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Abstract

The problem of intercalation of ions of one type into the host matrix,
initially occupied by ions of another type, is of interest because of its
relation to the development of new types of rechargeable batteries.
Intercalation occurs in materials that are used as cathodes. The
important characteristic of the batteries is the voltage-discharge curve
or open circuit voltage, describing the equilibrium voltage difference
between electrodes as a function of the amount of intercalated ions.

From the structure of some materials that can be used as cathodes, the
host matrix can be considered as two-dimensional. We use a hard-
square lattice gas to model the interaction between the ions (1). This
problem is closely related to the antiferromagnetic Ising model in an
external magnetic field. We have carried out Monte Carlo simulations
to calculate voltage-discharge and isothermal compressibility curves
for the square, honeycomb and triangular lattices at different
temperatures. In the limit of strong interactions for the square and
honeycomb lattices, there exist two regions where the voltage almost
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does not depend on the amount of intercalated charge. In the case of
the triangular lattice there are three such regions. In the same limit a
second order phase transitions has been found for all three lattices,
which results in the divergence of the isothermal compressibility at
certain critical concentrations. The positions of phase transitions are in
agreement with phase diagrams known for the lattices under
consideration.

There are many different ways to choose the form of the interaction
between the intercalation ions on the plain. We consider here one that
is relatively simple. In more realistic models one should take into
account the fact that the real interaction between the ions is the long-
range Coulomb interaction1. The modeling of the intercalation process
using more realistic Coulomb potential is the subject of future studies.

                                                          
1 Yuquing Xiao, M. F. Thorpe and J. B. Parkinson, Phys. Rev. B 59, 277-285 (1999).
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How Rechargeable Batteries Work?

Discharge Cycle in Battery
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Open Circuit Voltage (OCV)

V x
Z

Li
anode

Li
cathode

Li

� �
= −µ µ

µ Li
anode -- Chemical potentials of Li ion on anode.

µ Li
cathode -- Chemical potential of Li ion on cathode.

ZLi
-- Charge of the Lithium ion in electrons.

1) How OCV depends on the amount of Li
intercalated into cathode?

2) Are there phase transitions?
3) What is the dependence of OCV on

temperature?

Models of Intercalation Mechanism

1) Non Interacting Lattice Gas

2) Hard Sphere Lattice Gas

3) Lattice Gas with long range Coulomb interaction.

Geometry of the Intercalation Planes
1) 1D - Linear chain, as example where it is possible to find the

exact solution.
2) 2D - Square, Honeycomb and Triangular Lattices.
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Non - Interacting Lattice Gas (NILG). Exact Solution.
The results are the same for the all system since there is no
interaction between the sites.
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ni -Is the occupancy number of the site. Zero if the site is empty and
unity if the site is occupied. µ - Chemical Potential. x - Concentration.
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Hard Sphere Lattice Gas (HSLG)

H J n n n nL L i j
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It is possible in this model to obtain exact solution for the linear chain
using the Transfer Matrix Method. Final Formulas:
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It is known that there is correspondence between HSLG model and
Antiferromagnetic Ising Model (AFIM). There are the following
relationship between the parameters of those two models.
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Where q-is the coordination number of the lattice.
Because of these relations the results known for the Ising model, can
be easily transformed into results for Lattice Gas Model. There were
made a lot of efforts to determine phase diagrams and the dependence
of magnetization in Ising model on magnetic field for different
structures. In lattice gas terminology it means that the behavior of the
function x µ

& '
were studied. But in our case we are interested also in the

dependence of dx dµ  on concentration x.
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Exact Solutions for the Linear Chain in NILG and HSLG
Models.
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Hard Sphere Lattice Gas. Square Lattice.

Phase Diagram:

1

Fig. 1.
Three temperatures are below the critical temperature and one is above. For the
square lattice the critical temperature above which there is no order-disorder
phase transition is ( / ) .T Jc = 0 56 . (Onsager The dependence of chemical potential,
V on concentration x for 4 different temperatures). The dot lines denote the
critical the values of the chemical potential at which phase transitions occur.
The values of the critical chemical potential here were taken from the
approximate solution for the boundary order-disorder curve 2.
Fig.2.
The dependence of dx/dV on concentration x for 4 different temperatures.
Three temperatures are below the critical temperature and one is above. The
dot lines denote the critical values of the concentration at which phase
transitions occur. The peaks correspond to the phase transitions.

                                                          
2 Muller-Hartmann and J.Zittartz, Z.Phys. B 27 (1977) 261
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Hard Sphere Lattice Gas. Square Lattice. Fig.1.
Method of Solution: Monte-Carlo Simulations
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Hard Sphere Lattice Gas. Square Lattice. Fig.2.
Method of Solution: Monte-Carlo Simulations
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Hard Sphere Lattice Gas. Honeycomb Lattice.

Phase Diagram:

Fig. 3.
The dependence of chemical potential, V on concentration x for 4
different temperatures. Three temperatures are below the critical
temperature and one is above. For the honeycomb lattice the critical
temperature above which there is no order-disorder phase transition is
( / ) .T Jc = 0 375 (for example3). The dot lines denote the critical values of
the chemical potential at which phase transitions occur. The critical
values of the chemical potentials correspond to the peaks on the fig.5
that represents the dependence of dx/dV on x (follows).

Fig. 4.
The dependence of dx/dV on concentration x for 4 different
temperatures. Three temperatures are below critical temperature and
one is above. The dot lines denote the critical values of the
concentration at which phase transitions occur. The peaks correspond
to the phase transitions.
                                                          
3 Phys. Rev. B 62, 24 (1989) 2773



13

Hard Sphere Lattice Gas. Honeycomb Lattice. Fig.3
Method of Solution: Monte-Carlo Simulations



14

Hard Sphere Lattice Gas. Honeycomb Lattice. Fig.4
Method of Solution: Monte-Carlo Simulations
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Hard Sphere Lattice Gas. Triangular Lattice.

Phase Diagram

.

Fig.5.
The dependence of chemical potential, V on concentration x for 4
different temperatures. Three temperatures are below the critical
temperature and one is above. For the triangular lattice the critical
temperature above which there is no order-disorder phase transition is
( / ) .T Jc = 0 35

4. The dot lines denote the critical values of the chemical
potential at which phase transitions occur. The critical values of the
chemical potential were taken from the approximate curve for the
boundary order-disorder1.

Fig.6.
The dependence of dx/dV on concentration x for 4 different
temperatures. Three temperatures are below critical temperature and
one is above. The dot lines denote the critical values of the
concentration at which phase transitions occur. The peaks correspond
to the phase transitions.
                                                          
4 B.D. METCALF, Phy.Lett. (45A)  1, 1973
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Hard Sphere Lattice Gas. Triangular Lattice. Fig.5
Method of Solution: Monte-Carlo Simulation
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Hard Sphere Lattice Gas. Triangular Lattice. Fig.6
Method of Solution: Monte-Carlo Simulation
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Non - Interacting Lattice Gas. Exact Solution.

The results are the same for the all system since there is no interaction
between the sites.

H n x
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ni -Is the occupancy number of the site. Zero if the site is empty and
unity if the site is occupied.
µ - Chemical Potential. x - Concentration.
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Non - Interacting Lattice Gas
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Hard Sphere Lattice Gas (HSLG)

It is known that there is correspondence between HSLG model and
Antiferromagnetic Ising Model (AFIM):

HSLG:
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AFIM:
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There are the following relationship between the parameters of those
two models.
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Where q-is the coordination number of the lattice.
Because of these relations the results known for the Ising model, can
be easily transformed into results for Lattice Gas Model. There were
made a lot of efforts to determine phase diagrams and the dependence
of magnetization in Ising model on magnetic field for different
structures. In lattice gas terminology it means that the behavior of the
function x µ

k l
were studied.

But in our case we are interested also in the dependence of 
dx

dµ  on

concentration x. Divergence of this function can signal about the
existence of second order phase transition.
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Hard Sphere Lattice Gas. Linear Chain.
Exact Solution.

Method of Solution: Transfer Matrix Method.

Final Formulas:
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Hard Sphere Lattice Gas. Linear Chain.
Exact Solution.
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