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Significant progress in high-resolution diffraction experiments
on powder samples has been achieved in recent years. We
present some new developments of theoretical methods for the
calculation of the pair distribution function that gives improved
agreement with experiment.

The role of the experimental resolution function in pair
distribution calculations will be discussed; together with a
comparison with high-quality measurement on lead.

An approximate expression for the non-Gaussian peak shape
that should be observed in the pair distribution function in
highly anisotropic powder materialsis derived.

Finally we discuss the importance of including all multi-phonon
processes in the comparison of theoretica models with
experimental results.



Theroleof the experimental resolution function in pair distribution
calculations

Experimental PDF:
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= Z f(Q)ein| Scattering intensity, f (q) atomic form factor.

G(I‘) is not an exact Fourier transformation of Q[S(Q)—l] since the data in
experiment can be collected only over a finite scattering momentum range

[0.Qua].

Thereisfinite resolution in experimental measurements of |(CI) .

Theoretical PDF:

This form does not take into account finite
resolution and finite scattering momentum
range in experimental measurements. The
correction to the theoretical PDF due to
finite range can be made through
convolution function (was made before).

Two peaks in experimental S(q) can be resolved as separate peaks if the distance
between them is bigger then o (g). The proposed form for experimental resolution
functionis:
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It is a$umed here that S(q') is pure theoretical intensity and S.(q) is intensity that

can be compared with experimental measurements.
Let:
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Then it can be shown that:
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Now if we assume that every atom brings its own gaussian into the G(r) then this

gaussian should be transformed according to:

F(r)=J2n1—0izexp%(r2;ri;)2E - Fc(r)=IF(r')C(r,r')dr’:\/Zn(oizlwzrz)eXp%ﬂc%)

Thus the wideness of the peaksin F_(r) isincreases with r compare with the case
of F(r). But since peaks are narrow one can substitute o2 +52r? with 62 +5%r?.
Thefina expression for pair distribution function has the form:
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In order to take into account the finite range of momentum over which scattering
intensity 1(qg) was measured it is also necessary to convolute this expression with
convolution function.

Finaly:
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We compare the results of our caculations with results of high quality
measurements on lead. In order to obtain theoreticd PDF at a particular
temperature it is necessary to calculate o,. Calculations were performed in the

frame of Kirkwood model. The method of calculation was discussed earlier (1).

Comparison with Experiment.

The parameters were chosen in order to obtain the best agreement on the forth
figure.
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Thus first three figures shows how the agreement increases when the effects of
finite range and finite resolutions are included separately and when they are
included together.

The red curve on al figures represents the results of experiment. This curve is the
same on all four figures,

The blue dotted curves shows the results of calculations when different effects like
finite range of interaction or finite resolution or both are taken into account.

Y es-means; were taken into account
No-means: were not taken into account

Fig. 1 Fig. 2 Fig. 3 Fig. 4
Finite range No Yes No Yes
Finite No No Yes Yes
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Non-Gaussian Peak Shape of Pair Distribution Function

Let suppose that we consider a crystal and the equilibrium position of an atom iis
F=(x,y,z) with respect to the “center” atom. Atoms vibrate near their

equilibrium positions. The probability that the atom i will be found in the point

F =(x,y,z) isgiven by
p( )= 1 (x=x) _(y-v) _(z-2)
X\Y,Z)= exp 2 2 2
Jenfoioio? 20 202 20

Where coordinates f, =(x,y,,z) and r =(x,y,z) are given in the frame of principal
axes, where the matrlx of displacements (u,u, )is diagonal (7 =7, +@). We want to
find the PDF (e.g. P(r)) of ahighly anisotropic (o, 20, #0,) powder materials.
Earlier when PDF was calculated it was assumed that o, =0, =0, =0 and that

Pull) = e E

Nowadays when experimental techniques for PDF measurement was improved significantly one
can expect to see the difference between measured PDF and the PDF P, (r) calculated under
assumption above.

In order to find PDF of higly anisitropic powder meterials one should perform the angular
average:
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It is easy to show that in isotropic case when (0, =0, =0, =0 ) this average leads to (exact

e A e

This result can be rewritten as;
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Thus one can see that if peaks are very narrow then the difference between P, (r) and P, (r) IS
small. But there is a possibility that in high quality measurements this difference can be seen and
P.,(r) can give better agreement between theory and experiment then P, (r).

In anisotropic case (o, #0,#0,) difference between real peak shape and its gaussian
approximation can be even bigger. We derived approximate expression (expansion) for the peak




shape in anisotropic case. In many cases this expression gives significantly better agreement with
real shape then former gaussian approximation.

Summary of derived formulas
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Multiphonon contributionsto peaksin the PDF.

If the atomsin acrystal would not vibrate then the PDF of the crystal should consist of a set of
0 -functions. Peak broadening occurs due to the atomg/lattice vibrations.

Here we discuss the role of different multiphonon contributions to the peak broadening.

The width of the PDF peak is can be calculated exactly within the

harmonic approximation by the expression
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parameter. It can be shown that Pj; (f) isequa to
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Wherethefirst termisthe Gaussian from the Bragg scattering

(with its associated Debye —Waller factor). The term linear in p is the
one phonon contribution, the term in p? is the two phonon contribution
etfc..
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Figure 1. Plot of different multiphonon contributions is shown shown
using a parameter p=(20°-0;)/20*=0.4 Which is areasonable value. The
total peak isin red, the Bragg contribution in blue, the sum of the Bragg
and one-phonon contribution in green, and the one phonon contribution
in green, the two phonon contribution in purple, and the three phonon

contribution in blue.



The peak is Gaussian if only the Bragg contribution is counted or if all
the contributions are counted. Otherwise the shape is more complex.

Figure 2 Showing how the peak in the PDF can go negative with only
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the one and two phonon pi eces added. We have aso checked that
summing up to the 3 phonon part also goes negative so it islikely that all
terms are needed for convergence.

Figures above show that al multiphonon contributions can be important

for the determination of peak shape in pair distribution function.



