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Significant progress in high-resolution diffraction experiments 
on powder samples has been achieved in recent years. We 
present some new developments of theoretical methods for the 
calculation of the pair distribution function that gives improved 
agreement with experiment.  
 
The role of the experimental resolution function in pair 
distribution calculations will be discussed; together with a 
comparison with high-quality measurement on lead. 
 
An approximate expression for the non-Gaussian peak shape 
that should be observed in the pair distribution function in 
highly anisotropic powder materials is derived. 
Finally we discuss the importance of including all multi-phonon 
processes in the comparison of theoretical models with 
experimental results. 
 



The role of the experimental resolution function in pair distribution 
calculations 

 
Experimental PDF: 
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2  Scattering intensity, ( )qf atomic form factor. 

      

( )rG  is not an exact Fourier transformation of  ( )[ ]1−qSq  since the data in 
experiment can be collected only over a finite scattering momentum range 
[ ]max,0 Q . 

There is finite resolution in experimental measurements of ( )qI . 
 
Theoretical PDF: 
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This form does not take into account finite 
resolution and finite scattering momentum 
range in experimental measurements. The 
correction to the theoretical PDF due to 
finite range can be made through 
convolution function (was made before). 

 
 Two peaks in experimental ( )qS  can be resolved as separate peaks if the distance 
between them is bigger then ( )qσ . TTThhheee   ppprrrooopppooossseeeddd   fffooorrrmmm   fffooorrr experimental resolution 
function is: 
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Then: 

( ) ( ) ( ) qdqqFqSqSc ′′′= ∫ ,  

It is assumed here that ( )qS ′  is pure theoretical intensity and ( )qSc ′  is intensity that 
can be compared with experimental measurements. 
Let: 
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Then it can be shown that: 
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Now if we assume that every atom brings its own gaussian into the ( )rG  then this 
gaussian should be transformed according to: 
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Thus the wideness of the peaks in ( )rFc  is increases with r  compare with the case 
of ( )rF . But since peaks are narrow one can substitute 222 ri δσ +  with 222

ii rδσ + . 
The final expression for pair distribution function has the form: 
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In order to take into account the finite range of momentum over which scattering 
intensity ( )qI  was measured it is also necessary to convolute this expression with 
convolution function. 
Finally: 
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We compare the results of our calculations with results of high quality 
measurements on lead. In order to obtain theoretical PDF at a particular 
temperature it is necessary to calculate iσ . Calculations were performed in the 
frame of Kirkwood model. The method of calculation was discussed earlier (1).  
 

Comparison with Experiment. 
 
The parameters were chosen in order to obtain the best agreement on the forth 
figure. 



Thus first three figures shows how the agreement increases when the effects of 
finite range and finite resolutions are included separately and when they are 
included together. 
 
The red curve on all figures represents the results of experiment. This curve is the 
same on all four figures. 
The blue dotted curves shows the results of calculations when different effects like 
finite range of interaction or finite resolution or both are taken into account. 
 
Yes-means: were taken into account 
No-means: were not taken into account 
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Non-Gaussian Peak Shape of Pair Distribution Function 
 

 

Let suppose that we consider a crystal and the equilibrium position of an atom i is 
( )iiii zyxr ,,=

�

 with respect to the “center”  atom. Atoms vibrate near their 
equilibrium positions. The probability that the atom i  will be found in the point 

( )zyxr ,,=
�

 is given by  
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Where coordinates ( )iiii zyxr ,,=
�

 and ( )zyxr ,,=
�

 are given in the frame of principal 

axes, where the matrix of displacements βα uu is diagonal ( urr i

���

+= ). We want to 

find the PDF (e.g. ( )rP ) of a highly anisotropic ( zyx σσσ ≠≠ ) powder materials. 

Earlier when PDF was calculated it was assumed that σσσσ === zyx and that 
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Nowadays when experimental techniques for PDF measurement was improved significantly one 
can expect to see the difference between measured PDF and the PDF ( )rPold calculated under 

assumption above. 
In order to find PDF of higly anisitropic powder meterials one should perform the angular 
average: 

( )
( )

( ) ( ) ( )
Ω









 −−−−−−= ∫ d
zzyyxx

rrP
z

i

y

i

x

i

zyx

new 2

2

2

2

2

2

2223

2

222
exp

2

1

σσσσσσπ
 

It is easy to show that in isotropic case when ( σσσσ === zyx ) this average leads to (exact 

result): 
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This result can be rewritten as: 
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Thus one can see that if peaks are very narrow then the difference between ( )rPold  and ( )rPnew  is 

small. But there is a possibility that in high quality measurements this difference can be seen and 
( )rPnew  can give better agreement between theory and experiment then ( )rPold . 

In anisotropic case ( zyx σσσ ≠≠ ) difference between real peak shape and its gaussian 

approximation can be even bigger. We derived approximate expression (expansion) for the peak 



shape in anisotropic case. In many cases this expression gives significantly better agreement with 
real shape then former gaussian approximation. 
 
 

Summary of derived formulas 
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Some Examples 
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Some Examples 
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Multiphonon contributions to peaks in the PDF. 
 
If the atoms in a crystal would not vibrate then the PDF of the crystal should consist of a set of 

δ -functions. Peak broadening occurs due to the atoms/lattice vibrations. 

Here we discuss the role of different multiphonon contributions to the peak broadening. 

The width of the PDF peak is can be calculated exactly within the 

harmonic approximation by the expression 
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Where: x r rij ij
2 0 2 22= −c h / σ  , µ λ σ σ σij ij= −2 22 2 2c h /  

Where the first term is the Gaussian from the Bragg scattering  
(with its associated Debye –Waller factor). The term linear in µ  is the 
one phonon contribution, the term in µ2 is the two phonon contribution 
etc.. 



 
Figure 1. Plot of different multiphonon contributions is shown shown 

using a parameter µ σ σ σ= − =2 2 02 2 2
ijc h / .4 which is a reasonable value.. The 

total peak is in red, the Bragg contribution in blue, the sum of the Bragg 

and one-phonon contribution in green, and the one phonon contribution 

in green, the two phonon contribution in purple, and the three phonon 

contribution in blue. 
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The peak is Gaussian if only the Bragg contribution is counted or if all 

the contributions are counted. Otherwise the shape is more complex.  

Figure 2  Showing how the peak in the PDF can go negative with only 

the one and two phonon pieces added. We have also checked that 

summing up to the 3 phonon part also goes negative so it is likely that all 

terms are needed for convergence. 

Figures above show that all multiphonon contributions can be important 

for the determination of peak shape in pair distribution function. 
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