Software Manual
Spartan IR Camera for the SOAR Telescope

Edwin D. Loh

Department of Physics & Astronomy
Michigan State University, East Lansing, M| 48824

Loh@msu.edu 517 355-9200 x2480

22 March 2006

Revised 13 November 2006

Revised 17 April 2007

Added Health of Instrument 7 April 2009

Contents

1 Software Overview
1.1 Getting Started|
(1.2 Operating Other Components|

....................................
[2.3 Testing Scripts|

imul mer

[4_Datal
4.1 File Treel e

4.3 Software Configuration|.
4.4 QUEUES|. e e e e e

D r Controller

5.1 Atomic functionsl
[>.2 Multiple Detectors|
(5.3 Umbilical and NI6533 Input/Output Cards|

w

1 SOFTWARE OVERVIEW

5.4 CameraControlvil 29
5.41 MemoryUsage|. 30
5.4.2 Controling CPUUsage| 37
{6 Graphical User Interface | 38
[/ Observatory | 39
[8__Mechanisms | 41
[9 Logging Temperature and Pressure | 42
[10 Health of the instrument | 43
[10.1 Requirements| e e e e e 43
[10.2 SpartanHealth| o 43
|11 Troubleshooting | 45
[12 Operating Model and Security | 45
(13 Installation | 45
[14 Cold Start | 47
|A Brief Description of All VIs | a7
IA.1 VIs Specific to SpartanGULvi 0oL 47
IA.2 VIs Specific to CameraControl.vi| 48
IA.3 VIs Specific to MotorControl.vi|. 49
IA.4 VIs Specific to the Command-line Interface| 51
IA.5 VIs Commonto Several Groups| 52
A6 _OtherVIs|. e 53
[B_Otnher Documentation | 54

1 Software Overview

The software uses LabView, a graphical language, and we adopt the terminology of Lab-
view[l

1A program or subroutine is called a virtual instrument (V1). A VI has a front panel, which is for operating
it, and a diagram, which is the “code.” The front panel may be visible, the case for VIs that the observer

2

1.1 Getting Started 1 SOFTWARE OVERVIEW

Much of the documentation for using the software is on the front panel of the VI. Spar-
tanGUI has tip strips and context-based help , which explain most controls and indica-
tors. A tip strip for a control or indicator pops up with a message when the mouse moves
over it. To see the help for controls or indicators, press <cntl>+H to turn on context-
based help. Then move the mouse over a control or indicator. Pressing <cntl>+H
another time turns off context-based help.

1.1 Getting Started

There are two user interfaces:

SpartanGUI is the control panel for the observer and the engineer. In normal operation,
the observer need only look at this window. Status information is in the top sec-
tion. The observing functions are in the observing panel. The notebook maintains
a record of the observations; the observer can log comments in the notebook. To
start the software, open \homeSpartan\SpartanGUI.vi, and the window in
lure 1] should appear. Then select the Help tab control for instruction. SpartanGUI
has several tab controls.

Observing (Figure 1) is for the observer. The observer presses buttons on Spar-
tanGUI to set exposure time, take pictures, change filters, and switch between
the wide-field and high-res modes.

Setup is to setup the detector and the mechanisms. The operations are
(1) choose the detectors, (2) load the operating voltages for each detector,
(3) initialize the mechanisms, (4) test the home positions of the mechanisms,
and (5) find and store new home positions. The parameters that are unlikely to
need changing are in a tab control, the two tabs of which are named Detector
and Plugln. Select the button FauxHardwareOK to run without any hardware.
Observers should not normally use this tab.

forMechanismEngineer is for monitoring the mechanisms and more
detailed control of them. Normally, the mechanism moves by the amount
needed to change the optic, an example of which is the 20° to move between
filters. This panel allows movement by steps of 0.002°. Observers should not
normally use this tab.

controls directly, or hidden. The front panels of most Vis are kept hidden, since the observer does not
need to see the internal details of the software. Controls are devices on the front panel by which the user
controls the software. Examples of controls are buttons and boxes in which to enter text. Indicators are
devices on the front panel by which the software gives information to the user. Examples of indicators are
lights and boxes in which the software writes data.

1.2 Operating Other Components 1 SOFTWARE OVERVIEW

Glossary contains definitions of terms, an optical schematic, and a map of the
detector layout.

InstLog maintains a record of mechanism movement and unexpected problems.
The observer may add comments that will help diagnose problems.

Help (Figure 5)

In order to reduce clutter, most of the VIs run without a visible window. To make a
VI (CameraControl, LogTempPressure, Mechanismlnitiation, MechanismHoming,
MechanismMoving, PGauge, TUI Link) visible, use the Window pulldown menu of
SpartanGUI. (The pulldown menus are not visible in the figures.) Seeing these Vls
is useful for diagnosing problems but not useful for observing.

StartanTUI is a text-based user interface for the instrument. It allows the user to run a
sequence of operations using a script. To start the text-based user interface, open
\homeSpartan\SpartanTUI.vi. The window in appears. Then press
the run button, which is a fat arrow at the top of the window, or press <ctrl>+R.
See 2| for detailed instructions.

To test your command or script for syntax errors, press the button Test Command .
To run the command or script, press the button Run Command .

1.2 Operating Other Components

Beside the user interfaces, these are the other main software components are:

CameraControl (Figure 6) controls the detector. It sends commands to the detector
controller cards and receives status and images from them.

Mechanisminitialization initializes the mechanisms by initializing the motor controllers
and reading the locations of each mechanism from files on the disk. The mecha-
nisms are the filter wheel, pupil wheel, field-mask wheel, f/12 camera mirror, and
f/21 camera mirror. The motor controller number and axis number on the controller
are shown for each mechanism.

The status for each mechanism indicates the optic that is selected, whether the
positioning is correct, and whether the position is known. The position may not
be known if the computer crashed while the mechanism was being moved. The
position may be incorrect if the mechanism was moved between two optics; e. g.
between two filter positions.

1.2 Operating Other Components 1 SOFTWARE OVERVIEW

Also shown are the states of the reverse and forward limit switches. If both limit
switches are engaged, which is physically impossible, then the rotation stage is not
installed: both switches are not electrically connected to the motor controller and
therefore open.

MechanismHoming (Figure 7) locates the reverse limit of a mechanism in order to test
or set its home position. Since the mechanisms do not have feedback, the position
is inferred from the home position and the number of steps the motor moves.

To find home, the mechanism (1) moves off of the reverse limit, if needed, (2) moves
in the reverse direction until the limit switch engages, (3) moves forward slowly to
disengage the limit switch, (4) moves slowly in the reverse direction to find the limit
switch a second time, (5) moves to +400 steps from the reverse limit, backing into
the final position to eliminate backlash. (See for a plot of position vs.
time during homing.) Moving slowly onto the reverse limit (step 4) minimizes errors
such as bouncing and delay between switch closure and sensing it. The history
indicator shows the success or failure of each step.

To save subsequent plots of the motion to find the reverse limit, press the button
save plot . The plots are saved in the directory for instrument logs, and the file
name is FRL-yyyy-mm-ddThhmmss.png. For example, if the date is 1 Nov 2006,
and the time is 23:15:13, then the file name is FRL-2006-11-01T231513.png.

Two parameters for this VI may require changing, if the motor speed is changed.
The velocity override is the percent of normal speed at which the mechanism ap-
proaches the reverse limit to find it accurately. The timeout is the maximum time
to wait for the mechanism to find home for step 1. It is set at 90 s; the time to turn
180,000 steps (360°) at 2600 step/s is 70s.

MechanismMoving moves the mechanisms.

To save subsequent plots of the motion, press the button save plot . The plots are
saved in the directory for instrument logs, and the file nhame file name is Move-
yyyy-mm-ddThhmmss.png. For example, if the date is 1 Nov 2006, and the time is
23:15:13, then the file name is Move-2006-11-01T231513.png.

FITSServer writes images on the disk in FITS format.
PGauge reads the Inficon pressure gauge.

LogTempPressure maintains a log of the temperatures at several points in the instru-
ment and the pressure inside the instrument. The time step is how often to save

1.2 Operating Other Components 1 SOFTWARE OVERVIEW

a sample in the log file. You may choose which temperatures to show on the plot.
The VI records the temperature and pressure even if they are invalid.

SpartanServer implements the communication model of the observatory control system
(OPEX). SpartanServer receives commands from a client and passes them on to
StartanGUI. In addition, it sends status to the client. The text-based user interface,
SpartanTUI, is such a client.

SOAR MICHIGAN STATE
TELESCOPE m Y Y UMNINYERSITY

e 0026207 e [l 4263

20:15:26

Get N Picture Pairs; N is off target
—_— e ———————
Change Exposure Timeto |5 |
—_— e ——————————

vk
Lrvased g
Dorcsice g
Lovres g

Change Filename Prefix to
_—

Notebook [Show Contexual HeIpJ [Put Off Line] l Bhort] [Stop J
-

20:15:07 Image 002-6226 Focus 0.000s 17 Dark Slide LRMasked High j

20:15:21 Image 002-6227 Focus 13.865s 17 Dark Slide LRMasked High v

| Append to Notebook

Figure 1: SpartanGUI, the graphical interface of the software, with the observing panel selected.

1.2 Operating Other Components 1 SOFTWARE OVERVIEW

1 Native Commands

Native commands (Table 1 & Table 2) are defined by the Spartan software itself. The
more commonly used native commands can be abbreviated. The shortest possible ab-
breviations are in the tables.

Commands are not case sensitive.

Many commands require a parameter. For example, to move to a filter, the parameter
is the filter name. To move to the J-band filter, type

filter J
To execute a command without a parameter more than once, type
<command> <number of times to execute it>
For example, to get 5 pictures, type

getpicture 5

2 Scripts

You may write scripts, which are combinations of native commands and other scripts. To
execute a script, type

<script name> <number of times to execute it>
For example, to execute the script, runHRCollimator.txt, 34 times, type
runHRCollimator 34

You may put comments in a script: What follows a semicolon “;” is a comment.

Scripts are text files <scriptName>.txt. The script name must not be the name of a
native command or an abbreviation of a native command. To be safe, you may begin the
name of the script with the letter “z,” which will never be used for native commands.

The software searches for scripts first in scriptFolders (on the front panel), in order,
starting with folder 0. If not found, then the software searches in defaultFolder . If Spar-
tanTUl is running as a stand-alone application, the default folder is \script in the folder
of SpartanTULl.exe. If Spartan.vi is running, the default folder is \home Spartan\script.

Here are two examples of scripts. The script exerciseHRCollimator calls runHRColli-
mator. The script exerciseHRCollimator.txt:

Figure 2: SpartanTUI, a text-based user interface. The VI accepts primitive commands
and scripts, for which the VI searches in *scriptPaths” and if not found there, then in
\ SpartanHome\ Script. You may either run the command (press Run Command) or test the
command without running it (press Test Command).

1.2 Operating Other Components 1 SOFTWARE OVERVIEW

SOAR Spartan IR Camera MICHIGAN STATE

. . L Y] T 5 N
TELESCOPE S ®® inogeD staws Piastee O 0V ERSTT

e oooios Wiae o

é Filter Wheel

forEngineering

I_Show Contexual Help [Put Off Line] [Abork] [Stop]

Notebook

E‘
I Append to Notebook

Figure 3: SpartanGUI with the panel setup selected.

1.2 Operating Other Components 1 SOFTWARE OVERVIEW

UNIYERSITY

SOAR

TELESCOPE

| Wl
e ae Mo |
f I I [120:14:04 |

-
ke
- _

JHigh Res | HignRes

lowRes | LowRes

[Put Off Line] [Abort] [Stop J

I_ Show Contexual Help]

Notebook

J

Append to Notebook

Figure 4: SpartanGUI with the panel forMechanismEngineer selected.

1.2 Operating Other Components 1 SOFTWARE OVERVIEW

SOAR Spartan IR Camera MICHIGAN STATE

. . L Y] T 5 N
TELESCOPE S ®® inogeD staws Piastee O 0V ERSTT

0001193 i o

Inst Diagram || about Spartan

I_Show Contexual Help] [Put Off Line] [Abork] [Stop]

Notebook

J

Append to Notebook

Figure 5: SpartanGUI with the panel help selected.

10

1.2 Operating Other Components 1 SOFTWARE OVERVIEW

Spartan IR Camera Detector Controller
MICHIGAN STATE
* UNIVYERSITY

oie i 002-6227 °

o Wizt lo
heater [0
picoct [0
facamcd [0 =
o 10
T
iz 10|

R
- S
~ NN YN Y
o o o o o o o

—_
—
~
o

—
—
~
o

@
w

LI
o |
'=

Figure 6: CameraControl, which controls the detectors. Part of the front panel is not shown.

11

1.2 Operating Other Components 1 SOFTWARE OVERVIEW

Spartan IR Camera: Find Reverse Limit
Reverse limit for maskWheel found at -10. Not
stored. -10
history InitialPosition
offRLO |400
— FinalPosition
fou_rldRLl 400
movedOffRL2 5
foundRL3 a
moveToOffset4 savePlot
=
success
action
1 , LS Time[s]
F)l Keep position $)|2 ——
controller |Timeout(90000ms) object ImaskWheeI . Fomae Lt
2 90000 ;
| . . executing Reverse limit for . Reverse Limit
axis VOverride(20%) _
maskWheel found at -10. osition
|2 |20 Not stored. P | 400
offsetTo Status
400 0 . Run/Stop 8 @ Velocity Threshold
e G 1) Profile Complete 9 @ Position Brkpt
status code 2 Motor Off 10 Home Found
do 3 Following Error 11 Index Found
SEIITEE 4 Limit 5wich 12 :lgh Spe;fj Cipture
Yevaee i e I 5 Home Switch 13 J everse Direction
maskWheel found 6 SW Limit Switch 14) Blend Complete
at -10. Not =l 7 Reserved 15 _J Move Complete

Figure 7: FindRevLimit, which searches for the reverse-limit switch of the mechanisms in order to
index the position. The graph shows the position as a function of time. The mechanism moved
in the reverse direction until it found the limit switch, moved forward and found the reverse limit a
second time, moving more slowly, moved to 400 steps from the reverse limit, backing into the final
position to eliminate backlash.

12

2 TEXT-BASED INTERFACE

2 Text-based Interface

For running repetitive sequences of tasks, Spartan has a text-based user interface, Spar-
tanTUI, which passes commands to the graphical user interface, SpartanGUI.

2.1 Native Commands

Native commands (Table 1] & [Table 1)) are defined by the Spartan software itself. The
more commonly used native commands can be abbreviated. The shortest possible ab-
breviations are in the tables.

Commands are not case sensitive.

Many commands require a parameter. For example, to move to a filter, the parameter
is the filter name. To move to the J-band filter, type

filter J
To execute a command without a parameter more than once, type
<command> <number of times to execute it>
For example, to get 5 pictures, type

getpicture 5

2.2 Scripts

You may write scripts, which are combinations of native commands and other scripts. To
execute a script, type

<script name> <number of times to execute it>
For example, to execute the script, runHRCollimator.txt, 34 times, type
runHRCollimator 34

You may put comments in a script: What follows a semicolon “;” is a comment.

Scripts are text files <scriptName>.txt. The script name must not be the name of a
native command or an abbreviation of a native command. To be safe, you may begin the
name of the script with the letter “z,” which will never be used for native commands.

The software searches for scripts first in scriptFolders (on the front panel), in order,
starting with folder 0. If not found, then the software searches in defaultFolder . If Spar-
tanTUl is running as a stand-alone application, the default folder is \script in the folder
of SpartanTUl.exe. If Spartan.vi is running, the default folder is \home Spartan\script.

13

2.3 Testing Scripts 2 TEXT-BASED INTERFACE

Here are two examples of scripts. The script exerciseHRCollimator calls runHRColli-
mator. The script exerciseHRCollimator.txt:

;exerciseHRCollimator exercises the high-res collimator

; by testing home before and after 100 movements
;test home position for motor 2

testHome 2
runHRCollimator 100 ;run script 100 times
testHome 2 ;test home again

The script runHRCollimator.txt:

;runHRCollimator moves the high-res collimator
; into the optical path and out
HRCollimator O ;move into beam

HRCollimator 45000 ;move 90 degrees
wait 60 ;wait 60s to prevent motor from overheating

2.3 Testing Scripts

You may test a script for syntax errors before you run it. Type the command for calling
the script as you normally do, and then press the button Test Command , rather than the

button Run Command .

14

2.3 Testing Scripts 2 TEXT-BASED INTERFACE

Table 1: Commonly used text commands. The shortest possible abbreviation is underlined. Com-
mands are not case sensitive. Some commands set a parameter. To find out the value of the
parameter, type the command without a parameter. For example, time 20 sets the exposure
time to 20s, and time asks for the exposure time. The query form of the command exits for
commands with a “?” in the second column.

Command Q Explanation

GetPicture Get picture: Read detector.

Time x ? Set exposure time to x seconds.

Filter x ? Move to filter x.

Pupil x ? Move to pupil stop x.

Mask x ? Move to field mask x.

Object x ? Set object name to x.

Prefix x ? Set filename prefix to x.

Resolution x ? Change ang-res to x, where x is “high” or “low.”

OLog x Write entry x into the observing log.

ng Write entry x into the instrument log.

Offset o Offset the telescope by o. The format for the telescope offset
is direction (N, S, E, or W), amount, and an optional unit (" or’),
where " is the default. Examples: offset N23.4’E3 offsets
the telescope north 23.4arcmin and east 3arcsec. offset
S5 offsets the telescope south 5arcsec.

focus x ? Move the telescope focus by x ym

defineTargets t ? Define telescope targets where t is a list, separated
by commas, of offsets from the reference. Example:
definetargets NO,N2’,S52’ ,E2’ ,W2’ defines a cloverleaf
pattern centered on the reference.

defineTargets nt ? Define telescope targets starting at target n, where t is a list,
separated by commas, of offsets from the reference. Number-
ing of targets starts with zero. If n is negative or larger than the
largest existing target number, the new targets are appended
to the existing ones.

dither x ? Set the dithering radius to x arcsec

ton ? Move the telescope to target n with dithering. Numbering of

cleartargets
reference

targets starts with zero.
Clear the target definitions
Define current telescope position as the reference

15

2.3 Testing Scripts 2 TEXT-BASED INTERFACE

Table 2: Less commonly used text commands. The shortest possible abbreviation is underlined.
Commands are not case sensitive. Some commands set a parameter. To find out the value of
the parameter, type the command without a parameter. For example, time 20 sets the exposure
time to 20s, and time asks for the exposure time. The query form of the command exits for
commands with a “?” in the second column.

InitDetector
InitMechanism
Detectors n

?

Initialize detector controllers.

Initialize mechanisms controllers.

Enable detectors n, where n is any combination of 1, 2, 3, or
4,

Home n Move motor n to home, and reset positioning.

TestHome n Test home position of motor n, but do not reset positioning.
OnLine Put instrument on line.

OffLine Put instrument off line.

Status Query status.

Sync Synchronize detector controllers.

HRCollimator x Move high-res collimator to position x.

LRCamera x Move low-res camera mirror to X.

Wait x Wait x seconds.

16

4 DATA

3 Operating the Software with a Simulated Camera

You may operate the software with a simulated camera. For example, you can time expo-
sures and take pictures even if the detector electronics are not installed on the computer.
This is useful for learning to use the instrument.

To operate with a simulated camera, open the Setup panel in SpartanGUI before you
run the software. Make the control Simulatelnstrument read “Yes.” Now run the soft-
ware. The banner will be “Simulated Spartan Camera,” rather than “Spartan IR Camera.”

4 Data

4.1 File Tree

The Spartan software must be installed with the file tree in Table[3] The folders for images,
observing logs, instrument logs, and volatile data can move; their locations are specified
in the configuration file.

4.2 \olatile Data

Volatile data are the mechanism positions and the current image ID. The data are stored
in these files, whose path is in the entry volatileDataPath in the configuration file
spartan.txt.

mechO.txt-mech4.txt Before moving mechanism 0, the flag “moving” is written to the
file mechO. txt to indicate that the mechanism position is changing. After finishing
a motion, the flag is erased and the new position is written to the file. Thus the
position of the mechanism and whether the position is accurate are both stored on
disk to ensure safe recovery from a crash. Each mechanism has its own file.

image ID.txt contains the number of the last image. The image ID is used as part of the

name of the image, and it must be unique.

4.3 Software Configuration

These files, which are in \home Spartan\Configuration, contain configuration infor-
mation.

17

4.3 Software Configuration 4 DATA

Table 3: File tree for the Spartan software. Folders that may be outside the tree are marked with
an asterisk.

H[|home Spartan top directory
B[Japp stand-alone applications
H[|SpartanTUI* stand-alone SpartanTUI
[]script scripts for stand-alone SpartanTUI
[Jcommon subVis
[]configuration Vis and .cfg files used for configuration
[]data* volatile data
|]docs documentation
[JinstLog* instrument logs
H[|modules subVis for packages
[]Jcam subViIs for detector control
[]cmdlineServer subVIs for command-line server
[|FITS subVis for the FITS server
[|mechanisms subViIs for controlling mechanisms
[|obsLog* observing logs
H[]plugin plug-ins here are visible to SpartanGUI
B[|FITS package from SOAR
| |pressure pressure gauge

[|script scripts
[Jwww html remote panels for web browsers

Table 4: Example configuration. Note: the first slash is translated to a colon; e. g., the entry
C/home Spartan/instLog translates to the path C:home Spartan)instLog.

[default] [35.9.70.129]
computerName="unknown” computerName="sextans”
imagePath="/C/images” imagePath="/E/images”
volatileDataPath="/C/data” volatileDataPath="/C/data”
observingLogPath="/C/obsLog" observingLogPath="/C/obsLog"
instrumentLogPath="/C/instLog" instrumentLogPath="/C/instLog"

[35.10.222.84]

computerName="horolog4”
imagePath="/C/images”
volatileDataPath="/C/home Spartan/data”
observingLogPath="/C/home Spartan/ObsLog"
instrumentLogPath="/C/home Spartan/InstLog”

18

4.4 Queues 4 DATA

spartan.txt has computer-specific paths. An example is in Table [4, The format is that
of Windows configuration files. The line in brackets specifies the IP number of the
computer to which the information applies.

soarCommsSpartan.txt contains IP addresses of the text-based server and authorized
clients.

defaultOptic.vi (Figure[8) contains the default mechanism positions for the high-res and
wide-field observing channels.

detectorSetpoint.vi contains locations and operating voltages of the detectors.
hdr-obs.txt contains the FITS key words that are implemented.
initDatabase.vi contains information about the observatory, telescope, and instrument.

mechanismParameter.vi (Figure [8) contains the operating information for the mecha-
nism, which are the controller and axis number to address the mechanism, the
maximum position (counting from 0), the number of steps per position, whether
to compensate for backlash, the offset from the reverse limit to the 0-th position,
whether the mechanism is a wheel (and therefore the last position is adjacent to
the first), and the serial number of the rotation stage. You must access the block
diagram to make changes.

SpartanToWheelNames.vi (Figure [8) contains the correspondence between the mech-
anism positions and names of the optics.

4.4 Queues

Queues are used to signal and to pass information.

19

4.4 Queues 4 DATA

Figure 8: Vs, defaultOptic.vi (top left), mechanismParameter.vi (top right), and SpartanToWheel-
Names.vi (bottom), for configuring the instrument. The data for mechanismParameter.vi is in the
block diagram; an indicator on the front panel is shown.

20

4.4 Queues 4 DATA
Table 5: Queues
Name Contents Originating VI Terminal VI
detector command for detector SpartanGUI CameraControl
detectorControl next operation for CameraControl CameraControl CameraControl
& SpartanGUI
abortCam signal to abort operation of Cam- SpartanGUI CameraControl
eraControl
image information about image to save CameraControl FITSServer
mechanism command for mechanism SpartanGUI MotorControl
abortMech signal to abort operation of motor- SpartanGUI MotorControl
Control
commandLine parsed command SpartanServer StartanGUI
signal information for observer several StartanGUI
notebook entry in observer’s log several StartanGUI
instLog entry in instrument log several StartanGUI
mechStat detailed information on mecha- several SpartanGUI
nisms
lookAtMech signal to look at status of mecha- several StartanGUI
nisms after finishing a move
CloseCommandLine signal to close SpartanServer SpartanGUI SpartanServer

21

45 Instrument Status 4 DATA

4.5 Instrument Status

The software implements the device
model for SOAR communications? with

Start oper.
one exception, which is described below. - dle
The instrument may be in one of four per. finished
states. The states are these: | —
_ _ Offliné or occurred.

Idle The |pstrument is rgady but not per- Completed

forming any operation. Brror

_ _ _ _ occurred

Active The instrument is busy with an op- online

eration.

Error An error occurred. Put offline

Offline The instrument is not able to ac-

cept any commands. This state is Figure 9: Device model for SOAR communica-

used when the operator is adjusting tjons, modified from Schumacher & Ashe, 2002.
the instrument or fixing a problem.
The allowed transitions (Figure [9) between the states are these:
Idle — active occurs at the start of an operation.
Idle — error occurs with an error.
Active — idle occurs at the completion of an operation.
Active — error occurs when an operation errs or the operator aborts an operation.
Active — offline occurs when the offline operation completes.
Error — offline ocurrs at the instignation of the operator.

Offline — active occurs at the start of the command to put the instrument online.

With this device model, recovery from error occurs only with the intervention of the
operator. The operator must put the instrument offline and then back online to continue.
The purpose is to allow the operator the option to fix the cause of the error before contin-
uing. The single exception to the SOAR device model is that the transition from error to
active is not allowed.

2 Schumacher, G., & Ashe, M., 2002, “SOAR TCS: From prototype to implementation,” SPIE xxx, Xxx.

22

5 DETECTOR CONTROLLER

Detector 1 » Controller 1
Detector 2 [«—— Controller 2 —
Umbilical N NI6533 1/0O
Detector 3 » Controller 3 card card
Parallel cable
Detector 4 » Controller 4

Flex cables, Im Fiber-optic cables, 30m

Figure 10: Diagram of the electronics and cabling. The detector cards are inside the instrument.
The controller cards are on the outside of the instrument. The umbilical card is near the computer.

5 Detector Controller

The electronics consists of four kinds of cards and cabling to suit the needs. The four
detector controllers connect to the computer through the umbilical card and the NI6553
card, a parallel data card from National Instruments. See Figures[10jand[12] The detector
controllers are on the outside of the instrument, and they operate at ambient tempera-
ture. Each detector controller connects to a detector card inside the instrument through
a flexible cable. The flexible cable has a microstrip geometry: traces run over a ground,
and the impedance is 61 (). Furthermore, it serves as a thermal resistor, since the traces
are thin. Four pairs of fiber optics connect the detector controllers and the umbilical card.
The umbilical card is near the computer. A parallel cable connects the umbilical cards
and the N16533 card, which is on the PCI bus of the computer.

The umbilical and controller cards are custom. National Instruments provides a driver
and a suite of Labview software for its NI6533 card under Windows.

The umbilical card serves two purposes. First, it services four detector controllers
with a single port on the computer. This requires interleaving input data and sending
duplicate commands to each detector controller. The second purpose is to transport the
data to a location remote from the computer. (The requirement here is only 30 m, but the
design can handle 2km.) The umbilical card serializes the data to use a fiber-optic link.
In addition it has a first-in-first-out buffer with 4k 2-byte words. At a sample time of 7 us,
the data rate is 2.3 MHz for 4 quadrants on 4 detectors. The FIFO buffers 1.8 ms of data.

The detector controller and computer operate together as shown in the flowchart of
Figure

The times at which events in the controller occur are deterministic, but events in the

23

5 DETECTOR CONTROLLER

Computer Controller
S

Read

controller [«

status

Send status

|

Execute
command

Send
command to
controller

1

Figure 11: Controller flowchart on the computer side (left) and on the controller side (right). Each
cycle through the right flowchart is one frame. Links between events on the controller and com-
puter are shown as curved lines. The dashed curved line is not blocking: if no command is sent,
the controller uses a default. The two events “read image” (in red) must occur simultaneously in

the sense explained in the text.

24

5.1 Atomic functions 5 DETECTOR CONTROLLER

computer are not, since the computer performs other tasks besides those in the flowchart.
Some tasks are part of Labview, and the priority for these can be controlled. Other tasks
such as handling the mouse and running user-initiated processes cannot be controlled
by the software.

Because the computer is a fully functioning Windows computer, you must be aware of
its limitations: The Spartan software cannot block tasks that are outside LabView. When
reading an image, you must not be running other software, such as looking at images,
reading your mail, or checking ESPN.com. These tasks can be active, but they must not
be using the CPU or the disk.

The detector controller operates in frames. The detector controller executes a new
command every frame. If no command if ready, the detector controller executes the
command “idle,” which makes it do nothing until the next frame. When idle, a frame takes
384 ms. When reading a picture, a frame takes about 7's, which is the time to read the
picture.

The two events “read image” in the controller and “read image” in the computer (Fig-
ure must be simultaneous in this manner. The read operation in the computer must
start within 1.8 ms of the start of reading the image on the controller side. If not, the
FIFO buffer in the umbilical board fills, and data are lost. Once started, the NI6533 card
demands time on the PCI bus quickly enough to keep up with the data from the controller
card.

The computer and the detector controller must synchronize to a frame. Here we
describe the case where data are lost. (1) The detector controller sends the status.
(2) The software reads the status. (3) The software sends a command to the detector
controller to read an image. (4) The software initiates a read on the NI6533 card. (5) The
NI6533 card is ready to accept data. (6) Data arrive. The time between events (1) and
(6) is one frame (380 ms). If task (4) is delayed, event (6) can occur before event (5), and
data are lost. Event (5) can be delayed if the computer is performing other tasks instead
of doing the tasks (2), (3), and (4). We did have problems with synchronization when the
disk was faulty and writing an image required CPU usage over a period of 15 second.
(Apparently with LabView 7.1 and Windows XP 2002 service pack 2, servicing the disk
has higher priority than LabView tasks.)

5.1 Atomic functions

Atomic functions (Table[6) are the simplest functions performed by the detector controller.
All actions performed by the detector controller may be broken up into one or more atomic
functions.

The detector controller sends status every idle frame. Status is a triplet (u,f,v +

25

5.1 Atomic functions 5 DETECTOR CONTROLLER

(%]

FYTTFITTT U

Figure 12: Umbilical card (top) and one detector controller (bottom). The brown flexible cables to
the detector run into the bottom left edge of the figure. The black parallel cable to the 6533 card
runs out the top left edge of the picture. The fiber-optic link is orange. The cards are 100 x 160 mm.

26

5.2 Multiple Detectors 5 DETECTOR CONTROLLER

2000xa) of 16-bit words. (The subscript x indicates hexadecimal radix.) In the third
word, v is the 13-bit value of temperature sensor a. Whether an exposure is in progress
determines the meaning of the u and t. If an exposure is in progress, the 27 bit of u
indicates whether the exposure completed, —t is the remaining time in 384-ms tics, and
u/100x + 100x mod (u,4) is the time kept by the controller in 327.28-us tics. If an
exposure is not in progress, t 4+ 10000xu /8 is the time kept by the controller in 40-ns
tics.

Table 6: Atomic Functions. A command is a set of four 16-bit numbers (m, c, xo,xl). A number
with the subscript x is hexadecimal; e. g., 100x = 256.

Function Command Comments

Read status Default

Null m=20 Do nothing

Flush m=1 Flush charge

Read picture m=2, Read all detectors that are enabled.
c=-—1

Flush & read m = 42, For each row of the picture, flush charge and
c=-—1 then read.

Reset m=23 Reset controller by clearing all counters. This is

used to synchronize all detector controllers.

Time exposure m = 100y, Time t is in frames of 384 ms. 0 < t < 16383.
c=—t

Load voltage m = 800y, n is the 8-bit value for address a. a = 0

c=n+100xa for vReset, 1-4 for vOffset for quadrants 1-
4, and 5 for biasGate. For vReset, the volt-
age v = 2.500n/256V; for the others, v =
4.096n /256 V.
Enable detectors m = 8000x +d d = Z?:o e;2!, where e; = 1 if the i-th detector
is enabled and e¢; = 0 otherwise.

5.2 Multiple Detectors

The camera may have one to four detectors, and this section addresses the issue of
running multiple detectors.

Each detector controller is connected to the umbilical board by a fiber-optic cable, and
communications to that detector is either open or closed. The umbilical board passes
commands from the computer to the controller only if the channel is open.

27

5.3 Umbilical and N16533 Input/Output Cards 5 DETECTOR CONTROLLER

To change the state of the channels, the computer sends the private command Enable
detectors, which the umbilical board does not pass to the controller boards. A “1” in
the most significant bit indicates a private command. The least significant 4 bits code
whether the channels are open or closed (Table [6).

The state of the channels remains until the next Enable detectors command.

When the umbilical board turns on, channel 3 is open, and the others are closed.

The data from the open channels are interleaved in the order of channel numbering.
For example, if channels 0 and 3 are open, the data arrive in this order: first datum from
channel O, first datum from channel 3, second datum from channel 0, second datum from
channel 3, etc.

If an open channel malfunctions, the data stream stops.

5.3 Umbilical and NI16533 Input/Output Cards

The link uses “burst mode,” which
transfers data on the rising edge
of a clock when both the NI6533
and the camera controller are ack]
ready. Table lists the sig-
nals. The signals reql and ackl
are active high, which is the de- .. — EREDE &
. Valid BN P AN
fault. Only group 1 signals are
used. Data on ports A and B are

used to form a 16-bit word. The
line pclk2, controlled by the com- Figure 13: Timing diagram for burst mode from 653X User

Manual, National Instruments, Jan 2001, p. 3-6. Data
transfer occurs on the rising edge of pckl when both reql
and ackl are true.

e L L L L L L L

[T L

rREQ __ L

==

==
)
==

1
| = data transfer occurs

puter, indicates the direction of
data transfer. The umbilical card
drives pclkl for transfers in both
directions, whereas the default is
that the N16533 card drives the clock for transfers to the computer and the umbilical card
drives the clock for transfers from the computer. The software controls the direction of
the clock.
These are the steps that the software takes to read or write data.

Read status orimage (1) Set pclk2 to O to set the direction of transfer to input. Set
direction of the clock to “reverse.” (2) Read data. (3) Set pclk2 to 1 to set the
direction of transfer to output and to clear data in the first-in-first-out (FIFO) buffer
in the umbilical card. Set the direction of the clock to normal.

28

5.4 CameraControl.vi 5 DETECTOR CONTROLLER

Send a command Write the command, which is a cluster of four 16-bit words.

5.4 CameraControl.vi

CameraControl.vi controls the de-

tector. It sends commands to the Table 7: Signals on the N16533 input/output card
detector controller cards and re-

ceives status and images from Name Direction Function

them. See Figure [g for the front reql input umbilical is ready to transfer data

panel. ackl output NI16533 is ready to transfer data
The block diagrams in Fig- Pclkl input clock for data transfer

ures show the decisions Pclk2 output controls direction of data transfer

and branch points. Refer to the dioa both least significant byte of data

descriptions of the Vis in the Ap- diob both most significant byte of data

pendix. The block diagrams are
readable if magnified. For each case structure, one case is shown with the structure.
You can find the other cases by searching for boxes of the same size. For some case
structures, the trivial cases are not shown. For example, if the error case is to do nothing,
it is not shown.

CameraControl.vi has two main parts. An event structure monitors the front panel.
A state machine controls the detector. Normally a state determines the next state by
gqueueing the next state in the queue detectorControl. At the completion of a state, ex-
ecution stalls until the next state is dequeued from detectorControl. StartanGUI.vi can
control execution by queueing a state.

These are the actions of the state machine:

Initialize the VI. See Figure[14]

Read Status reads the status, the queue abortCam, and the queue detector, and de-
cides on the next state, either Read Status or Send Command. See Figure[15

Read Picture reads a picture by calling readPictStepl.vi and readPictStep2.vi and then
gathering information for the FITS header. If the picture is to be saved, it puts an
entry in the image queue. See the block diagram of this state in Figure [16]

ReadPictStepl.vi, which runs at time-critical priority, performs time-critical tasks
to start reading a picture. (See the block diagram of readPictStepl.vi in the top
panel of Figure[17]) ReadPictStepl.vi must have set up the N16533 card for input,
allocated the input buffer, and started the data transfer before the buffer on the

29

5.4 CameraControl.vi 5 DETECTOR CONTROLLER

umbilical card overflows, which takes 18 ms. For this reason, as much of the initi-
ation as possible is put into this VI. When ReadPictStep1 is finished, data transfer
is under control of the N16533 card, which can control the PCI bus, and the latency
between the arrival of data on the umbilical card and transfer into the computer is
less than a ys.

ReadPictStep2.vi (bottom panel of Figure transfers data to separate buffers for
each quadrant and detector. Because there are no time-critical tasks, it runs at
normal priority.

Send Command If the command is not “read image,” then the command is sent to the
detector controllers, and the next state is Read Status. Otherwise, the next state
is Read Picture. The flag “isTiming” is set if the command is to time an exposure.

See Figure

Quit releases several queues and signals the front panel loop to quit. See Figure [19]

No Action does nothing.

5.4.1 Memory Usage

LabView is a flow-control language, and it makes a new copy of a data set when it
changes, is accessed, or reformatted. In a text-based language, the programmer reuses
the memory because it is explicitly allocated. Since the programmer has little control over
memory allocation in LabView, the memory allocation can easily grow beyond the size of
the computer memory. With our first attempt at writing CameraControl.vi, which uses the
most straightforward way of saving the image, 8 copies of the image were made.

Handling the data in “chunks” saves memory spaceE] Rather than handle the entire
image, the image is saved in a buffer in the VI GLV_I2Buffer, and chunks of it are retrieved
or stored in the buffer.

Reading the image, separating the data for quadrants and detectors from the data
stream, and saving the image on disk (with FITSServer)—all use GLV_I2Buffer.vi to store
and retrieve the data in chunks from a single copy of the image.

Two copies of the image are needed to implement correlated-double sampling. The
picture with no light is saved in memory and the difference between it and a picture with
light is computed and then saved on disk.

3The note “Managing Large Data Sets in LabVIEW” in the Developer Zone on www.ni.com has a library
GigaLabView.llb. We use GLV_WaveformBuffer.vi from this library modified to handle 2-byte data and
renamed GLV_I2Buffer.vi.

30

5.4 CameraControl.vi

5

DETECTOR CONTROLLER

E,..é
[sborcan 5 THE

ComputerTime >

Unused >

ControllerTime >

H No Error —H

d “Initialize”

—pf

Abort Queue > ==={ilij={i} 4

buffer >
dT >

Unused > —————{li
Image Queue > ==
Det Queue > ==
Timing > -

heart >

o

Paintain
Dick

Channel

(T4}

err if no Contr > =il ili—————————

4 No Error —b

@ nLiveChan

detectorControl;
gy
i g
* Initialize —|
0000000000000 00000000000000000
Monitor front panel Tell SpartanGUI
I'm awake.
o = Unblock = get = ImagelD
£ ™€ Bool (strict) gl l —I l —l l —l

" Value

Cul

o]
ol

Update
Signals

]|

Waintain ~ Keep
D Image
(Channel|__ID

D000 00000000

Oo0o0o00o000ooon

0] Panel Close?

4 Error —P

= Quit
I[Type

[EH piscard? [

11 "Qtan"

[EH 111 stop”, "Quit =]

"Onito"-

* Instrument -

D000 0000000000000
R

Figure 14: Block diagram in CameraControl.vi for the state Initialize. The VI unblocks disk access,
loads the database with information about the image and how it is to be stored, loads labels
for the temperature sensors. If there are any channels with live detector controllers, then the VI
initializes the NI6533 data port and executes the state Read Status. If no channels are live, the
VI executes the state No Action. The event structure for monitoring the front panel is the box with
striped borders at the lower left. The other events in the structure are the other boxes with striped

borders.

31

5.4 CameraControl.vi 5 DETECTOR CONTROLLER

d "Read Status" :t]

Heart| |= Heart
;Mm Upte

Signalz

‘ Executing : g §
"f: L — [TimeRemaining[tics] | ,_
,—_lget:uc;r - = Block 2, Faintain
el R m

|"' Send Command —
= Read Status —}

> Idle >
words/detector inSync

with 2-s timeout. [

LB

L

’ d False :ﬂL
Send null command

| [|
y [Errorf{verbal| T

= Send Command

Figure 15: Block diagram in CameraControl.vi for the state Read Status. If dequeuing an element
from the queue abortCam does not time out, which indicates the user wants to abort the current
command, (lower right pane), the remaining elements on the queue named detector are flushed,
a null command is queued, and an error is queued. If there is no request to abort and the
controller is timing an exposure (lower left pane), the VI blocks disk access if the exposure is
almost complete. If there is no request to abort and the controller is idle (pane inside the main
part of the block diagram), the VI reads status again and unblocks the disk if no commands are
in the detector queue. If commands remain in the queue detector, then the VI blocks the disk and
executes the state Send Command next.

(Channel

32

5.4 CameraControl.vi 5 DETECTOR CONTROLLER

[no Error P
d "Read Picture” :h

ComputerTime >

Unused >

Abort Queue >

iTimeContr

|Contr0IrCmd ll; ‘ timeout(s)” readingZero “

chunks 15
16 o

ControllerTime >

: i
SUSENE=

buffer >

dT > cad Read
Pict Pict i
Unused > ey L= 1 Y sime]
Words/det b Cee T 1| ImagelD
Image Queue > == Get — = I
9e Q NrDet] J Osviry neert pointer
Det Queue > === NrDet Param o class
Info r
Timing > —— |} - i compDrift removeDark e
M I — combineQuads
heart > e joinQuads ||~
7 — detCode | il FH
* > err if no Contr > =l T+ _status R— i
Clear err if no controller Capture database
& put in Orders
O Wi{No Error P
I? Image
| [T_obi.object -Il %8.3fs %@ o i i
[No Error —] - | || _time.expTime[s] s _ﬁ | T
[source Jab=ioees| | inst.inst D P Tell FITS server .
1 | [that pict is ready Nl
1 | filterName 7 -~
| T o | {Etucue |
| stopName N= MoteEk| | .
maskName Entry .
- ’7 -4
Image incomplete. angularRes 4

Figure 16: Block diagram in CameraControl.vi for the state Read Picture. ReadPictStepl.vi and
readPictStep2.vi transfer data into buffers. After the time-critical readPictStepl.vi completes,
GetObservatoryParameters.vi queries the observatory for telescope and weather information to
put into the Spartan database. After readPictStep2.vi completes, GetTime.vi produces the time
elapsed between the start of reading of the zero-light and nonzero-light images and converts the
time of the start of reading into local time and UTC. All of the information is captured and put into
the queue of orders for the FITS Server. The next state is Read Status.

33

5.4 CameraControl.vi 5 DETECTOR CONTROLLER

132

|0 clear all occurrences—i

+ o Read port "SI “create an occurrence taskID out
’ 10
rite bl | ToMe E SquFknRT
N 0,1 error out
partan e10Ehe| P
Control ' dag 1D b {0 P

5

4no change

#Factive high —| I

4kactive high —

4¥no change |0 set the occurrence every time a number of scans is acquired equal to the value of general value A

40 nsec

error in
(no error)

I

4no change

T no Error =P

1
| ! [signalz [y - flog]
- lprogress | n=
| i

| = = | ==
R

|

artan) i
tea 3 lerror out
[of s g sl
— If wait for occurence timed out,
proceed if nr needed =< scan backlog.
= I .

1 = False False —P]

= Unblock —|—{Maintain
IDick

{Faise —pf

2, Default =]

=1 Il

Figure 17: Block diagrams of readPictStepl (upper) and readPictStep2 (lower). ReadPictStepl
sends a read command to the controller, configures the input/output port and the clock between
the NI16533 card and the umbilical card, creates an “occurance,” which synchronizes the software
and completion of reading a chunk, which is 1/32nd of the image, and finally starts the transfer of
data into the computer. ReadPictStep2 waits for the occurance that a chunk has been transferred.
If the occurance did not time out, ReadPictStep2 calls ReadNProcessChunk to save the data
stream into separate buffers for each quadrant of each detector. When the first chunk has been
transferred, the computer time is saved as the starting time of reading. When the second chunk
has been transferred, the disk is unlocked, which allows the FITS Server to use the disk.

34

5.4 CameraControl.vi 5 DETECTOR CONTROLLER

pr— e T [T T e e R
) | |S "Send Command" :b
ComputerTime > —mp-o94——s———— MM M MMM MM -
Unused > d‘ J HF
Abort Queue > ﬂ g C ﬁ
ControllerTime > —HM [— - i \E
q [|Did not time out => got command hr
buffer > IR b T m—=]
a7 > g i Keep histor i D-ﬂ
Unused > ————— - | —— & |* Executing—H fe—m———— — . = [CmdHisti} | f H|-— ml— =]
Image Queue > ===} Updste =
9e Q Hignals —
Det Queue > ====jlli={li= — B il ==
Timing > H ‘ Executing — == = ‘ F\rﬂ
[
heart > mp ommarems] [T b : El'g
] g1 timeExposure [&—— F¥iuag] i o i
err if no Contr > ={li{i=———=() D L Decode] | f —_— =
] reset b i
- - akectr
Element = IntTime(tics) |Shatuz . | |
o IntTime(tics) JFaE |NrDet = = |]
ok —ILTIME(NICS) |
nDetectors LER] “
readPict - 1 7
readZero 1 eadingZero| | B
detCode
"1 Error
[No Error —h ; o

1 H No Error :H EA False :ﬂ" False

* Read Status

Figure 18: Block diagram in CameraControl.vi for the state Send Command. If the command is
“done,” the VI passes either “processFinished” or “processErred” to keepStatus.vi, and the next
state is Read Status. If the command is not “read picture,” the VI passes control (middle right
pane) to the state Read Picture. Otherwise the VI writes the command to the detector controller
(in the main panel) and then passes control to the state Read Status.

35

5.4 CameraControl.vi 5 DETECTOR CONTROLLER

™ g = ="
| { "Quit” »
ComputerTime > —mip-pol——AH MM ——F———————— — ——————— - 1 Drﬂ
Unused > d‘ ! Hrﬂ
abortCamQueue > q] C ﬁ
ControllerTime > q‘) Hrﬂ
buffer > - =
e e , 1
o i
Unused > ﬂ] Destroy queue [Release image queue | [Destroy abort queue H-ﬂ
image Queue > =={il for detector commands 1 o]

Tl

detector Queue >

Timing > ——— — ;] C E [=]
heart > ﬂvj B H =]
err if no Contr > ={liHi=—— ==]
4 No Error + Stop data task Tell front panel loop to quit
N | ToMe i
== |
dd =

Figure 19: Block diagram in CameraControl.vi for the state Quit. The VI destroys the queues
detector and abortCam. It queues a quit message to the image queue, which causes FITS Server
to stop, and releases the queue. The VI stops the NI6533 data channel, and stops the state
machine and event structure.

36

5.4 CameraControl.vi 5 DETECTOR CONTROLLER

5.4.2 Controlling CPU Usage

LabView controls execution of its tasks according to priority, and it maintains several
threads of tasks to make switching between tasks efficient’]

We found that these two devices, execution priority and execution threads, are not
sufficient to insure the images are read without losing data. See the beginning of the
section for a discussion about synchronizing the detector controller and software. There
are two cases where data are lost.

Writing the images on disk uses the C package CFITSIO Iibraryﬁ and the LabView
interfaceﬂ to that package. Calling a C subroutine takes execution outside the control of
LabView. Therefore, writing an image to disk completes even though its priority may be
low.

We control this problem by blocking the FITSServer at critical times. We use the idea
of a channel that is either open or closed. The FITSServer writes data using the channel.
CameraControl closes the channel at the time when reading an image starts, namely
when the integration has fewer than three tics remaining, and opens the channel after the
first chunk is read. Starting the read requires the software to execute, but after starting, it
proceeds on the PCI bus, which does not require software intervention.

The second problem is that LabView has no control over tasks that are outside of
it. The operator can start a web browser or view an image. Those tasks operate under
Windows, and Windows has no mechanism to assign priority according to a directive
from LabView. We have no way of solving this other than to advise the operator not to
run other tasks when an image is about to be read, which a short remaining integration
time indicates.

Checking whether input completed using the VI DigitalBufferRead from the NI data
acquisition library uses all of the CPU and locks out other tasks. For example, starting
Windows Explorer takes minutes. Instead we use an “occurence,” a LabView concept.
The occurence triggers when a certain amount of data (of order 256k pixels) is written
in the input buffer. When reading data, the VI readPictStep2 is made to wait on the
occurence, which has the effect of lowering its priority and not demanding CPU time.
When the occurence triggers, DigitalBufferRead.vi reads the buffer, which takes a short
time, because the data are available. Then readPictStep2 is made to wait on the next
occurence for the next block of data.

4Dorst, N., 2000, “Using LabVIEW to Create Multithreaded VIs for Maximum Performance and Reliabil-
ity, Application note 114, www.ni.com

Shttp://heasarc.nasa.gov/fitsioffitsio.html

6SOAR 2002, FITS module version 1.14, private communication, G. Schumacher

37

6 GRAPHICAL USER INTERFACE

6 Graphical User Interface

SpartanGUL.vi is the interface for the observer and the technician. See § [1] for a brief
description of its function and Figure [1] for a picture of the observing panel.
SpartanGUL.vi has several major sections, which operate in parallel.

Main event structure monitors several types of events:

Button pressed by the observer or by the handler for the command line interface.
The observer interacts with SpartanGUI by pressing buttons. Examples of
these are take picture, change exposure time, and change filter. There are
about 25 buttons.

Panel close or exit, which means the user pressed the close button, <alt>+F4,
or the exit button on the menu. This stops the software.

Menu selected The software supports three menus.

Operate The selected plug-in starts.

Browse The front panel of the selected VI changes between visible and not
visible.

Help A type of help opens.

Timeout maintains a clock on the front panel. The clock updates every timeout,
which occurs once a second.

Stop pressed closes down CameraControl.vi, FITSServer.vi, SpartanServer.vi, and
stops SpartanGUL.vi.

Handler for command line interface attends the queue commandLine. When a com-
mand appears, it presses a button as if the observer did.

Notebook handler attends the queue notebook. When an entry appears, it writes the
entry on disk and presents it in a list box on the front panel.

Handler for Instrument Log attends the queue instLog. When an entry appears, it
writes the entry on disk and presents it in a list box on the panel InstrumentLog.

Update signals attend the queue signal. When a signal appears, it writes the signal on
the front panel. Signals are the execution message, the progress bar, the heartbeat
of the detector controller, the image ID, and status.

Mechanism monitor presents status on the panel forMechanismEngineer while the mech-
anism is moving. It attends the queue mechStat.

38

7 OBSERVATORY

Advise on mechanisms reads the mechanism status and presents advice. It attends
the queue lookAtMech.

7 Communicating with the Observatory

The interface to the SOAR Telescope is the Observation Planning and Execution software
(OPEX). OPEX moves the telescope and sequences observations. Communication with
OPEX uses the SOAR Communications Language.

OPEX is a client, and SpartanServer is a server. OPEX sends a command to the
server, and SpartanServer responds promptly. If SpartanServer does not respond, OPEX
assumes the communications link is not functioning. SpartanServer does not initiate
communications with OPEX.

The commands (Table [8) fall in three classes: (1) a request to perform an action, (2) a
query about the status of the instrument, and (3) a query about an instrument parameter.

For each state of the instrument, only certain commands are allowed. For example,
moving the filter wheel is not allowed if the instrument is taking a picture. (See the column
labelled “Legal States” in Table [8])

SpartanServer handles commands from OPEX in this way for each class of com-
mand:

Perform an action If the command is acceptable, then the SpartanServer (1) responds
“Busy” to the OPEX, (2) changes the state to “active,” and passes the command to
CameraGUI. If the command is erroneous or the command is not compatible with
the state of the instrument, then the server sends the response “Error: unable to
...while ...” to OPEX.

Query status The possible responses are “done,” “busy,” “offline,” or “error.”

Query an instrument parameter The response is “done xxx,” where xxx is the instru-
ment parameter. This may be done when the instrument is performing an action. It
may not be done when the instrument is offline.

Commands may be abreviated (Table [8). Commands are not case sensitive.

39

7 OBSERVATORY

Table 8: Commands for use with OPEX. The command may be abbreviated to the underlined
part of the command. If the state of the camera is not one of the “legal states,” the command is
rejected. States are active (a), error (e), idle (i), and offline (o).

Command Meaning Legal State Responses
GetPicture Get picture: Read detector. [Busy, Error
Time x Set exposure time to x seconds. [Busy, Error
Time Query the exposure time. aei Done <x>, Error
Filter x Move to filter x. [Busy, Error
Filter Query filter name. aei Done <x>, Error
Pupil x Move to pupil stop x. [Busy, Error
Pupil Query pupil stop name. aei Done <x>, Error
Mask x Move to field mask x. [Busy, Error
Mask Query field mask. aei Done <x>, Error
Object x Set object name to x. [Busy, Error
Object Query object name. aei Done <x>, Error
@ X Set filename prefix to x. [Busy, Error
Prefix Query filename prefix. aei Done <x>, Error
Resolution x Change ang-res to x, where x is “high” i Busy, Error
or “low.”
Resolution Query angular resolution. aei Done <x>, Error
OLog x Write entry x into the observing log. [Busy, Error
ng Write entry x into the instrument log. [Busy, Error
@etector Initialize detector controllers. i Busy, Error
InitMechanism Initialize mechanisms controllers. [Busy, Error
Detectors n Enable detectors n, where n is any i Busy, Error
combination of 1, 2, 3, or 4.
Detectors Query which detectors are enabled. aei Done <n>, Error
Home n Move motor n to home, and reset posi- i Busy, Error
tioning.
TestHome n Test home position of motor n, but do i Busy, Error
not reset positioning.
OnLine Put instrument on line. 0 Busy, Error
OffLine Put instrument off line. ei Busy, Error
Status Query status. aeio Done, Busy, Offline,
Error
Sync Synchronize detector controllers. [Busy, Error
HRCollimator x Move high-res collimator to position x. i Busy, Error
LRCamera x Move low-res camera mirror to X. [Busy, Error
Wait x Wait x seconds. [Busy, Error

40

8 MECHANISMS

NI17604 NI7334
PRS110 f power drive controller
rotation [~ Motor card [«
stages 1-6 [Nie04 NI7334
power drive controller
In vacuum Cable, 6m In computer

Figure 20: Block diagram of the electronics for the rotation stages. The motor card is inside the
instrument. The controller cards are in the computer.

8 Mechanisms

The mechanisms are driven by Phytron/Micos PRS110 rotation stages. The electronics
are two National Instruments NI7334 motion controllers, one NI7604 motor drive, one
Prismatics MDM2200 motor drive, and a custom motor card (Figure [20). The motor card
acts as a thermal resistor between the rotation stages at 77 K and the vacuum bulkhead
at ambient temperature, because the traces on it are thin. National Instruments provides
a driver and a suite of Labview software for the motor drive and controller under Windows.

The motor software is straightforward, since the data rate is very low.

Power to the rotation stages is shut off when they are not moving in order to reduce
the heat load, which is 6 W were all 6 motors in the reduced current state.

When power is shut off, the rotation stage moves to a detent position, which is a
multiple of 10 microsteps. When power is turned back on, the NI7604 card powers the
motor to a multiple of 40 microsteps, regardless of the position of the motor at the time
the power is shut off. One full cycle of the motor is 40 microsteps.

With the NI 7604 motor driver, the motor phase is always the same when the power
is turned on, regardless of the phase when the power is turned off. This means that the
position is a multiple of 40 when the power is turned on. There is a range of positions 7,
where 15 < mod (n,40) < 25, that causes the motor to shift unpredictably at power
up. An example illustrates the problem. Suppose the motor is shut off at n = 18. The
motor moves to the detent position 20. (This is predictable.) At power up, the power is
turned on to a multiple of 40. The motor may move to 0 or to 40. We have found that
one motor moves in one direction at some positions and in the other direction at other
positions.

To account for this behavior at power up, the motor is moved to the position n nearest
the intended position, where 7 is a multiple of 10 and mod (n,40) # 20 before power
is turned off.

With the Prismatics MD2200 motor driver, the phase is preserved when the motor is

41

9 LOGGING TEMPERATURE AND PRESSURE

powered down.
The rotation stage is at most 10 microsteps from the intended position, which trans-
lates to 0.35mrad or 1.2 arcmin.

9 Logging Temperature and Pressure

The VI LogTempPressure logs the temperature and pressure periodically. The format of
the output file is tab-separated, which Excel can read.

The VI PGauge monitors the the Inficon BPG400 pressure gauge periodically. The
data from the gauge are read as a long stream. Synchronization is done by searching
for the start pattern (7,5). The data have low outliers. Each output reading is the 75-th
percentile of 8 samples.

42

10 HEALTH OF THE INSTRUMENT

10 Health of the instrument

For the telescope operator to monitor the health of the instrument, information about the
health of the instrument is published for the telescope operator’s console.

10.1 Requirements

e The DataSocket Transport Protocol (dstp) will be used for Vls to transfer data about
the health of the instrument. The instrument software publishes the data, and a VI
for the telescope operator subscribes to the data.

e At a minimum, the data should indicate whether the instrument is operating safely.
The data must be interpreted without expert knowledge. (An indicator that turns
red when parameters are ourside the safe range is an example.) Other information
may be provided.

e Each instrument must publish its health data. The block diagram that publishes the
data need not be made public.

e Each instrument must provide a VI that subscribes to the data. SOAR programmers
may use this VI as a template for writing tailored Vis.

e Each instrument must provide the telescope operators instructions on getting more
detailed information on the health of the instrument. (For Spartan, this is the URL
for the remote panel for LogTemperaturePressure.vi, which shows the history of the
temperature and pressure.)

10.2 SpartanHealth

The monitor for Spartan checks these conditions: (1) The Spartan software is running.
(2) The pressure sensor is operating. (3) The pressure is not too high. (4) The tempera-
ture sensor for the liquid nitrogen reservoir is operating. (5) The temperature of the liquid
nitrogen reservoir is not too hot.

The data on health is a standard LabVIEW error cluster, which consists of status,
code, and location. The status is true if the instrument is unhealthy. The code is used
to check whether the instrument is running. When Spartan is running, the code in-
creases once a minute. The location is a description of the error, which is usually the
error reported by the instrument. If, however, a problem exists with the connection to the
Datasocket server, the DataSocket error is placed in the description.

43

10.2 SpartanHealth

10 HEALTH OF THE INSTRUMENT

SpartanHealth

status
4 o

Spartan is starting up.

DataSocketServer

Remote Panel URL for more info

soaric3.ctio.noao.e| w

http://soaric3.ctio.noao.edu/
LogTempPressure.htm

SpartanHealth

status
X 20

Pressure gauge is not running.
Temperature, 439 K, is high.

DataSocketServer

Remote Panel URL for more info

soaric3.ctio.noao.e|w

http://soaric3.ctio.noao.edu/
LogTempPressure.htm

Figure 21: The front panel of SpartanHealth.vi for a healthy condition (left) and an unhealthy

condition (right)

Figure 21| shows the front panel of SpartanHealth.vi, which subscribes to the data on

health.

44

13 INSTALLATION

11 Troubleshooting

See the troubleshooting section of[Maintenance & Operating Manual, Spartan IR Cameral
ffor the SOAR Telescope.|

12 Operating Model and Security

The operating model provides access from the observer’s computer and preserves secu-
rity. The software is meant to be run using “remote panels,” a method for controlling the
software on one computer from another computer. Three computers are involved: (1) The
Spartan computer controls the hardware. An observatory person logs into this computer
with administrator’s privledges, since controlling the hardware requires such priviedges.
A server for remote panels runs on the Spartan computer. The Spartan computer must
be close to the instrument because of cable length. (2) The gateway computer runs the
software on the Spartan computer through remote panels. Using remote panels, a user
on the gateway computer is able to see and to control the front panels on the Spartan
computer. The gateway computer is at the observatory. (3) The astronomer’s computer
which may be anywhere, is connected to the gateway computer through VNC.

The server for remote panels should be set up to allow access only from the gateway
computer.

The observatory is responsible for controlling VNC access to the gateway computer.
The astronomers who are observing need access; others should not.

The directories for images, observing logs, and instrument logs on the Spartan com-
puter are accessible from the gateway computer. Their default names are c:\images,
c:\obsLog, and c:\instLog, and they may be changed by modifying the configuration
file spartan.txt.

This operating model provides security. Users on the gateway computer and the
astronomer’s computer may perform a limited set of tasks. Users may run the Spartan
software, of course, but remote panels restricts other Labview operations. For example,
users may not change the software, because the block diagram is invisible, and they may
not save the vi.

13 Installation

You must have already installed LabView (The software uses LabView version 7.1.) and
the components Traditional NI-DAQ, NI-Motion, and NI-VISA. If you are uncertain whether

45

13 INSTALLATION

the components are installed, open NI Measurement and Automation Explorer (NI-MAXE
and look at the Software tab.

The top folder of the software is \home Spartan, and the software requires the direc-
tory tree in Table 3relative to \home Spartan. As noted in the table, some of the folders
may move outside of the tree.

The steps of the installation follow. For definition of the computers involved, see

Configuration The paths of the images, volatile data, observing log, and instrument
log are in the file \home Spartan\Configuration\Spartan.txt. See and
Table[4 Make certain that the folders do exist. Make certain that the motor position
files mechO.txt through mech4.txt and image ID.txt, do exist in the folder of
volatile data. If not, copy them from \home Startan\Data.

Image ID The imade ID is a serial number unique to each image. If you moved image ID.txt,
make certain that the image ID is updated. If not, the images will have duplicate
names.

Exporting SpartanTUl SpartanTUI, a text-based interface for the camera, may run on a

separate computer. In the distribution are two versions of it, a normal vi, SpartanTUI.vi,
and a stand-alone application, SpartanTUI.exe. To export the stand-alone appli-
cation, copy the complete contents of the folder \home Spartan\app\SpartanTUI.
The software, scripts, and configuration file soar_commsnew. txt are in that folder.
You must update the IP addresses in soar_commsnew. txt before running the ap-
plication. IPClient is the IP address of the computer on which SpartanTUI is run-
ning. IPServer is the IP address of the computer that is controlling the Spartan
Camera.

Remote panels is a means to control the camera from remote computers. You must set
up the web server. In LabView, select Tools>Options. On the panel “Web Server:
Configuration,” enable the web server. On the panel “Web Server: Visible VIs,” al-
low access to all VIs. On the panel “Web Server: Browser Access,” allow “Viewing
and Controlling” for the gateway computer. Enter its IP address. Security is imple-
mented by restricting the IP address that may access the software. Three levels of
access are possible: Any user from a given IP address may either (1) control the
remote panel, (2) only view the panel, or (3) not have any access.

"To start NI-MAX, go to Start > All Programs > National Instruments > Measurement and Automation.

46

A BRIEF DESCRIPTION OF ALL VIS

14 Cold Start

On the Spartan computer (1) Log on. You must have administrator’s privledges. (2) Load
SpartanGUL.vi.

On the gateway computer (1) Establish a connection to the Spartan computer via re-
mote panels. Start any VI. Select the menu item Operate>Connect to Remote
Panel. You must specify the IP address of the Spartan computer. The name of the
VI is “SpartanGULvi” (2) Request control of SpartanGUI. Right click on Spartan-
GUI and select “Request control of VI.” (2) Start SpartanGUI by pressing the arrow
below the Edit menu or by selecting the menu item Operate>Run.

A Brief Description of All Vis

Included here are brief descriptions of all VIs except those in the SOAR Communications
Libraryﬂ the FITS packageﬂ distributed by SOAR that were not modified, and the NI
libraries. The descriptions are taken from the “description” property of the VIs. These are
accessible using context-based help and moving the mouse pointer over the icon of the
VI.

A.1 VIs Specific to SpartanGUI.vi

SpartanGUL.vi is the user interface for the detector control and motor control.
AssembleMechCmds.vi assembles commands for the mechanism queue.
defaultOptic.vi defines the default optics for LowRes and HighRes modes.
detectorSetPoint.vi returns the set points for a detector.
InitializeDetectors.vi generates primitive command to initialize detectors.

InitializeMenuForSpartanGUI.vi initializes the menus for the top-level VI. If forObserver
is true, items useful for programming are removed from the menu.

keepButtons.vi enables or disables a set of buttons.

8SOAR 2003, distribution SCLN-1.1.zip
9SOAR 2002. The last change was “2002-09-05 CLT 18:07:05 <German Schumacher> FITS module
version 1.14.

47

A.2 VIs Specific to CameraControl.vi A BRIEF DESCRIPTION OF ALL VIS

lookAtMech.vi handles the queue lookAtMech.

Notebook.vi handles instrument & observing notebooks. The notebook name is yyyy-
mm-dd.txt. If the notebook is opened for the first time, the date is written first. The
VI writes an entry with the universal time.

openHTML.vi opens HTML help for a topic.

SpartanCreatePluginList.vi Reads the plugins directory. Any VIs which are contained
in the directory are opened according to the type specifier on the front panel of this
VI. If the VI is successfully opened the title of the VI's window is placed in a list,
which will be used to create a selection list.

SpartanPlugin.vi handles plug-ins that are in the directory \ home Spartan\Plugin.

A.2 VIs Specific to CameraControl.vi
CameraControl.vi controls the detectors.
Digital Buffer Read Modified.vi returns digital input data from the internal data buffer.

GLV_I2Buffer.vi reads and writes chunks of data to a buffer to prevent creating new full
copies of the data. Modified from GLV.

hoot.vi formats information on occurances.
readNew.vi reads camera data into a single buffer.

readNProcessChunk.vi reads a chunk, splits the data into detectors and quadrants,
and stores the data.

readPictStepl.vi prepares to read an image.
readPictStep2.vi reads an image.

ToMeNew.vi controls the To_Me line, which controls the direction of data transfer on the
N16533 card.

writeOldMod.vi writes 4 words to the camera controller.

48

A.3 VIs Specific to MotorControl.vi A BRIEF DESCRIPTION OF ALL VIS

A.3 VIs Specific to MotorControl.vi
MotorControl.vi gets commands from mechanism queue and calls the appropriate VI.

findReverseLimit.vi finds the address of the reverse limit of a rotation stage. The steps
are
1. Turn power on.
2. Call findReverseLimitPrimitive.
3. Turn off power.
findReverseLimitPrimitive.vi finds the address of the reverse limit of a rotation stage.
This VI, based on the NI findReference.flx, delays when the limit switch engages in
order to recover from bouncing. (Bouncing caused findReference.flx to fail.) The
steps are
Move off the reverse limit, if it is engaged.
Back up until the reverse limit engages.
Move forward slowly until the reverse limit releases.
Back up slowly until the reverse limit engages again.
Move forward 900 steps from the reverse limit.

Back up 500 steps.

N o g bk~ N

Reset the address of reverse limit if required.

fixpositionl.vi (1) rounds the address of a rotation stage to the nearest multiple of 10 to
move to a detent position and (2) avoids the address n where mod (n,40) = 20
in order not to power up at an ambiguous position.

InitializeMotorControllers.vi initializes two N17334 motor controllers and NI7604 motor
drivers. The steps are:

1. Initialize Controller using settings in Controllerl and Controller2
2. Sets “Limit Input Polarity” to noninverting.

3. Disables the “Home Inputs.”
4

. Configures the “Inhibit Outputs” to link them with motor on and to set the
polarity.

5. Disables limit switches for the wheels.

49

A.3 VIs Specific to MotorControl.vi A BRIEF DESCRIPTION OF ALL VIS

6. Shuts the power off.
7. Reads the limit switches to determine whether rotation stages are installed.

8. Reads status and positions from disk and loads positions into the controller.

keepMechanismStatus.vi maintains the position and “moving” flag of the mechanisms.

LimitSwitchEnabled.vi returns a cluster LimitSwitchedEnabled, which is true for each
axis for which the limit switch stops motion. The limit switches are enabled for
mechanisms that are not wheels.

moveRSNew.vi moves mechanism either to an optic or to a target position. The steps
are these:

1. Turn power on.

2. Set the flag “moving” and store on disk. If “moving” is set while initializing,
then the position is lost because the motion did not finish properly.

3. Move the rotation stage. If anti-backlash compensation is needed and the
move is in the forward direction, then add 520 steps to overshoot.

4. If the move is successful and anti-backlash compensation is needed, a sec-
ond move is made to approach the position in the reverse direction.

5. Put the address in the range [0,180,000) to make it single-valued.

6. Clear the flag “moving.” Store it and the position on disk to preserve it for
restarting the software.

7. Turn the power off.

moveTo.vi moves to target position and reports position at completion.

NIQuotientRemainder.vi computes the quotient rounded to the nearest integer and the
remainder.

OptimizeMove.vi finds the target address that allows for the shortest move. This is used
for wheels where addresses that differ by a multiple of 180,000 steps refer to the
same position.

powerAxis.vi turns power to an axis on or off.

PowerOnPosition.vi find the address of a rotation stage when power turns on. Address
is the nearest multiple of 40.

50

A.4 VIs Specific to the Command-line Interface A BRIEF DESCRIPTION OF ALL VIS

PutPositioninRange.vi puts the position in the range [0,180000) and stores the position
in the motor controller.

Savelmage.vi saves image into obsLog directory. The universal time is coded into the
file name as <prefix>yyyy-mm-ddThhmmss.png. Example: If the prefix is xxx, the
date is 1 Nov 2006, and the time is 23:15:13, then the file name is xxx2006-11-
01T231513.png.

senseLimits.vi senses the forward and reverse limits for an axis.

A.4 VIs Specific to the Command-line Interface

SpartanServer.vi implements a command-line interface to Spartan. Responses to the
client are Done, Busy, Offline, or Error. Done means Spartan is free to accept a
new command that intiates action. Busy means Spartan is performing an action.
Error means the command is faulty or Spartan is in error. Offline means Spartan is
offline. Put it online. Done xxx is used to pass information to the client in response
to a query.

cmdHistory handles the queue for the command history.

CommandBase.vi converts text command into one that SpartanGUI can interpret.
commandExplanation.vi converts a command into a brief.

getCommand.vi gets commands either from the input or from a script.

parseCmdLine.vi parses command line into a command and madifiers, which delimiters
(space, tab, carriage return, and new line) separate.

parseCmdmodifiers.vi parses a line into a command and modifiers separated by whitespace.
readScript.vi reads a script

ScriptHandler.vi handles scripts. Choices of tasks are: 1) get command, 2) open script,
3) abort, 4) initialize.

SpartanQueueCommandLine.vi queues commands in the queue commandLine for process-
ing by SpartanGUI.

SpartanCmdLineHandler.vi handles queries and commands for command-line server.
VI parses the command line, creates a reply, and queues the command to Spar-
tanGUI.

51

A.5 VIs Common to Several Groups A BRIEF DESCRIPTION OF ALL VIS

A.5 VIs Common to Several Groups
CheckDiskSpace.vi checks disk space.
findOpticFromPosition.vi finds the optic from the position.

getPaths.vi gets the paths for images, the imagelD, and positional information for mech-
anisms.

keeplmagelD.vi maintains the image ID.

keeplinternalMechanismStat.vi handles the section of the global status that applies to
mechanisms.

keepStatus.vi handles the status for the Spartan camera. Actions are

startProcess to start a process and change the status to “busy.”
markStart to change the status to “busy.”

processFinished to change the status to “done.”

processErred to the status to “in error.”

shutdownFinished to change status to “shutdown.”

MaintainChannel.vi maintains a data channel, which is used to keep processes from
interfering with reading a picture. The caller can block, unblock, or seek permission
to use the channel.

mechanismParameter.vi contains parameters of mechanisms. Parameters are name,
controller, axis, maximum address, steps/optic, whether backlash compensation is
needed, address of 0-th optic, whether mechanism is a wheel, and serial number
of rotation stage.

QueueNBENtry.vi queues entries to either the observing notebook or the instrument
log.

resizePanel.vi resizes panel and locates it to upper left corner.
SpartanEncodelnstrumentParameters.vi encodes instrument parameters

SpartanHandleParameters.vi keeps instrument parameters. Actions are get, put, put
time, and put object. To change parameters, get all parameters, modify them, and
put them back.

52

A.6 Other Vis A BRIEF DESCRIPTION OF ALL VIS

SpartanQueue.vi handles the queues detector and mechanism.

SpartanToWheelNames.vi translates between indices and names for the mask, filter
and Lyot wheels.

status _decodeNew.vi decodes the detector status.
testCommand.vi tests whether command is compatible with the status.

tipsDescr manages tips and decriptions for the controls and indicators on a VI front
panel and tab control. The files are in the directory \home Spartan\docs. The
possible tasks are: 1) Do nothing. (Used when the tips and descriptions have
not changed.) 2) Get tips and descriptions from the files VINameTipStrip.txt and
VINameDescription.txt. 3) Put tips and descriptions in the files VINameTipStripOut.txt
and VINameDescriptionsOut.txt. (The idea for the VI is from John Brohan jbro-
han@TradersMicro.com.)

UniversalTime.vi produces elapsed time in seconds and UTC as a formatted string. De-
fault format is %Y-%m-%dT%H:%M:%S%3u which produces 2004-09-23T06:19:00.000.

UpdateSignals.vi queues signals for the front panel of SpartanGUI.

UTC Get Offset2.vi determines the offset between local time and UTC. (Freeware from
Moore Good Ideas, www.mooregoodideas.com.)

A.6 Other Vis
DecodeBPG400.vi decodes the data from the Inficon BPG400 pressure gauge.

FITSHandlerStep2 with GLV.vi collects information on an image and activates the FITS
Server.

FITSHandler with GLV.vi calls FITSHandlerStep2 for each detector and quadrant.

FITS_Server.vi writes images in the FITS format. Itis the SOAR FITS,ServerE] modified
to use less memory and less time. There are two sections, which are queue han-
dlers. Handler #1 dequeues a command from the image queue and runs toFITS.vi
to queue the FITS header and image information on the queue COMMANDSQ.
Handler #2 executes commands from the queue COMMANDSQ. It is the original
FITSServer from SOAR with two changes. (1) The original FITSServer required

10S0AR 2002, FITS-1.14.zip

53

B OTHER DOCUMENTATION

three copies of the image, one copy on the queue, one dequeued, and another
reformatted. Now, a pointer to the image is put in the queue, rather than the entire
image. This requires only one copy of the image, when the image is passed to
FITSWriteSinglelmageNoROL.vi. (2) Checking for disk space is how done before
reading the image. This moves this time-consuming operation to a less critical time
and reduces the number of times it is needed.

LogTempPressure.vi logs temperature & pressure.

PGauge.vi reads the Inficon BPG400 pressure gauge periodically. It monitors the queue
PGauge for a quit message. The pressure and status are put in global variables in
Environment.vit It uses the 75-th percentile to avoid low outliers.

B Other Documentation

Spartan Documentation

e |Spartan maintenance and installation manual | Loh, E., 2006.

Vendor Documentation

e |Inficon pressure gauge | Inficon, 2002, Operating Manual, BPG400 Bayard-Alpert
Pirani Gauge, www.inficon.com.

e NI digital input/output card | National Instruments, 2001, 653X User Manual,
WWW.Ni.com.

e (NI motor driver | National Instruments, 2001, MID-7604/7602 Power Drive, www.ni.com.

o |NI motor controller | National Instruments, 2001, 7344/7334 Hardware User Man-
ual, www.ni.com.

e |Prismatics motor driver | Prismatics, 2005, MDM2200 Reference & Maintenance
Manual, www.prismatics.com

54

	Software Overview
	Getting Started
	Operating Other Components

	Text-based Interface
	Native Commands
	Scripts
	Testing Scripts

	Simulated Camera
	Data
	File Tree
	Volatile Data
	Software Configuration
	Queues
	Instrument Status

	Detector Controller
	Atomic functions
	Multiple Detectors
	Umbilical and NI6533 Input/Output Cards
	CameraControl.vi
	Memory Usage
	Controlling CPU Usage

	Graphical User Interface
	Observatory
	Mechanisms
	Logging Temperature and Pressure
	Health of the instrument
	Requirements
	SpartanHealth

	Troubleshooting
	Operating Model and Security
	Installation
	Cold Start
	Brief Description of All VIs
	VIs Specific to SpartanGUI.vi
	VIs Specific to CameraControl.vi
	VIs Specific to MotorControl.vi
	VIs Specific to the Command-line Interface
	VIs Common to Several Groups
	Other VIs

	Other Documentation

