

BIOC_THREAD_WAKE, 251

BIOC_UNBIND, 250

BIOC_UNLOCK, 253

bt_kmap(), 255

bt_kunmap(), 255

bt_rembus_remove(), 255

control and configuration, 251

device access control, 253

general user, 249

hardware access routines, 253

interrupt management, 250

semaphore routines, 254

IOCTL_BTBRIDGE_REGISTER_UISR, 192, 193

IOCTL_BTBRIDGE_UNREGISTER_UISR, 194

IoGetDeviceObjectPointer(), 192

ioLib, 132

iosDevShow, 124

ISR, 30, 124, 190, 191, 193, 194, 196

isr_prio, 124

isr_stack, 124

K
K byte

definition, 243

kernel

functions

bt_kmap(), 255

bt_kunmap(), 255

bt_rembus_install(), 255

bt_rembus_remove(), 255

mode, 255

kernel level routines, 85

kernel mode device driver, 190

L
library

installation, 123

limitations, 98

lm_enable, 107

lm_raddr[], 107

lm_size[], 107

LOAD_MAPREG, 196

local

definition, 243

Local Memory, 26

local memory sizes, 107

logical device, 18, 26

segments, 26

types, 18

longword

definition, 243

lseek(), 133

LynxOS, 225

bt_icbr, 235

compiling example programs, 233

components, 225

configuring software, 231

driver installation, 227

driver loading, 231

driver unloading, 231

example programs, 233

installation, 226

Mirror API, 234

removing software, 234

requirements, 226

supported adapters, 225

M
M byte

definition, 244

M Bytes/sec

definition, 244

macros, 190

mailbox, 239

mailbox_p, 239

main source code module, 98

major device number, 107

makefile, 190

Mapping Register, 196

mapping VMEbus addresses, 86

mcp750 version J, 122

MDI

definition, 244

media, 74, 100, 116, 226

memcpy(), 240

memmove(), 240

memory mapped pointers, 257

memory mapping, 29

memory modifying functions, 240

memset(), 240

Mirror API, 37, 234

building applications, 109

LynxOS, 234

routines, 37

using, 25

msec

definition, 244

MULTIBUS I

requirements, 146, 200

N
NanoBus-specific functions, 54

Node I/O Registers, 196

nsec

definition, 244

O
opaque object, 27

optimization, 239

P
parameters

device configuration, 66, 67, 72

modifiable, 66

parent property, 98

PBT_UISR_INFO pInfo, 193

PBT_UISR_REGR pRegr, 194

PCI memory space, 122

PDEVICE_OBJECT pDeviceObject, 194

performance, 107

physical address

definition, 244

PIO, 28, 66, 68

definition, 244

porting, 97, 188

from UNIX, 110, 188, 237

using extensions, 110, 188

using Mirror API, 110, 188

porting dataBLIZZARD, 137

POSIX, 19

PR interrupts

definition, 244

pRegr->btIntrFlag, 193

pRegr->dwCIntLevel, 193

pRegr->pHandler, 193

pRegr->pParam, 193

programmed interrupts

definition, 244

PT interrupts

definition, 244

PVOID pParam, 195
R
read(), 28, 133, 240, 257

README file, 74, 100, 116, 146, 226

readmem, 17, 19, 187

rebuilding VxWorks, 123

receiver

definition, 244

references, 15

RegisterUserIsr(), 192, 193, 194

remote

bus

I/O space, 26

memory, 19, 26

window, 195

definition, 244

memory, 18

address, 18

reset

jumper, 100, 146, 200

remote bus

input/output

definition, 244

interrupt, 243

definition, 244

memory

definition, 244

Remote Bus, 26

Remote Bus I/O, 26

Remote Bus Memory, 26

Remote Dual Port, 26

removing software, 79, 108

LynxOS, 234

requirements

hardware, 15, 73, 100, 115, 146, 200

MULTIBUS I, 146, 200

PCI, 81

system, 15, 73, 100, 115, 146, 200

VMEbus, 100, 146, 200

VMEbus, 81

Windows, 100, 146, 200

return values, 196

revision history, 74, 100, 116, 226

roak, 107

rram_start_addr, 107

RtlInitUnicodeString(), 192

S
SDmaHandler(), 196

segments, 26

semaphore
routines, 254

sizeof operator, 239

software manager

installation, 75

source code, 79, 108

sources, 190

src directory, 74, 100, 116, 117, 226

stdin/stdout mechanism, 19

strcpy(), 240

strncpy(), 240

structures, 239

swapping modes, 67

sys directory, 117

sysLib.c, 119

sysPhysMemDesc[], 119, 122

system

requirements, 100, 146, 200

T
target analyzer probe, 203

target configuration, 204

technical support, 16

THRESHOLD, 257

trace, 107

trace level, 78, 107

trace_level

value, 78

tracing level, 107

transmitter, 244

typedef statements, 240

U
ULONG ulUnitNum, 195

uninstall

Windows XP, 178

Uninstall, 161

Windows 2000, 161

unit, 124

unit number, 18

UnregisterUserIsr(), 194

usec

definition, 244

usrisr, 109

V
vendorID, 121

virtual address

definition, 244

virtual address space

definition, 244

virtual memory

definition, 245

VMEbus

address modifier, 257

register jumper, 100, 146, 200

Block Mode, 257

remote reset jumper, 100, 146, 200

requirements, 100, 146, 200

volatile type qualifier, 239

vx_bsp_unique.c

compiling, 138

VxWorks memory space

configuration, 119

W
window

definition, 245

Windows

requirements, 100, 146, 200

Windows 2000 installation, 147

Windows 2000 Uninstall, 161

Windows 2000/XP, 145

Windows XP

install, 169

uninstall, 178

Windows XP Embedded, 199

word

definition, 245

write(), 28, 133, 240, 257

X
xmit, 107

XP Embedded, 199

[image: image386.wmf][image: image387.wmf]
�EMBED MSDraw * mergeformat���

[image: image390.wmf]
[image: image391.wmf]

[image: image456.png]= @ vx_bsp_workspace
wx_bsp_project Builds

PNPPCe04gny]

s

Vind Ri

Properties: build specification PPC604gnu’

linker

v+ compiler

[image: image457.png]=1=x]

£ Tornado - Workspace: vx_bsp_y workspace
Fle Edt Window He

4 BT

Remove/Exclude

D

[image: image458.png]=1=x]

£ Tornado - Workspace: vx_bsp_workspace
Fle Edt g v H

[image: image459.png]Tornado - Workspac

vx_bsp_workspace

Dependencies

[image: image460.png]=1=x]

£ Tornado - Workspace: vx_bsp_workspace
Fle Edt g v H

[image: image461.wmf][image: image462.png] iiad: Software Manager 4.1 - Manage Installed Software.

Fle_jnstall _Selected _ Spftware _Panes.

Available Software: Ig] i‘

Lelp.
=

i8]

1/ Default Installation .

| 1 cstonze insain

][anoge sl sobare

|

Software Inventory

‘Stream: Feature

Remove. Product M Status. Size (kb) Type
S T T = =
w P T === w
" [0 rodit Adde csep tommee Pk, 12 oy ™
J Greem s i -
B oo e i o
J @ream chemmmimmera o a
J Oreem otemmirzn e e
T O reem s e 10 - wm
T O resm SRS B vt 311 o wn
T Orean cwusememmans s

ot Fost e

Woses
Orre

303420 K
127 720K

[image: image463.png]Llejnstall _ Selected _ Spfware Panes

EIE)

Help
Available Software:
Lookuy
3 =
1 DefaultInstalation .. | |1 Customize Installaton... || | Manage Installed Sotvare .|
Software Inventory Stream: Feature
fenave Frodet seue Rt
(0 W) Produet 30 Fl Tavsaos 111 nstaled Ton
P T e— T nasea P
) Produst Adba Photoshop Parformance Package. 12 tated. sl
0 producs ey sevias 30 e 10
LT ———r s a0
W Product € et nd U, 721 [a0
W) Product Cew Headers and Lbranes, 7.2.1 nstated. B0
0 Product CASEUson Evonmr, Wrkn 105 [o
V) product CHALLENOECoToR Ectn i 311 s wm
W) Produst CHALLENGEComgi, .11 taled. .
Siop “onticts .
Status Disk Space
§ Nothing selected for installation. B used QEIVEDI
OFree 1.27,720K

ez Tnstal Post nstal

[image: image464.png]Turn off computer

[image: image465.png]

[image: image466.png]

[image: image467.png]

[image: image468.png]Setup il naw create a READ OKLY il share an this system called Repostaries,
This i required For buiding runtime images. File and printe shering must be enabled for
this to succeed,

For detais on how to enable and optinize your shering and securiy settings, refer to
the ‘nstallation Guide' n the 'Getting Sterted documentation

0 you wish to continue?

[image: image469.png]Choose File for Import

My Recent
Documents

Desklop
My D

uments
My Computer

9

My Network

1 uiities v

Wy Recent Documerts
Deskiop

©) My Documents
2 My Computer
4 3¢ Floppy ()
% Local Disk (C)
&) Program Files
&) Windows Embedded
=]
e NEW VOLUME (D:)
2O DiveE)
§ Local Disk (F)
(&) Shered Documents
& My Documents

& My Network Places

File pame: devices

Files of ype: Teiget Anslyer fes (pma)

Platforn

‘Windaws <P Embedded Clent (466

[image: image470.png]Choose File for, Import
3 uiities
[C]

My Recent
Documents

My Network

Platforn

File pame: devices

Files of ype: Teiget Anslyer fes (pma)

‘Windaws <P Embedded Clent (466

[image: image471.png]Import File

Platforn Windows XP Embedded Clent (+85)

Fie:

CAProgram Fies\Windows Embeddediutilies\devices pma

Logfie: |

Status: Clck stat to impot fle.

@) Reach o st mpot sssion

[image: image472.png]Platforn Windows XP Embedded Clent (+85)

Fie: CAProgram Fies\Windows Embeddediutilies\devices pma
Logfie:
Status: Anslzing Opiiuest 10005,

) Ready to st impot sesson
3 Prosessing fe - CAProgram Fies\W/indows Embecdechutities\devices pma
(%) Target Analyzer found 76 devices.

(2) Loading the diiver database. (3:23:55 PM)

Start

[image: image473.png]Import File

Platforn Windows XP Embedded Clent (+85)

Fie: CAProgram Fies\Windows Embeddediutilies\devices pma

Logfie:

Status: Completed processing e Import succeedsd]

(3) Ading USB Foo bt thecomponent.
3 kg USE Mass Storsge Dvice o the comprent
(3 mpotsucceedod w74 diver or 76 dovioes

(2) Completed processing file [Import succeeded] : C:\Program FilestWindows Embedde
(2 Import session completed successfully

< 3

[image: image474.png]& Microsoft Component Designer-devices.sld*:devices.

Bl Edt Vew Add Toos tep

FELY]
5 devices 4
5 Windows XP Enbedded Clent (:36) CaprEiRElD
5 & Components - MyDkvices
5 devices [Version LORIT* | o
) Repostories Versin
) Dependencies Srscth
= Ourers: Authors
) Repostory Sets Wictosot Crporation

Revision: L

Target Analyzer

Copyight Micio

Vendor: Copyicht:

10/21/2004 332,05 PM 10/21/2004 3

Date revised
Automaticall generated by Targe! Analyzer v2.0.0 on 10/21/2004.

Date createdt

Desciptior:

Platforn: Windaws <P Embedded Clent (466

Fezien Unknann Repastory

Frototype:

Component help:

HIML e

Component DHTHL:

] Final component DHTML

Companent it

Component:devices. SB5-L7KZBG22TM

[image: image475.png]# Microsoft Component Designer-devices.sld*:MyDevices

Bl Edt Vew Add Toos tep

EFEREEFEEEE
= 1 devices.sld*
= Windows XP Embedded Client (x36) Conzocn Picpets)
S+ Components Nare: MyDevices
Y yDevices [version Lo1] =
{3 Repositories. Version:
{3 Dependencies.
= Packages Owres:
5 RepostorySets Vondor

Revision: L

shnseth Target Analyzer

Authors:

Microsaft Corparation Copyight Micio

Coppright

10/21/2004 332,05 PM 10/21/2004 3

Date revised
Automaticall generated by Targe! Analyzer v2.0.0 on 10/21/2004.

Date createdt

Descipton

Platforn: Windaws <P Embedded Clent (466

Fezien Unknann Repastory

Frototype:

Component help:

HIML e

Component DHTHL:

] Final component DHTML

Companent it

SB5-L7KZBG22TM

[image: image476.png]# Microsoft Component Designer-devices.sld*:MyDevices
Ele Edt Wew Add Took Hep

EFEREEFEEEE
= 1 devices.sld*
= Windows XP Embedded Client (x36)
= (3 Components

4 MyDevices [Version 1.ORT

{3 Repositories. Revision:

{3 Dependencies.

{3 Packages Authors:

3 Repostory Sets Coppight | Copviaht Mitosof Crporaion 2001

1

Target Analyzer

10/21/2004 3:36:44 PM

Date revised
oted by Target Analyzer v2.0.0 on 10/21/2004.

Embedded Cient (x35) [Ptatforms.

posiory

[Bieposiores

Browse, Defaut

orent DHTML.

B

5B5-L7KZBG22TM

[image: image477.png]Select Prototype Component

Prlotype camponent souce
© Database OSLD fie

Avaible Components

Fiter: [Al Comparerts

Search

11780 components

5 3 Software

& System

12 Legacy.

123 Applications

553 Test & Development

5 Minkernel Sample Macro (Demo) [¥ersion 5.1.2600.1106,R1
5 MinLogon Sample Macro [Version 5.1.2600.1106,R1507]
5 Runtime Quick Start Helper Macro [Version 5.1.2600.1106,F

Descipiors[Selecor Fottype Component o Windows XP Embedded Clent

[image: image478.png]# Microsoft Component Designer-devices.sld*:MyDevices

Bl Edt Vew Add Toos tep

FELY] 9
= 1 devices.sld*
= Windows XP Embedded Client (x36) Conzocn Picpets)
= £ Components R MyDevices
3 MyDevices [Version LORT [o
{3 Repositories. Versin:
{3 Dependencies.
{3 Packages Owners:
{5 Repository Sets

Revision: L

shnseth Target Analyzer

Authors:

Vendor Microsaft Corparation Comighe | Copygh Mo

10/21/2004 332,05 PM 10/21/2004 3¢

Date createdt Date revised

Automaticall generated by Targe! Analyzer v2.0.0 on 10/21/2004.

Desciptior:

Platforn: Windaws <P Embedded Clent (466

Fezien Unknann Repastory

Prototype: Selector Protalype Companent

Component help:

HIML e

Component DHTHL:

] Final component DHTML

Companent it

SB5-L7KZBG22TM

[image: image479.png]3 winspedeyv

Fiename: [MyDvices

Save as pe: [SLD Fies [sld)

[image: image480.png]& Microsoft Component Database Manager (Exclusive Mode)

(b] Pl | Packoge | Componert | Repostor | Gioup |

Database connecion

Tetget Designer and Cormponent Designer must conect to a cormponent database.
server o function corect).

Database server ocation

SBSUTKZBG227M)

Impart

Impart an LD fl into the component database.

[image: image481.png]& Import SLD

5LD fl:
Cwinwpe-deviMyDevices sd

Bepository root:
\\SBS L7KZBE227MI\epostaries\

Resuls:

¥ Copy reposioryfles o reposiory oot

oot | o e

[image: image482.png]O computer Management

= e
-

action window Help

&(m @

vew

Computer Mansgement (Local)

Eors i I [[

= i System Tooks
Event viener
Shared Folders
Local Users and Groups
Peformance Logs and Alerts
Device Mansger
Storage
Removable Storsge
D Defragnenter
Ok ansgement

=@

Partion Basic NTFS Healthy (System) 68368

5 G Servicesand Applcaions

R
©
653 GBNTFS
Healthy (System)

@isko
Basic
84768
Online

L6468
Unalocated

Sco-romo

CD-ROM(E2)

No Media

W Uniallocated [l Piimay partiion

[image: image483.png]O computer Management

= e
-

action window

&(m @

vew

Help

X &S

Computer Management (Local)

= i System Tooks
Event viener

Shared Folders

Local Users and Groups

Peformance Logs and Alerts

Device Mansger
Storage

Removable Storsge

D Defragnenter

Ok ansgement
5 G Servicesand Applcaions

=@

Voane T vl e o [

ElE) Partion Basic NTFS Healthy (System) 68368
(SINEW VOLUME (D) Partition Basic FAT Healthy. 00M8

N
© NEW VOLUM
653 GBNTFS 400 ME FAT
Healthy (3ystem) | Healthy.

@isko
Basic
84768
Online

12568
Unalacated

Sco-romo

CD-ROM(E2)

No Media

W Uniallocated [l Piimay partiion

[image: image484.png]& Microsoft Target Designer. - MyConfig *
Ble Edt Vew Configuration Tooks Hep

=g

Name: Windows XP Embedded (

Fiter: [Al Comparerts

Version: 10

9349 components Ounerls}

B i Vendor [Mirosot
Scftware

{2 Design Templates. Created: 10/22/2004 33711 A
5 Mybevices

Descipton: | Configuration of Microsolt
Flatform Defirfian

Buidype: [Release
@ |

TaskMName ~

[\ Vasks f Tiszages Joebug /

Ready OComponents 1486KB 2064KB SBS-7KZBGZZ7MI | Expert Mode

[image: image485.png]& Microsoft Target Designer. - MyConfig *
Fie Edt View Configuration Tooks Help

ND2H|LDeXE |V @RS T |50

I [tcarfig®
B settngs
= Comporets

e MyDevices

Fiter. |l Components v

D e e
@ B vesices verson Loz b

9343 compornents

12 Hardware
12 Software.
1) Design Templates.

5 Migbevices] Revision i

Packages: [windows P Embedded Cic

Version:

Categores: [Soltwere : Test &Developm

xTnto 100: Tnitializing nev configuracion
lmto 102: hdding base system component to configuration
Into 101: Tnitializing nev component: "Base Component [Version §.1.2600.1106, RLSO71"
CEDB: 0.34 secs, L2 regs. LiB: 0.22 secs, 10 regs, 10t hits, 2 entries
Betivacion complete, slapsed time: 0.55 seconds
No srrors or warnings

Into 101: Initializing new component: “HyDevices (Version 1.0, R21"
Varning 1116: hdding wnreleased component to configuravion: "MyDevices [Version 1.0,
Into 101: Bstimaved footprinc: 0 Byves

r21"

[T\ oo)\ Messages /(5ebug

Ready IComporents 1486KB 2064KB SBS-L7KZBGZZ7M) Expert Mods.

[image: image486.png]& Microsoft Target Designer. - MyConfig *
Ble Edt Vew Configuration Tooks Hep

D2W|%D

Qa9 E|le

sl [5 @ Mycarfg*

Fiter: [Al Comparerts

S 2 ettings

&G conponents
@ @ scom 3c520 ntegrated Fast

9343 compornents

12 Hardware
) Software
& System
1 Legacy.
=2 Applcations
{2 Management.
12 Internet.
1) Business
1) Tools & Utiities.
1) Games.
1) Productivity
& oM
12 Multimedia
1) Communications
=4 Other

1) Database.
3 Test & Developrent

€5 Accessibity Core [Versin5.1.2
) ACPI Fixed Feature Button [Vers
& ACPI Muliprocessar PC [Version
& Actve Diectory Service Interfac
& fcive Template Library (AT [V
) Adaptes AIC-7693 Ulral o0 PCT
& Admiistrator Account [verson &
& fnclog TV [Version 5.1.2600.111
& Ausio Codecs [Version5.1.2600
€5 Base Support Binaries [Version 5
& CO-ROM Drive [version 5.1.260(
5 COFS [ersion 5.1.2600.106,R
€5 Certicate Request Clent & Cer
& Contfcate Lser Iterface Servic
5 Class nstaler - Stream [version
5 Clent | Server Runtine (Cansole
& CMD - Windows Command Proce
) COM Base [Version 5.1.2600,R6
5 Command shel [¥ersion 5.1.260

5 Common Control Librari ersio
22 rommon ot in e

Name:
Version:
Qurers)
Vendar

Created:

Descipton

Buid ype:

Microsaft

10/22/2004 4357 A

Configuration of Microsof (R)

Flatform Defirfian

Release

T Tadts J\Messages

Debug

212 Components G063LKE 111988KE SB-L7KZBGZ27MI | Expert Mode

[image: image487.png]& Microsoft Target Designer. - MyConfig *

Bl Edt Vew Configuration

=g

Tools Help

ZAE:]

CARENC

=l

Fiter: [Al Comparerts

9343 compornents
12 Hardware

12 Software.

1) Design Templates.

-y MiyDevices]

5) ycConfig*
R, Settings
&5 Components
5 MyDevices [¥

5 Windows 2P Embedded Clent (<26)

Target Device Settings
| ide | more nfo |

Boat crive

(more info)

Windows
folder
(more info)

Program
Files folder

(more info)

Documents
and
Settings
folder
(more info)

Boot ARC
path (more

of)

Boot
partiion
size (MB)

DAWINDOWS

D\Program Files

[D\Documents and Settings

l400]

(more info)

Initial

o
Messages

Debug

1 Components

146K 2064KB

S65-L7KZBG227M) | Expert Mode

i) disk(@)rdiskO)partition2)

[image: image488.png]101: Estimeted footpint: 0 Bytes.
106: Adding system component:“Primiive: Ks.nf [Version 5 1.2600 1108, RISO7]", orgin "Crystal
101:Infializng rew component.“Primive: K. [Version 5.1.2500.1108, R1507]

101: Estimeted footpint: 40360 Bytes

106: Adding system component:“Kernel Stiearing User Mods Suppot [Version 5.1.2600, R620]
101 Iiilaing new component: *Kernel Stieaming User Mods Suppot [Version 5.1. 2600, RE20]
101: Estimeted footpint 122880 Bytes

106: Adding system component:Fiimiive: Ks.sys Version 5.1.2600 1106, R1S07]",oigin: "Ciystal
101:Inilizng rew component:“Primiive: Ks.sys Version 5.1.2600. 1106, F150

101: Estimeted footpint 135168 Bytes.

106: Adding component:rimiive: Dimk.sys [Version 5.1.2600.1108, R1SO07]" oigin:"Ciystal Sou
101:Infializng new component.“Piniive: Dimk.sys [Version 5.1.2500.1106, F1507]

101: Estimeted footpint: 61440 Bytes

106: Ading component:“Frinive: Portls sy [Version 5.1.2600.1108, R1S07]" oigin:"Crystal S¢

[image: image489.png]Progress:

Checking: "windows XP Service Pack 1 Resaurce DLL Version 5.1.2600.108, R1507]
Checking:"Shel Esplorer Registy Data Version 5.1.2600.1105, 150

Checking:"Shel Evplorer Registy Data [Pro] Version 5.1.2600, R620)

Checking:"User Interce Core [Version 51,2600 1106, R1507]

Eror 1103 Component: “User Itetface Core [Vetsion 5 1.2600.1108, R1507]" requies atlsast one addi
Checking: "Shel Core Registy Data Version 5.1 2600, RE20]".

Checking:"Shell Legacy Reaisty Data [Version 5.1.2500. FG2!

Checking:"Frimitive: Nishiui [Version 5.1 2600 1106, R1507]

Checking:"Format Comman User Interface [Veision 5.1.2600, 620"

Checking:"GLI Based Fomat Common Libraries [Version 5.1.2500, RE20]"

CFDB: 5,74 secs, 467 reqs. LAB: B51 secs, 2437 reqs, 81% hits, 200 enties

Check. complete, slspsed time: 18.44 seconds

6 erors and no wainings

[image: image490.png]& Microsoft Target Designer. - MyConfig *

Bl Edt Vew Configurstion Took Help

D2W/ibax Q@ CRNEIC)

Il [3 @ Myconfig*
2, Settings

= Cp Components

@ 5 3Com 3co20 Integrated Fast &t | Versir:
% Accessibilty Cors [Version 5.1.2

9943 components 5 ACPI Fixed Feature Button [ver: | Onerls}
ACPI Multiprocessor PC [Version

i Hardware 3 Active Directary Service Interfac | Vendor Micrasoft

e e e T e OO0 | s 102220453578

 Miyevices| 5 dmintrator Accoun [version -

5 Ainelog T [Version5.1.2600. 1 | | DE5CIPU0rE | Configuration of Mictosolt

|] 3

Name:

Fiter. |l Components v

TaskMName ~
Companent: "ACP Multprocessar PC [Versian 5.1.2600. 1106, R1507]" requires an addtional enabled companent nct in,
‘Companent: "ACP Multprocessar PC [Versian 5.1.2600, 1106, R1S07)" requires at least ane addtional enabled compan.
Component; "Compression and Expansion Tools[Version 5.1.2600, RE20]" reuires at least one addtional enabled com.
Companent: "Regional and Language Optians [Version 5.1.2600, 1106, RISO7]" requires atleast ane addtional enabled
Component: "Session Manager (Windows subsystem) [Version 5.1.2600, 1106, R1507]" requires an addtional enabled c.
Component: "User Interfce Core [Version 5.1.2600. 1106, R1507]" requires at least one addtional enabled component

Tasks {_Messages J\ Debug /.

191 Comporents 78633KE 103220KB SBS-L7KZBG2Z7M] Expert Mads.

[image: image491.png]Resolve Dependency.

EXACTLY ONE of the components listed belowis requited to be ADDED ta the corfiguralion in
order to esolve this dependency. Please select ol one companent below and cick the ‘Add
buton in order to ADD this component o the configuration.

] EWF NTLDR Version 5.1.2600.1106 A1507]
T Loadsr Version 5.1.2800. 1108 R1507]

‘Show Hidden
D Eamponeris

[image: image492.png]& Microsoft Target Designer. - MyConfig *

Ble

Edt Vew Configurstion Tooks telp

REL I ZAE:] CARENC

Filer

5 Nekgpe nf [Verson 5.1 2600 R6 A

Al Comporents

5 Netlogon/MetJoin [Version 5,12 | Name:

5 Netmscl 1 [Verson 5.1, 2600,

5 Natpschd I [verson 5.1.z600, | D5EIPAEr

5 Nelrasa Inf Version 5.1 26008

9349 components € Netrass nf [verson 5.1.2600.1

12 Hardware
12 Software.

3 Design Templates 5 MLS: Locale Mep IDs [ersion 5
5 NLS: Time Zones [Version 5.1.2¢
5 NT Loader [Version 5.1.2600.11 | | Packages:

-y MiyDevices]

€5 Netrast Inf [Version 5.1.2600,R1
€5 Nettepip If [Version 5.1.2600,F

Version:
€5 NLS: Core Fies [version 51,260

Revision

) 3

NT Loader

51.2600.1106
1507

Windaws <P Embedded (¥

| 3

Task Name

Component:
Component:
Component:
Component:
Compornent:

'ACPL Muliprocessor PC [Version 5.1.2600.1106, R1507]' requies at east one addiionsl ensbled compon.
‘Compression and Expansian Taols [Versian 5.1.2600, R620] requires at least one addtionl enabled com.
‘Reglonal and Language Optons [Version 5.1.2600.1106, R1S07]" requires at least ane addtianal enabled
‘Session Manager (Windows subsystem) [Version 5.1.2600.1106, R1507]' requires an addtional enabled ¢
User Interface Core [Version 5.1.260.1106, R1507]" requires at east one additional enabled component

Tasks {_Messages J\ Debug /.

192 Comporents | 7305KB 109452KB_ SBS-L7KZBG2Z7M] Expert Mods.

[image: image493.png]Resolve Dependency.

AT LEAST ONE of the components ited below i requited o be ADDED to the corfiguration in

order o esolve this dspendency. Please selectat least one component below and click the Add'
buton to ADD the cormponents) o the configuation.

5 CDFS [Version 5.1 26001106 /1507]
AT Nersion 51 26001106 /1507)
CHNTFS Version 51,2600 106 /1507]

(59 UDFS erion 51,2600 1108 R1507)

‘Show Hidden
D Eamponeris

[image: image494.png]Resolve Dependency.

AT LEAST ONE of the components ited below i requited o be ADDED to the corfiguration in
order o esolve this dspendency. Please selectat least one component below and click the Add'
buton to ADD the cormponents) o the configuation.

(] 9 Avsbic Langusge Suppon Version 5.1.2600.1106 R1507]
(0] 5 Chinese - Sinplfied Language Suppan Verson 5.1.2600.1106 R1507]
(0] 5 Chinese - Tradionl Language Suppat [Version 5.1.2800.1 108 R1507]
] 9 Casch Langusge Suppon Version 5.1.2600.1106 R1507)
(] 5 Darish Langusge Sugpon Version 51,2600 106 A1507)
(5 Dutch Language Suppor [Version 5.1. 260,106 R1507]
9 Englsh Langusge Suppoit [Version 51,260 1105 A1507]
(0] 5 Frnish Langusge Supon Version 51,2600, 106 A1507)
(0] 5 Fench Langusge Sugpon Version 51,2600, 106 A1507)
0] 5 Geman Language Suppon Version 5.1.2600.1106 R1507]
] 55 Gresk Language Suppor Version 51,260,106 R1507]
(0] 5 Hebrew Language Suppon Version 5.1.2600.1106 A1507]

(] €5 Hungaiian Language Suppot [Version 512600 1106 f1507]
158k 2 &t Do 1 2600 1106 R 1R

<

Show Hidden
D Eamponeris

Add

[image: image495.png]Resolve Dependency.

EXACTLY ONE of the components listed belowis requited to be ADDED ta the corfiguralion in
order to esolve this dependency. Please select ol one companent below and cick the ‘Add
buton in order to ADD this component o the configuration.

] 5 Mirlogen [Version 5.1.2600.1106,A1507]
5 Windows Lagon (Standard) [Version 5.1.2600.1106,R1507)

‘Show Hidden
D Eamponeris

[image: image496.png]Resolve Dependency.

AT LEAST ONE of the components ited below i requited o be ADDED to the corfiguration in
order o esolve this dspendency. Please selectat least one component below and click the Add'
buton to ADD the cormponents) o the configuation.

CFAT Foml Verson 5.1 2600 R620]
] NTFS Fomat Version 5.1.2600 R620]

‘Show Hidden
D Eamponeris

[image: image497.png]& Microsoft Target Designer. - MyConfig *
Ble Edt Vew Configuration Tooks Hep

L ZAE:] CARENC

=) FAT Format [verson 5.1 6008 &
5 Floppy disk drive [Version 5.1.2¢
5 Font: Marlett [version 5.1.2600
5 Fonts: EGA [Version 5.1.2600,8.
5 Forts: Fonks Aril [Version 5.1.2
9349 components & Forts: Fonks Micrasoft_San_Ser
&5 Fonts: Fonts Tahom [Version 5
&5 Fons: Fons verdana [Version 5
) Design Templates &5 Fonts: Fonts webdings [Version

Revison: (620
- MyDevices | 5 Fants: Fans vingdings [ersion e
& Fontsivgaoem_fon [version 5.1, | Packages: [windows XF Embedded (¥

| | 3

e FAT Fomat

Fiter: [Al Comparerts

Desciption: [Famat user intetface.

TaskMName ~

[\ Vasks f Tiszages o oebug /

Ready 195 Comporents 80527KB 111844 KB SBS-L7KZBG227M) Expert Mods.

[image: image498.png]Progress:

Checking:
Checking:
Checking:
Checking:
Checking:
Checking:
Checking:
Checking:
Checking:
Checking:

Cetiicate Use Inerface Services [Version 5.1.2600.1106, R1507]
‘Cote Certfcale Services [Version 5 1.2600.1106, R1507]
Ciylographic Network Services [Version 5.1.2500, RE2L
‘Smart Card Ciyptographic Service Providers [Version 5.1.260.1106, R107]'
Primitive: Duser Version 51,2600 1105, R107]".
Credenial Management User Iterface [version 5.1, 26001106, R1S07]"
Rich Edit Contol Version 1.0 [Version 5.1.2500, RE20]"
‘Smart card Subsystem [Version 5.1.2600.1106, R1507]"
‘Command shel [Version 5.1 2600.1106, R150

CMD - Windows Command Processor [Version 5.1.2600, RE20]"

CFDB: 5,78 secs, 538 reqs. LAB: 6,66 secs, 2933 reqs, 79% hts, 200 eties
Check complee, elspsed time: 20.66 seconds
No errrs of warmings

[image: image499.png]Build MyConfie,

Buid ype:

Destinaton:

Log ie:

Progress:

Release

D

Cvinspe-devibyConfiglog

[image: image500.png]Build MyConfie,

Buid ype:

Destinaton:

Log ie:

Progress:

Release

D

Cvinspe-devibyConfiglog

Emplying mage folder.
Image folder has been emplied

Staring urvtime buid at 10/22/2004 11:1450 AM

[image: image501.png]Build MyConfie,

Buid ype:

Destinaton:

Logfie: C:\winspe-deviMyCorfiglog

Progress:

System components,tegisty and othe fies 48278KB
CFDB: D11 secs, T regs. LAB: 011 secs, 1 reqs, 0% i, 200 enlies
Files: 743, ReoE dits: 9543, Fiaups: 7033

Buid complete, elapsed e 12455 seconds, estimated urvime image sizs: 7951MB / 110.44M8 (comp
No errrs and 4 wainings

[image: image502.png]& Microsoft Target Designer. - MyConfig *
Ele Ede

=g

Vew Configuration Tooks

kel

el

@

CARENC

=l

Fiter: [Al Comparerts

9343 compornents

12 Hardware
) Software
& System
1 Legacy.
=2 Applcations
{21 Management
1 Internet
]

5) yconfig®

R, Settings
&5 Components
€5 3Com 3520 Inegrated Fast B
5 Accessibilty Core [Version 5.1.2
5 ACP1 Fixed Feature Bt [vers
3 ACPI Multprocessor PC [Version
5 Active Diectory Servie Interfac
5 Active Template Library (AT [v
) Adaptes AIC-7693 Ulral o0 PCT
5 Adminisrator Account [Verson €
& fnclog TV [Version 5.1.2600.111

& Ausio Codecs [version5.1.2600
2. onorz

E]

Name:
Version:
Qurers)
Vendar

Created:

Descipton

Windaws <P Embedded|

10

Microsaft

10/22/2004 4357 A

Configuration of Microsoft

Flatform Defirfian

x{BuiLaing:
I Building:
Builaing:
Builaing:
Builaing:
Builaing:

Budio Codecs [Version 5.1.2600,
COM Base [Version 5.1.2600, R6Z0
FBA: SCE [Version 5.1.2600 1106,
Local Security huchority Subsyst

Bstimaced component sizes

Rich Bdit Concrol Version 1.0 [Version 5.1.2600,
Rich Baic Concrol Version 3.0 [Version S.1.26001105

Rez01"
i
RL5071 "
eu (LSASS) [Version 5.1.2600.1106,
rez01"
£1507)

SCom 3920 Tntegraved Fast Echernet Controller (3CI0SC-TX Co

hocessibility Core
ACPI Multiprocessor PC

Betive Directory Service Interface (ADS:
Betive Tewplate Library (ATL)

1) core

Ris07

T\ Tase A\ Messages £ bebug

214 Components

81423k 113088KE

S65-L7KZBG227M) | Expert Mode

[image: image503.png]& Microsoft Target Designer. - MyConfig *
Ble Edt Vew Configuration Tooks Hep

REL I Q@ CARENC

gl BTG N, [Wiona P Enbodded

Fiter: [Al Comparerts

&5 Components
4 3Com 3920 Integrated Fast el | Version: 10
5 Accessibilty Core [Version 5.1.2
9949 comparents 5 ACPIFixed Feature Button [ver: | Owner()
ACPI Multiprocessor PC [Version
5 Hardware 3 Active Diectry Service Interfar | Vendor, [Mieroslt
253 Software 3 Active Template Library (ATL) [V
3 system 5 Adaptes AIC7693 Utrats0 pCt | Cresleds |10/22/2004 943574
) Legacy 3 Administrator Account [Version € —
= Applications 5 Anslog TV [version5.1.2600.11 | Deserpbor [Configuraion of Microsolt
{23 Management 5 Auio Codecs [version 5.1.2600 Platform Definiion
5 5 Internet 2° e ¥)
)

_Istarting run-viue build at: 10/22/2004 11:23:10 K.
Building: "Base Component [Version 5.1.2600.1106, RISO71"
Building: "Base Suppore Binaries [Version 5.1.2600.1108, RLS07)
Building: "bt3s4 - Model 615/620/dacablizard ipplication Sauples [Version L0, 3]

Building: "CDFE (Version S.1.2600.1106, RLSOT)
Building: "CD-RON Drive [Version 5.1.2600, R620]

Building: "Cercificate Request Client & Corcificate hucosnrolluent [Version S.1.2600.1108, R1So7)"
Building: "Cervificate User Interface Services [Version 5.1.2600.1108, RISO71"

Building: "Class Tnstall Library - Dask [Version 5.1.2600 1106, RISO71"

< |

T\ Tase A\ Messages £ bebug

214 Components G1423KB_ 113088KE SBS-L7KZBGZ27M) | Expert Mode

_1147781521

_965195173

