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Significant progress in X-ray and neutron diffraction experiments on 

powder samples has been achieved in recent years. High-resolution data 

nowadays make the comparison of theoretical calculations with 

experimental measurements to a higher degree of accuracy. Because of 

this, small systematic errors that were ignored before can lead to the 

noticeable disagreement that can now be observed. 

 

It was shown [1] that in measurements of Pair Distribution Function 

(PDF) from powder samples, the positions of the peaks shifted and that 

the measured atomic distances are bigger then the actual one. It was also 

shown that the shape of the peaks is not gaussian as it often assumed. It 

was also pointed out that effect is relatively small. 

 

Here we present further developments of the work [1]. We have derived 

an approximate expression for the non-gaussian peak shape. It is the 

most probable to see this effect in highly anisotropic materials. 

Estimates for the relative size of the effect were made. In some special 

cases this is a significant correction, but usually it is not.  
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We calculated the Radial Distribution Function (RDF) for buckyball and 

benzene molecules using the Gaussian98 [2] program with AM1 and 

SNDO semi-empirical methods. Due to the highly anisotropic structure 

of those molecules one could expect that it will be possible to see in 

their RDF non-Gaussian behavior of the peaks. However it was shown 

that effect is very small for buckyballs. For the benzene molecule, the 

effect is quite large for one peak. 

 

Using the calculated results for the radial distribution function we 

calculated pair distribution function of the fullerite crystal, and a 

comparison with the experiment resulta of Billinge, Petkov and Yavas 

was made. The role of the finite resolution measurements of experiment 

is discussed. It is shown that correction to the theoretical calculations 

due to the finite resolution of the measurements significantly improves 

the agreement with experiment.  
 

*Work Supported in part by the DOE under grant # DE FG0297ER45651 
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Non-Gaussian Peak Shape of Pair Distribution 

Function 
Let suppose that we consider a crystal and the equilibrium position of an 

atom is  with respect to the “center” atom. Atoms vibrate 

near their equilibrium positions. The probability that the atom  will be 

found at position 
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Coordinates  and ( )iiii zyxr ,,=r ( zyxr ,,= )r  are given in the frame of principal 

axes, where the matrix of displacements βαuu  is diagonal ( urr i
rrr += ).  

We want to find the  for a highly anisotropic 

(

( )rP

zyx σσσ ≠≠ ) powder materials. 

Earlier, when PDF was calculated, it was assumed that 
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Nowadays when experimental techniques for PDF measurement was 

improved significantly one can expect to see the difference between 

measured PDF and the PDF  calculated under assumption 

above. 

( )rPngauss
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Performing of angular average is equivalent to the finding the mass that 

is lying on the sphere of radius . On average due to vibrations the 

mass of every atom is distributed with some probability over its own 

ellipse. It was shown that the mass distribution in every ellipse is the 

product of the three gaussians in Cartesian coordinates. The sphere of 

radius cuts the ellipses in a way that depends on the ellipse position 

and orientation.  

R

R
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To find PDF of higly anisitropic powder meterials one should perform 

the angular average: 
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It is easy to show that in isotropic case when ( σσσσ === zyx ) this 

average leads to (exact result): 
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This result can be rewritten as: 
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(D.A.Dimitrov et al. [1]). 

If the peaks are narrow the difference between  and  is 

small. But there is a possibility that in high quality measurements this 

difference can be seen and  can give better agreement between 

theory and experiment then . 

( )rPgauss ( )rPngauss

( )rPngauss

( )rPgauss

In anisotropic case ( zyx σσσ ≠≠ ) difference between real peak shape 

and its gaussian approximation can be even bigger. We derived 

approximate expression (expansion) for the peak shape in anisotropic 
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case. In many cases this expression gives significantly better agreement 

with real shape then former gaussian approximation. 

Summary of derived formulas 
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It follows from the formulas above that the biggest deviations from the 

gaussian peak shape should occur in case of strong anisotropic materials. 

The further is the peak from the origin the better our approximation 

works. On another hand the best resolution is usually achieved on the 

first peak that is the closest to the origin. 

Examples 
Exact curve is obtained by direct numerical integration of . ( )1

Gaussian curve is the curve that represents the exponential part of the 

derived formula without correction terms in brackets. This corresponds 

to the approximation that was used before. 

Formula curve shows the approximation of exact curve given by (2). 
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Non-Gaussian Peak Shape of Anisotropic Molecules 
 
Simple way to check how important the corrections to the previously 
used gaussian line shape are is to calculate Radial Distribution 
Function (RDF) and PDF of anisotropic molecules. In fact all 
molecules are anisotropic and that difference between molecules and 
crystalline solids is very important for our case. We consider 
molecules of fullerene and benzene.  

                                        

                                        

                                        

                                        One can expect that in fullerene the vibrations of the carbon atoms in 
direction parallel and perpendicular to the surface have significantly 
different amplitudes. The same can be true for in plane and out of 
plane atomic vibrations in benzene. 

 

 
In order to calculate the RDF of the molecules we have to calculate 
average (relative) displacements of the atoms ( zyx σσσ ,, ) due to their 
vibrations. The matrix of (relative) average displacements U can be 
calculated if the eigenfrequencies and eigenvectors of molecular 
vibrations are known. Our derivation shows that: 
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Where ( ) ( )
βα jiji uuuu −−  is the matrix of relative atomic displacements. 

λω  are the frequencies of molecular vibrations.  are orthogonal 
and normalized Cartesian (

λ
αie

α ) components of the atomic  
displacements that correspond to the eigenfrequncy 

i
λω .  is the 

mass of atom  and Bose-Einstein distribution function. 
im

i
 
The matrix of atomic displacements can be diagonalized and its 
eigenvalues are the squares of zyx σσσ ,, . Then the coordinates of the 
atoms in the frame where U is diagonal can be found. After that the 
application of out formulas is straightforward. 

xy

In order to calculates eigenfrequencies and eigenvectors of molecules 
vibrations we used Gaussian98 program and two semi empirical 
methods: AM1 and CNDO. 
 
In the tables below we show the values of coordinates and average 
atomic displacements for the several nearest atoms for the molecules 
of fullerene and benzene. 
 
Fullerene at 320K. All distances are in angstroms. 
R   

zyx ,,   
zyx σσσ ,,  

1.384646     
2.5638377E-03        6.5836781E-03         1.384628     
5.2550513E-02        6.6601180E-02         4.1193563E-02 

R   
zyx ,,   

zyx σσσ ,,  

1.464106     
-1.464053               -1.0683392E-02          6.3597430E-03 
4.4662178E-02        5.0684605E-02          6.5412231E-02 

R   
zyx ,,   

zyx σσσ ,,  

1.464106     
-1.3223997E-03       1.464032                   1.4654270E-02 
5.0589468E-02        4.4681683E-02          6.5730289E-02 

 
Benzene at 300K. All distances are in angstroms (From Carbon) 
R  to H 

zyx ,,   
zyx σσσ ,,  

1.099661     
-7.4287732E-07        1.099661                 0.0000000E+00 
 0.1419376                9.4040588E-02       0.1980861     

 10 
 



  

R  to C 
zyx ,,   

zyx σσσ ,,  

1.395030     
-3.0353773E-05        1.395030                 0.0000000E+00 
3.6183592E-02          3.1343620E-02       3.0343700E-02 

R  to H 
zyx ,,   

zyx σσσ ,,  

2.165508     
-1.901419                  1.036354                  0.0000000E+00
 0.1136719                0.1418967                0.2111952 

R  to C 
zyx ,,   

zyx σσσ ,,  

2.416264     
-2.416264                  3.0265868E-05        0.0000000E+00
3.6252398E-02          2.9739901E-02        2.7127609E-02   

One can see that it is the most probable to see the first peak in 
benzene since it is close to the origin and it is caused by the most 
anisotropic vibrations of the nearest hydrogen atom. 
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As one can see the corrections due to non-gaussian approximation are 

very small here. 

AM1, non gaussian
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Pair Distribution Function Of Fullerite Crystal  
 
In order to make the comparison with experiment one should 
calculate the Pair Distribution Function (PDF) defined as: 

( )[ ]orrrG ρρπ −= 4)(  
oρ  is the average density of the material it is equal to zero for the 

case of a single isolated molecule.  The ( )rρ  obeys normalization 
condition: 

( ) ( )drrrRN
R

∫=
0

24 ρπ  

Where  is the number of atoms inside the sphere of radius( )RN R . 
Thus for the single molecule we have: 
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newP  is the new derived function that should substitute old gaussian 

approximation.  In case of X-ray scattering and  stand for the 
number of electrons in the cental atom and atom . The same 
function can be plotted for the old gaussian approximation in 
assumption that 

oZ iZ
i

Σ=σ . 
 
Next two pictures show the calculated  for the case of fulleren 
and benzen. 

( )rG

 
One can see that the role of the corrections in case of is very 
small. 

60C

 
In case of benzene there is significant effect that corresponds to the  
Carbon-Hydrogen peak. Unfortunately the intensity is smaller then 
intensity of Carbon-Carbon Peaks. 
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Here the corrections due to non-gaussain approximation are bigger, 
but they are related to the small first peak. Hydrogen is one of the 
atoms that cause the first peak. That is why it should be hard to 

measure in the X-ray diffraction experiments. 

Non Gaussian
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Pair Distribution Function of the Fullerite Crystall. 
 

 
The molecules of fulleren form fcc crystal. At 320 K molecules 

rotales around there centers. 
 
It is important to compare the results of out calculations with the 
experimental measurements [3].  
 
Let suppose that we sit on a particular atom that belongs to some of 
the fullerene molecules. Then we can see that atoms that belong to the 
same molecule as the atom on which we are sitting are in more or less 
fixed positions with respect to us. On another hand due to the 
rotations of fullerene molecule we see the smooth distribution of the 
atoms mass over the surfaces of the others molecule.  
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Thus the contribution to ( )rρ  from the other molecules can be 
modeled as the RDF of two spherical shells with continuous 
distribution of mass.  
 
Thus ( )rρ  consist of two parts contribution from the atoms in the 
same molecule ( )rmolρ  and contribution from the others molecules 
(correlations) ( )rcorrρ .  

( ) ( ) ( )rrr corrmol ρρρ +=  
 
I discussed above only the first contribution. For the details of second 
contribution you can to the M.Lei’s poster.  

PDF of the fullerite. 
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The agreement on the pictures above can be improved if one will take 
into account the finite resolution in experimental measurements of the 
scattering intensity.  
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The Pair Distribution Function of Fullerite with correction 
to the finite resolution in the measurements of scattering 

intensity. 
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