Spartan Infrared Camera

High Resolution Imaging for the SOAR Telescope

www.pa.msu.edu/~loh/SpartanIRCamera

Ed Loh, Physics & Astronomy
Michigan State University, East Lansing, MI
Loh@pa.msu.edu

• Observing with tip-tilt correction for atmospheric turbulence
 – High angular resolution: 0.2 arcsec
 – Imaging at the diffraction limit @ H & K

• Instrument Design
 – Aluminum mirrors
 – Symmetry ⇒ stiffness
 – Alignment of optics with metrology
 – Novel thermal reflector
Science Objective: High Resolution Imaging

- Prediction for tip-tilt correction of atmospheric turbulence
 - @ 500nm, $r_0=20\text{cm}$ (median seeing) & 30cm (top 25%)
- Observing with tip-tilt
 - Point-spread function has spike of diffraction width & broad wings
 - Spike has substantial amount of light in H & K bands.
 - \[\text{Strehl} = \frac{\text{amplitude in diffraction core}}{\text{ideal}} \]
 - For optimal estimate of flux of point sources, tip-tilt gets 0.4 mag deeper or takes $\frac{1}{2}$ observing time.
- For 1hr exposure, $m\text{J}=24.6$, $m\text{H}=23.1$, $m\text{K}=23.2$.
 - 5σ; aperture for max S/N; median seeing; 10C; $\varepsilon=0.1$; MKO filters.
Turbulence with finite scale

- Model with turbulence cut off at 25m (Tokovinin 2003, “SOAR AO CoDR, Appendix A.”)
 - $r_0=15\text{cm}$ & 25cm. (Same seeing; reduced image motion)
- Substantial improvement with tip-tilt
• J, H, & K spectral bands 1-2.4\(\mu\mbox{m}\)
• Rockwell HgCdTe 2048x2048 detectors
 – Two initially
 – Four in a year (B Barbuy & S Viegas)
• Modes
 – Wide-field imaging at f/12
 – Diffraction-limited imaging at f/21
 – Grism spectroscopy; resolution 200. (Descoped)
 – Coronagraphic mask
• Filters
 – J, H, K
 – Others can be added. Need $.
Aluminum Mirrors

- Advantages for aluminum
 - Mirror can be installed by metrology of mirror pads.
 » **Mirror fabricated, polished, & tested while bolted to master jig.**
 » **Mirror surface & mounting pads located by interferometry**
 - Focus is athermal, since mirror & COB are both aluminum
 » **Install & test at 300K; run at 77K.**

- Details
 - Surface accuracy 50nm (PV) ⇒ Strehl of 4 mirrors is 0.991 @1200nm.
 - Axsys Technologies, Rochester Hills, MI
 - Computer-generated hologram
 » **Makes reflected wave from off-axis asphere into a sphere**
 » **Creates alignment for master jig & interferometer**
 - Diamond-turned surface; nickel coated; polished; Ag with SiO2 coating. 99% reflectivity.
Spartan Infrared Camera

Symmetrical Design

- Boresight requirement: Detector & tip-tilt sensor maintain alignment as Nasmyth port turns
 - 0.04” in sky
 - 5µrad for mirrors inside instrument
- Symmetry eliminates torques
- Cryo-optical box (COB) has two plates & optics are mounted on posts centered between plates
 - Gravity is parallel to plates of COB
 - No torque parallel to plates
Spartan Infrared Camera

Machining the Cryo-optical Box
Post for Fold Mirror

- Posts designed to eliminate torque parallel to mirror surface
 - Put CM on neutral axis

\[g \perp \text{mirror} \]

\[g \parallel \text{mirror}. \] Tilt of mirror & post opposite
Thermal Reflector

- Thermal radiation in the 120x120mm opening is 4.7W. Thermal load is 4.1 W for all else.
- Thermal reflector is a plane & hemisphere. Cases:
 - Hemisphere reflects radiation back directly
 - Hemisphere & plane make a corner reflector to reflect radiation back
 - Radiation enters entrance aperture
 - Radiation is absorbed in thermal reflector
- Fabrication
 - Hemisphere is polished Al
 - Plane covered with aluminized mylar
- Thermal reflector reduces load by 0.34.
- Total heat load of 1000x700x400mm cryogenic box is designed to be 6W. (3L/day of N2)
 - Currently, we measure 14W. Conduction because of H₂?
Spartan Infrared Camera

First Cold Test w/o Optics
Filter wheels

- Designed by René Laporte
- Filters can be inserted through port in vacuum enclosure.
 - Warm-up required. Disassembly of optics not required
- Positions
 - 18 on filter wheel #1
 - 11 on wheel #2

V-groove, half cylinder, & latch
Lyot stop
Filter
Alignment with Metrology

- Problems with optical alignment
 - Many degrees of freedom: Two off-axis aspherical mirrors, two fold mirrors
 - Adjustments have thermal problems
- Align with metrology
 - Require 0.1 mm & 0.15 mrad precision.
 - Coordinate-measuring machine has 6µm accuracy over 1000x700x400mm volume
 - Mirrors fabricated with accurately placed pads.
 - Shim is between cryo-optical box (COB) & post for optic. Shim allows x-y motion, machined for z. Shim pinned to COB.
Spartan Infrared Camera

Electronics

- Use NI I/O card, which has LabView driver
- Four custom cards
 - Umbilical board for serializing/deserializing. One for 4 detectors
 - Controller board to control & read detector. One 3U (160x100-mm) board per detector. 1.5 Watts
 - Detector board for thermal isolation
 - Flexible cable between controller & detector. Potted to vacuum bulkhead. Thermal isolation. Microstrip ⇒ very clean signal path.
The Team

- Members & responsibilities
 - J Biel (technician), electronics
 - J Chen (gs) & N Verhanovits (gs), software
 - E Samet & Hanold (ug), testing, metrology
 - B Lien (gs), testing
 - D Circle, D Keesaer (MC Molds), R Laporte (INPE), & O Loh (JHU), mechanical
 - M Davis (gs, now at SWRI), optics
 - MSU Phys-Ast shop & McMolds, mechanical fabrication
 - E Loh, PI