Bayard-Alpert Pirani Gauge

BPG400
BPG400-SD
BPG400-SP
Product Identification

In all communications with INFICON, please specify the information on the product nameplate. For convenient reference copy that information into the space provided below.

Validit

This document applies to products with the following part numbers:

BPG400 (without display)
- 353-500 (vacuum connection DN 25 ISO-KF)
- 353-502 (vacuum connection DN 40 CF-R)

BPG400 (with display)
- 353-501 (vacuum connection DN 25 ISO-KF)
- 353-503 (vacuum connection DN 40 CF-R)

BPG400-SD (with DeviceNet interface and switching functions)
- 353-507 (vacuum connection DN 25 ISO-KF)
- 353-508 (vacuum connection DN 40 CF-R)

BPG400-SP (with Profibus interface and switching functions)
- 353-505 (vacuum connection DN 25 ISO-KF)
- 353-506 (vacuum connection DN 40 CF-R)

The part number (PN) can be taken from the product nameplate.

If not indicated otherwise in the legends, the illustrations in this document correspond to the KF vacuum connection. They apply to other vacuum connections by analogy.

In illustrations that apply to all types of the BPG400 gauge family, the gauge with part number 353-500 is shown.

All BPG400 versions are shipped with an instruction sheet (→ [8]). BPG400-SD and BPG400-SP come with a supplementary instruction sheet describing the fieldbus interfaces and the switching functions (→ [9]).

We reserve the right to make technical changes without prior notice.

Intended Use

The BPG400 gauges have been designed for vacuum measurement of non-flammable gases and gas mixtures in a pressure range of 5×10^{-10} ... 1000 mbar.

The gauges can be operated in connection with the INFICON Vacuum Gauge Controller VGC103 or VGC40x or with other control devices.
Functional Principle

Over the whole measuring range, the gauge has a continuous characteristic curve and its measuring signal is output as logarithm of the pressure.

The gauge functions with a Bayard-Alpert hot cathode ionization measurement system (for $p < 2.0 \times 10^{-2}$ mbar) and a Pirani measurement system (for $p > 5.5 \times 10^{-3}$ mbar). In the overlapping pressure range of 2.0×10^{-2} ... 5.5×10^{-3} mbar, a mixed signal of the two measurement systems is output. The hot cathode is switched on by the Pirani measurement system only below the switching threshold of 2.4×10^{-2} mbar (to prevent filament burn-out). It is switched off when the pressure exceeds 3.2×10^{-2} mbar.

Trademarks

DeviceNet™ Open DeviceNet Vendor Association, Inc.
Contents

Product Identification 2
Validity 2
Intended Use 2
Functional Principle 3
Trademarks 3

1 Safety 6
1.1 Symbols Used 6
1.2 Personnel Qualifications 6
1.3 General Safety Instructions 7
1.4 Liability and Warranty 7

2 Technical Data 8

3 Installation 13
3.1 Vacuum Connection 13
3.1.1 Removing and Installing the Electronics Unit 15
3.1.2 Installing the Optional Extension 16
3.1.3 Using the Optional Baffle 17
3.1.3.1 Installing the Baffle 17
3.1.3.2 Replacing the Baffle 19
3.2 Electrical Connection 20
3.2.1 Use With INFICON VGC103 or VGC40x Vacuum Gauge Controller 20
3.2.2 Use With Other Controllers 21
3.2.2.1 Making an Individual Sensor Cable 21
3.2.2.2 Making a DeviceNet Interface Cable (BPG400-SD) 24
3.2.2.3 Making a Profibus Interface Cable (BPG400-SP) 25
3.2.3 Using the Optional Power Supply (With RS232C Line) 26

4 Operation 28
4.1 Measuring Principle, Measuring Behavior 28
4.2 Operational Principle of the Gauge 29
4.3 Putting the Gauge Into Operation 29
4.4 Degas 30
4.5 Display (BPG400) 30
4.6 RS232C Interface 32
4.6.1 Description of the Functions 32
4.6.1.1 Output String (Transmit) 32
4.6.1.2 Input String (Receive) 34
4.7 DeviceNet Interface (BPG400-SD) 35
4.7.1 Description of the Functions 35
4.7.2 Operating Parameters 35
4.7.2.1 Operating Software 35
4.7.2.2 Node Address Setting 35
4.7.2.3 Data Rate Setting 36
4.7.3 Status Lights 36
4.8 Profibus Interface (BPG400-SP) 37
4.8.1 Description of the Functions 37
4.8.2 Operating Parameters 37
4.8.2.1 Operating Software 37
4.8.2.2 Node Address Setting 37
4.9 Switching Functions (BPG400-SD, BPG400-SP) 38
4.9.1 Setting the Switching Functions 38

5 Deinstallation 40
6 Maintenance, Repair 42
6.1 Maintenance 42
6.1.1 Cleaning the Gauge 42
6.2 Adjusting the Gauge 42
6.2.1 Adjustment at Atmospheric Pressure 42
6.2.2 Zero Point Adjustment 43
6.3 What to Do in Case of Problems 44
6.4 Replacing the Sensor 46

7 Options 47

8 Spare Parts 47

9 Storage 47

10 Returning the Product 48

11 Disposal 48

Appendix 49
A: Relationship Output Signal – Pressure 49
B: Gas Type Dependence 50
C: Literature 52

Declaration of Contamination 53

For cross-references within this document, the symbol (→ XY) is used, for cross-references to further documents and data sources, the symbol (→ ZZ [Z]).
1 Safety

1.1 Symbols Used

DANGER
Information on preventing any kind of physical injury.

WARNING
Information on preventing extensive equipment and environmental damage.

Caution
Information on correct handling or use. Disregard can lead to malfunctions or minor equipment damage.

Notice

Hint, recommendation

The result is O.K.

The result is not as expected

Optical inspection

Waiting time, reaction time

1.2 Personnel Qualifications

Skilled personnel
All work described in this document may only be carried out by persons who have suitable technical training and the necessary experience or who have been instructed by the end-user of the product.
1.3 General Safety Instructions

- Adhere to the applicable regulations and take the necessary precautions for the process media used.
 Consider possible reactions between the materials (→ 11) and the process media.
 Consider possible reactions of the process media due to the heat generated by the product.
- Adhere to the applicable regulations and take the necessary precautions for all work you are going to do and consider the safety instructions in this document.
- Before beginning to work, find out whether any vacuum components are contaminated. Adhere to the relevant regulations and take the necessary precautions when handling contaminated parts.

Communicate the safety instructions to all other users.

1.4 Liability and Warranty

INFICON assumes no liability and the warranty becomes null and void if the end-user or third parties
- disregard the information in this document
- use the product in a non-conforming manner
- make any kind of interventions (modifications, alterations etc.) on the product
- use the product with accessories not listed in the corresponding product documentation.

The end-user assumes the responsibility in conjunction with the process media used.
2 Technical Data

Measurement

<table>
<thead>
<tr>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring range (air, N₂, O₂)</td>
<td>5×10⁻¹⁰ ... 1000 mbar, continuous</td>
</tr>
<tr>
<td>Accuracy</td>
<td>15% of reading in the range of</td>
</tr>
<tr>
<td></td>
<td>10⁻⁸ ... 10⁻⁵ mbar (after 5 min stabilization)</td>
</tr>
<tr>
<td>Repeatability</td>
<td>5% of reading in the range of</td>
</tr>
<tr>
<td></td>
<td>10⁻⁸ ... 10⁻⁵ mbar (after 5 min stabilization)</td>
</tr>
<tr>
<td>Gas type dependence</td>
<td>→ Appendix B</td>
</tr>
</tbody>
</table>

Emission

<table>
<thead>
<tr>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switching on threshold</td>
<td>2.4×10⁻² mbar</td>
</tr>
<tr>
<td>Switching off threshold</td>
<td>3.2×10⁻² mbar</td>
</tr>
<tr>
<td>Emission current</td>
<td></td>
</tr>
<tr>
<td>p ≤7.2×10⁻⁶ mbar</td>
<td>5 mA</td>
</tr>
<tr>
<td>7.2×10⁻⁶ mbar < p < 3.2×10⁻⁵ mbar</td>
<td>25 µA</td>
</tr>
<tr>
<td>Emission current switching</td>
<td></td>
</tr>
<tr>
<td>25 µA ⇒ 5 mA</td>
<td>7.2×10⁻⁶ mbar</td>
</tr>
<tr>
<td>5 mA ⇒ 25 µA</td>
<td>3.2×10⁻⁵ mbar</td>
</tr>
</tbody>
</table>

Degas

<table>
<thead>
<tr>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degas emission current</td>
<td>≥16 mA (P<sub>degas</sub> ~4 W)</td>
</tr>
<tr>
<td>(p <7.2×10⁻⁶ mbar)</td>
<td></td>
</tr>
<tr>
<td>Control input signal</td>
<td>0 V/+24 VDC, active high</td>
</tr>
<tr>
<td></td>
<td>(control via RS232 → 32)</td>
</tr>
<tr>
<td>Duration</td>
<td>max. 3 min, followed by automatic stop</td>
</tr>
</tbody>
</table>

In degas mode, BPG400 gauges keep supplying measurement values, however their tolerances may be higher than during normal operation.

Output signal

<table>
<thead>
<tr>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output signal (measuring signal)</td>
<td>0 ... +10 V</td>
</tr>
<tr>
<td>Measuring range</td>
<td>0.774 V = 5×10⁻¹⁰ mbar</td>
</tr>
<tr>
<td></td>
<td>... +10 V = 1000 mbar</td>
</tr>
<tr>
<td>Relationship voltage-pressure</td>
<td>logarithmic, 0.75 V/decade</td>
</tr>
<tr>
<td></td>
<td>(→ Appendix A)</td>
</tr>
<tr>
<td>Error signal</td>
<td><0.3 V/0.5 V (→ 44)</td>
</tr>
<tr>
<td>Minimum loaded impedance</td>
<td>10 kΩ</td>
</tr>
</tbody>
</table>

Display (BPG400)

<table>
<thead>
<tr>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display panel</td>
<td>LCD matrix, 32×16 pixels, with background illumination</td>
</tr>
<tr>
<td>Dimensions</td>
<td>16.0 mm × 11.2 mm</td>
</tr>
<tr>
<td>Pressure units (pressure p)</td>
<td>mbar (default), Torr, Pa</td>
</tr>
<tr>
<td></td>
<td>(selecting the pressure unit → 32)</td>
</tr>
</tbody>
</table>

Power supply

DANGER

The gauge must only be connected to power supplies, instruments or control devices that conform to the requirements of a grounded extra-low voltage (SELV-E according to EN 61010). The connection to the gauge has to be fused (INFICON-controllers fulfill these requirements).
Operating voltage at the gauge: +24 VDC (20 ... 28 VDC) \(^1\)
ripple max. 2 Vpp

Power consumption
- Standard: \(\leq 0.5 \text{ A}\)
- Degas: \(\leq 0.8 \text{ A}\)
- Emission start (<200 ms): \(\leq 1.4 \text{ A}\)

Power consumption
- BPG400: \(\leq 16 \text{ W}\)
- BPG400-SD, BPG400-SP: \(\leq 18 \text{ W}\)

Fuse necessary: 1.25 AT

BPG400-SD requires an additional, separate power supply for the DeviceNet interface (→ \(\equiv 24\)).

Supply voltage at the DeviceNet connector, (Pin 2 and Pin 3): +24 VDC (+11 ... 25 VDC)

Power consumption: <2 W

The gauge is protected against reversed polarity of the supply voltage.

Sensor cable

For reasons of compatibility, the expression "sensor cable" is used for all BPG400 versions in this document, although the pressure reading of the gauges with fieldbus interface (BPG400-SD and BPG400-SP) is normally transmitted via DeviceNet or Profinet.

Electrical connector
- BPG400
- BPG400-SD, BPG400-SP
 → \(\equiv 22\)
 → \(\equiv 23\)

Cable for BPG400
- Analog values only
- Without degas function
- Analog values
- With degas function
- Analog values
- With degas function
- And RS232C interface
 4 conductors plus shielding
 5 conductors plus shielding
 7 conductors plus shielding

Cable for BPG400-SD, BPG400-SP
depending on the functions used, max. 15 conductors plus shielding

Max. cable length (supply voltage 24 V\(^1\))
- Analog and fieldbus operation
 - \(\leq 35 \text{ m, conductor cross-section 0.25 mm}^2\)
 - \(\leq 50 \text{ m, conductor cross-section 0.34 mm}^2\)
 - \(\leq 100 \text{ m, conductor cross-section 1.0 mm}^2\)
- RS232C operation
 - \(\leq 30 \text{ m}\)

Gauge identification
- 42 k\(\Omega\) resistor between Pin 10 (sensor cable) and GND

Switching functions
- BPG400
- BPG400-SD, BPG400-SP
 2 (Setpoints A and B)
- Adjustment range
 \(1\times10^{-9} \text{ mbar} \ldots 100 \text{ mbar}\)
 Setpoints adjustable via potentiometers (Setpoints A and B), one floating, normally open relay contact per setpoint (→ \(\equiv 23, 38\))

Relay contact rating
- Voltage: \(\leq 60 \text{ V}\)
- Current: \(\leq 0.5 \text{ ADC}\)

\(^1\) Measured at sensor cable connector (consider the voltage drop as function of the sensor cable length).
RS232C interface

<table>
<thead>
<tr>
<th>Data rate</th>
<th>9600 baud</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data format</td>
<td>binary</td>
</tr>
<tr>
<td>Connections</td>
<td></td>
</tr>
<tr>
<td>TxD (Transmit Data)</td>
<td>Pin 13</td>
</tr>
<tr>
<td>RxD (Receive Data)</td>
<td>Pin 14</td>
</tr>
<tr>
<td>GND</td>
<td>Pin 5</td>
</tr>
</tbody>
</table>

(Function and communication protocol of the RS232C interface → 32)

DeviceNet interface (BPG400-SD)

<table>
<thead>
<tr>
<th>Fieldbus name</th>
<th>DeviceNet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard applied</td>
<td>→ [6]</td>
</tr>
<tr>
<td>Communication protocol, data format</td>
<td>→ [1], [4]</td>
</tr>
<tr>
<td>Interface, physical</td>
<td>CAN bus</td>
</tr>
<tr>
<td>Data rate (adjustable via "RATE" switch)</td>
<td>125 kbaud, 250 kbaud, 500 kbaud</td>
</tr>
<tr>
<td>"P" (125 kbaud, 250 kbaud, 500 kbaud programmable via DeviceNet)</td>
<td>(→ [1])</td>
</tr>
<tr>
<td>Node address (MAC ID)</td>
<td>0 … 63 dec</td>
</tr>
<tr>
<td>"P" (0 … 63 programmable via DeviceNet, → [1])</td>
<td></td>
</tr>
<tr>
<td>DeviceNet connector</td>
<td>Micro-Style, 5 pins, male</td>
</tr>
<tr>
<td>Cable</td>
<td>Shielded, special DeviceNet cable, 5 conductors (→ [24] and [4])</td>
</tr>
<tr>
<td>Cable length, system wiring</td>
<td>According to DeviceNet specifications (→ [6], [4])</td>
</tr>
</tbody>
</table>

Profibus interface (BPG400-SP)

<table>
<thead>
<tr>
<th>Fieldbus name</th>
<th>Profibus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard applied</td>
<td>→ [7]</td>
</tr>
<tr>
<td>Communication protocol data format</td>
<td>→ [10], [7]</td>
</tr>
<tr>
<td>Interface, physical</td>
<td>RS485</td>
</tr>
<tr>
<td>Data rate</td>
<td>≤12 Mbaud (→ [10])</td>
</tr>
<tr>
<td>Node address (Adjustable via hexadecimal "ADDRESS", "MSD", "LSD" switches)</td>
<td>00 … 3F hex (0 … 127 dec)</td>
</tr>
<tr>
<td>Profibus connection</td>
<td>D-Sub, 9 pins, female</td>
</tr>
<tr>
<td>Cable</td>
<td>Shielded, special Profibus cable (→ [25] and [5])</td>
</tr>
<tr>
<td>Cable length, system wiring</td>
<td>According to Profibus specifications (→ [7], [5])</td>
</tr>
</tbody>
</table>
Vacuum

Materials exposed to vacuum
- Housing, supports, screens: stainless steel
- Feedthroughs: NiFe, nickel plated
- Insulator: glass
- Cathode: iridium, yttrium oxide (Y2O3)
- Cathode holder: molybdenum
- Pirani element: tungsten, copper

Internal volume
- 353-500, 353-501: ≤24 cm³
- 353-505, 353-507: ≤24 cm³
- 353-502, 353-503: ≤34 cm³
- 353-506, 353-508: ≤34 cm³

Pressure max.: 2 bar (absolute)

Ambiance

Admissible temperatures
- Storage: -20 … 70 °C
- Operation: 0 … 50 °C
- Bakeout: +150 °C (without electronics unit or with bakeout extension → ≥ 16)

Relative humidity
- (year’s mean / during 60 days): ≤65 / 85% (no condensation)

Use
- indoors only
- altitude up to 2000 m NN

Type of protection
- IP 30

Dimensions

Part numbers
- 353-500
- 353-501
- 353-505 (353-507) ¹)

Part numbers
- 4-40UNC 2B
- DN 25 ISO-KF
- 353-500
- 353-501
Part numbers
353-502
353-503
353-506
(353-508) 1)

1) Gauges with DeviceNet connector are 14 mm longer.
The other dimensions of housing and vacuum connection are identical.

Part numbers
353-507
353-508

Weight
353-500, 353-501 285 g
353-502, 353-503 550 g
353-505, 353-507 430 g
353-506, 353-508 695 g
3 Installation

3.1 Vacuum Connection

DANGER

Caution: overpressure in the vacuum system >1 bar
Injury caused by released parts and harm caused by escaping process gases can result if clamps are opened while the vacuum system is pressurized.
Do not open any clamps while the vacuum system is pressurized. Use the type of clamps which are suited to overpressure.

DANGER

Caution: overpressure in the vacuum system >2.5 bar
KF flange connections with elastomer seals (e.g. O-rings) cannot withstand such pressures. Process media can thus leak and possibly damage your health.
Use O-rings provided with an outer centering ring.

DANGER

The gauge must be electrically connected to the grounded vacuum chamber. This connection must conform to the requirements of a protective connection according to EN 61010:
- CF connections fulfill this requirement
- For gauges with a KF vacuum connection, use a conductive metallic clamping ring.

Caution

Caution: vacuum component
Dirt and damages impair the function of the vacuum component.
When handling vacuum components, take appropriate measures to ensure cleanliness and prevent damages.

The gauge may be mounted in any orientation. To keep condensates and particles from getting into the measuring chamber, preferably choose a horizontal to upright position. See dimensional drawing for space requirements (→ 11).

- The gauge is supplied with a built-in grid. For potentially contaminating applications and to protect the electrodes against light and fast particles, installation (→ 17) of the optional baffle is recommended (→ 47).
- For the vacuum connection sealing, use of a metal seal (→ 47) is recommended, since elastomer seals (e.g. FPM) can impair the measurement accuracy already in the 10⁻⁶ mbar range by outgassing.
- The sensor can be baked at up to 150 °C. At temperatures exceeding 50 °C, the electronics unit has to be removed (→ 15) or an extension (Option → 47) has to be installed (→ 16).
Procedure

1. Remove the protective lid.

 The protective lid will be needed for maintenance.

2. Make the flange connection.

 When installing the gauge, make sure that the area around the connector is accessible for the tools required for adjustment while the gauge is mounted (→ 38, 42).
 When installing the gauge, allow for installing/deinstalling the connectors and accommodation of cable loops.
 If you are using a gauge with display, make sure easy reading of the display is possible.

✓ The gauge is now installed.
3.1.1 Removing and Installing the Electronics Unit

Required tools / material

- Allen key, size 2.5 mm

Removing the electronics unit

1. Unscrew the hexagon socket set screw (1) on the side of the electronics unit (2).

2. Remove the electronics unit without twisting it.

✓ Removal of the electronics unit is completed.

Installing the electronics unit

1. Place the electronics unit on the sensor (3) (be careful to correctly align the pins and notch (4)).
Slide the electronics unit in to the mechanical stop and lock it with the hexagon socket set screw (1). The electronics unit is now installed.

3.1.2 Installing the Optional Extension

With the optional extension (→ 47) the sensor can also be baked during operation at temperatures up to 150 °C (only at p<10⁻² mbar because at high temperatures, the accuracy of the Pirani sensor decreases).

Caution

Caution: rising heat

The electronics unit of gauges that are installed vertically, above the source of heat can be damaged through rising heat even with an installed extension.

Bakeout area

When installing the extension, make sure that the area around the connector is accessible for the tools required for adjustment while the gauge is mounted (→ 38, 42). When installing the gauge, allow for installing/deinstalling the connectors and accommodation of cable loops.

If you are using a gauge with display, ensure easy reading of the display.

Required tools / material

- Extension (→ 47)
- Allen key, size 2.5 mm
- Allen key, size 1.5 mm

Procedure

1. Remove the electronics unit (2) (→ 15).

2. Slide the sensor (3) into the extension (6) to the mechanical stop (be careful to correctly position the pins and notch (4)).
3 Secure the sensor with the hex socket set screws (7) using an Allen key, size 1.5 mm.

4 Slide the electronics unit (2) in to the mechanical stop (be careful to correctly align the pins and notch (4a)).

5 Secure the electronics unit (2) with the hex socket set screw (1) using an Allen key, size 2.5 mm.

✓ The extension is now installed.

3.1.3 Using the Optional Baffle

In severely contaminating processes and to protect measurement electrodes optically against light and fast particles, replacement of the built-in grid by the optional baffle (→ 47) is recommended.

3.1.3.1 Installing the Baffle

The optional baffle will be installed at the sensor opening of the deinstalled gauge (Deinstallation → 40).

![Caution]

Caution: dirt sensitive area

- Touching the product or parts thereof with bare hands increases the desorption rate.
- Always wear clean, lint-free gloves and use clean tools when working in this area.

Required tools / material

- Baffle (→ 47)
- Pointed tweezers
- Pin (e.g. pencil)
Procedure

1. Carefully remove the grid with tweezers.

2. Carefully place the baffle onto the sensor opening.

3. Using a pin, press the baffle down in the center until it catches.

The baffle is now installed (Installation of the gauge → 13).
3.1.3.2 Replacing the Baffle

In case of severe contamination the baffle can be easily replaced. For this purpose, the gauge first has to be deinstalled (Deinstallation of the gauge → 40).

<table>
<thead>
<tr>
<th>Caution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caution: dirt sensitive area</td>
</tr>
<tr>
<td>Touching the product or parts thereof with bare hands increases the desorption rate.</td>
</tr>
<tr>
<td>Always wear clean, lint-free gloves and use clean tools when working in this area.</td>
</tr>
</tbody>
</table>

Required tools / material

- New baffle (→ 47)
- Screwdriver No 1
- Pin (e.g. pencil)

Procedure

1. Carefully remove the baffle with the screwdriver.

2. Place new baffle carefully onto the sensor opening.
3. Using a pin, press the baffle down in the center until it catches.

The new baffle is now installed (Installation of the gauge → § 13).

3.2 Electrical Connection

3.2.1 Use With INFICON VGC103 or VGC40x Vacuum Gauge Controller

If the gauge is used with an INFICON VGC103 or VGC40x controller, a corresponding sensor cable is required (→ § 47). The sensor cable permits supplying the gauge with power, transmitting measurement values and gauge statuses, and making parameter settings.

Caution

Caution: data transmission errors

If the gauge is operated with the INFICON VGC103 or VGC40x Vacuum Gauge Controller (RS232C) and a fieldbus interface at the same time, data transmission errors may occur.

The gauge must not be operated with an INFICON VGC103 or VGC40x controller and DeviceNet or Profibus at the same time.

Required material

- Sensor cable for INFICON controllers (→ § 47)
Plug the sensor connector into the gauge and secure it with the locking screws.

Connect the other end of the sensor cable to the INFICON controller and secure it.

The gauge can now be operated with the VGC103 or VGC40x controller.

3.2.2 Use With Other Controllers

The gauge can also be operated with other controllers. Especially the fieldbus versions BPG400-SD (DeviceNet) and BPG400-SP (Profibus) are usually operated as part of a network, controlled by a master or bus controller. In such cases, the control system has to be operated with the appropriate software and communication protocol (→ [1] or [10]).

3.2.2.1 Making an Individual Sensor Cable

For reasons of compatibility, the expression "sensor cable" is used for all BPG400 versions in this document, although the pressure reading of the gauges with fieldbus interface (BPG400-SD and BPG400-SP) is normally transmitted via DeviceNet or Profibus.

The sensor cable is required for supplying all BPG400 types with power. In connection with the gauges with fieldbus interface (BPG400-SD and BPG400-SP), it also permits access to the contacts of the switching functions (→ 23, 38).

Cable type

The application and length of the sensor cable have to be considered when determining the number and cross sections of the conductors (→ 9).

Procedure

1. Open the cable connector (D-Sub, 15 pins, female).

2. Prepare the cable and solder/crimp it to the connector as indicated in the diagram of the gauge used:
Electrical connection

- **Pin 2**: Signal output (measuring signal) 0 ... +10 V
- **Pin 5**: Supply common, GND
- **Pin 7**: Degas on, active high +24 VDC
- **Pin 8**: Supply +24 VDC
- **Pin 10**: Gauge identification
- **Pin 12**: Signal common, GND
- **Pin 13**: RS232C, TxD
- **Pin 14**: RS232C, RxD
- **Pin 15**: Shielding, housing, GND

Pins 1, 3, 4, 6, 9 and 11 are not connected internally.

D-Sub, 15 pins female, soldering side
Electrical connection

<table>
<thead>
<tr>
<th>Pin</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Relay Switching function A, common</td>
</tr>
<tr>
<td>2</td>
<td>Signal output (measuring signal) 0 … +10 V</td>
</tr>
<tr>
<td>3</td>
<td>Threshold value (Setpoint) A 0 … +10 V</td>
</tr>
<tr>
<td>4</td>
<td>Relay Switching function A, normally open contact</td>
</tr>
<tr>
<td>5</td>
<td>Supply common, GND</td>
</tr>
<tr>
<td>6</td>
<td>Threshold value (Setpoint) B 0 … +10 V</td>
</tr>
<tr>
<td>7</td>
<td>Degas on, active high +24 V</td>
</tr>
<tr>
<td>8</td>
<td>Supply voltage +24 V</td>
</tr>
<tr>
<td>9</td>
<td>Relay Switching function B, common</td>
</tr>
<tr>
<td>10</td>
<td>Gauge identification</td>
</tr>
<tr>
<td>11</td>
<td>Relay Switching function B, normally open contact</td>
</tr>
<tr>
<td>12</td>
<td>Signal common GND</td>
</tr>
<tr>
<td>13</td>
<td>RS232, TxD</td>
</tr>
<tr>
<td>14</td>
<td>RS232, RxD</td>
</tr>
<tr>
<td>15</td>
<td>Shielding, housing GND</td>
</tr>
</tbody>
</table>

WARNING

The supply common (Pin 5) and the shielding (Pin 15) must be connected at the supply unit with protective ground.
Incorrect connection, incorrect polarity or inadmissible supply voltages can damage the gauge.

For cable lengths up to 5 m (0.34 mm² conductor cross-section) the output signal can be measured directly between the positive signal output (Pin 2) and supply common GND (Pin 5) without loss of accuracy. At greater cable lengths, differential measurement between signal output (Pin 2) and signal common (Pin 12) is recommended.

3. Reassemble the cable connector.

4. On the other cable end, terminate the cable according to the requirements of the gauge controller you are using.
5. Plug the sensor connector into the gauge and secure it with the locking screws.

6. Connect the other end of the sensor cable to the connector of the instrument or gauge controller you are using.

✓ The gauge can now be operated via analog and RS232C interface.

3.2.2.2 Making a DeviceNet Interface Cable (BPG400-SD)

For operating BPG400-SD via DeviceNet, an interface cable conforming to the DeviceNet standard is required. If no such cable is available, make one according to the following indications.

A shielded special 5 conductor cable conforming to the DeviceNet standard has to be used (→ [4], [6]).

- **Cable type**
- **Procedure**

1. Make the DeviceNet cable according to the following indications.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Function (BPG400-SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Drain</td>
</tr>
<tr>
<td>2</td>
<td>Supply +24 VDC (DeviceNet) interface only</td>
</tr>
<tr>
<td>3</td>
<td>Supply common GND (DeviceNet interface only)</td>
</tr>
<tr>
<td>4</td>
<td>CAN_H</td>
</tr>
<tr>
<td>5</td>
<td>CAN_L</td>
</tr>
</tbody>
</table>

 - **Micro-Style, 5 pins, (DeviceNet) female, soldering side**
2. Plug the DeviceNet (and sensor) cable connector into the gauge.

3. Lock the DeviceNet (and sensor) cable connector.

The gauge can now be operated via DeviceNet interface (→ 35).

3.2.2.3 Making a Profibus Interface Cable (BPG400-SP)

For operating BPG400-SP via Profibus, an interface cable conforming to the Profibus standard is required. If no such cable is available, make one according to the following indications.

Only a cable that is suited to Profibus operation may be used (→ 5 [5], [7]).

1. Make the Profibus interface cable according to the following indications:

<table>
<thead>
<tr>
<th>Pin</th>
<th>Function (BPG400-SP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Do not connect</td>
</tr>
<tr>
<td>2</td>
<td>Do not connect</td>
</tr>
<tr>
<td>3</td>
<td>RxD/TxD-P</td>
</tr>
<tr>
<td>4</td>
<td>CNTR-P</td>
</tr>
<tr>
<td>5</td>
<td>DGND</td>
</tr>
<tr>
<td>6</td>
<td>VP</td>
</tr>
<tr>
<td>7</td>
<td>Do not connect</td>
</tr>
<tr>
<td>8</td>
<td>RxD/TxD-N</td>
</tr>
<tr>
<td>9</td>
<td>Do not connect</td>
</tr>
</tbody>
</table>

1) Only to be connected if an optical link module is used.

2) Only required as line termination for devices at both ends of bus cable (→ 5 [5]).
Plug the Profibus (and sensor) cable connector into the gauge.

Lock the Profibus (and sensor) cable connector.

The gauge can now be operated via Profibus interface (→ 37).

3.2.3 Using the Optional Power Supply (With RS232C Line)

The optional 24 V power supply (→ 47) allows RS232C operation of the BPG400 gauge with any suitable instrument or control device (e.g. PC).

The instrument or control device needs to be equipped with a software that supports the RS232C protocol of the gauge (→ 32).

Technical data

<table>
<thead>
<tr>
<th>Mains connection</th>
<th>90 ... 250 VAC 50 ... 60 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mains voltage</td>
<td></td>
</tr>
<tr>
<td>Mains cable</td>
<td>1.8 meter (Schuko DIN and U.S. connectors)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output (operating voltage of gauge)</th>
<th>21 ... 27 VDC, set to 24 VDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>Max. 1.5 A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gauge connection</th>
<th>D-Sub, 15 pins, female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector</td>
<td></td>
</tr>
<tr>
<td>24 V cable</td>
<td>5 m, black</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Connection of the instrument or control device</th>
<th>D-Sub, 9 pins, female</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS232C connection</td>
<td></td>
</tr>
<tr>
<td>Cable</td>
<td>5 m, black, 3 conductors, shielded</td>
</tr>
</tbody>
</table>

Wiring diagram
Connecting the power supply

1. Connect the gauge to the power supply and lock the connector with the screws.

2. Connect the RS232C line to the instrument or control device and lock the connector with the screws.

3. Connect the power supply to the mains.

4. Turn the power supply on.

✓ The gauge can now be operated via RS232C interface (→ 32).
4 Operation

4.1 Measuring Principle, Measuring Behavior

Bayard-Alpert

The BPG400 vacuum gauges consist of two separate measuring systems (hot cathode Bayard-Alpert (BA) and Pirani).

The BA measuring system uses an electrode system according to Bayard-Alpert which is designed for a low x-ray limit.

The measuring principle of this measuring system is based on gas ionization. Electrons emitted by the hot cathode (F) ionize a number of molecules proportional to the pressure in the measuring chamber. The ion collector (IC) collects the thus generated ion current \(I^+ \) and feeds it to the electrometer amplifier of the measurement instrument. The ion current is dependent upon the emission current \(I_e \), the gas type, and the gas pressure \(p \) according to the following relationship:

\[
I^+ = I_e \times p \times C
\]

Factor \(C \) represents the sensitivity of the gauge head. It is generally specified for \(N_2 \).

The lower measurement limit is \(5 \times 10^{-10} \) mbar (gauge metal sealed).

To usefully cover the whole range of \(5 \times 10^{-10} \) mbar … \(10^{-2} \) mbar, a low emission current is used in the high pressure range (fine vacuum) and a high emission current is used in the low pressure range (high vacuum). The switching of the emission current takes place at decreasing pressure at approx. \(7.2 \times 10^{-6} \) mbar, at increasing pressure at approx. \(3.2 \times 10^{-5} \) mbar. At the switching threshold, the BPG400 can temporarily (<2 s) deviate from the specified accuracy.

Pirani

Within certain limits, the thermal conductivity of gases is pressure dependent. This physical phenomenon is used for pressure measurement in the thermal conductance vacuum meter according to Pirani. A self-adjusting bridge is used as measuring circuit (→ schematic). A thin tungsten wire forms the sensor element. Wire resistance and thus temperature are kept constant through a suitable control circuit. The electric power supplied to the wire is a measure for the thermal conductance and thus the gas pressure. The basic principle of the self-adjusting bridge circuit is shown in the following schematic.
The bridge voltage U_B is a measure for the gas pressure and is further processed electronically (linearization, conversion).

Measuring range

The BPG400 gauges continuously cover the measuring range 5×10^{-10} mbar … 1000 mbar.

- The Pirani constantly monitors the pressure.
- The hot cathode (controlled by the Pirani) is activated only at pressures $< 2.4 \times 10^{-2}$ mbar.

If the measured pressure is higher than the switching threshold, the hot cathode is switched off and the Pirani measurement value is output.

If the Pirani measurement drops below the switching threshold ($p = 2.4 \times 10^{-2}$ mbar), the hot cathode is switched on. After heating up, the measured value of the hot cathode is fed to the output. In the overlapping range of 5.5×10^{-3} … 2.0×10^{-2} mbar, the output signal is generated from both measurements.

Pressure rising over the switching threshold ($p = 3.2 \times 10^{-2}$ mbar) causes the hot cathode to be switched off. The Pirani measurement value is output.

The output signal is gas type dependent. The characteristic curves are accurate for dry air, N_2 and O_2. They can be mathematically converted for other gases (→ Appendix B).

Gas type dependence

The measuring currents of the Bayard-Alpert and Pirani sensor are converted into a frequency. A micro-controller converts this frequency into a digital value representing the measured total pressure. After further processing this value is available as analog measurement signal (0 … +10 V) at the output (sensor cable connector Pin 2 and Pin 12). The maximum output signal is internally limited to +10 V (atmosphere). The measured value can be read as digital value through the RS232C interface (Pins 13, 14, 15) (→ 32). Gauges with a display show the value as pressure. The default setting of the displayed pressure unit is mbar. It can be modified via the RS232C interface (→ 32).

In addition to converting the output signal, the micro controller’s functions include monitoring of the emission, calculation of the total pressure based on the measurements of the two sensors, and communication via RS232C interface.

4.2 Operational Principle of the Gauge

The measuring currents of the Bayard-Alpert and Pirani sensor are converted into a frequency. A micro-controller converts this frequency into a digital value representing the measured total pressure. After further processing this value is available as analog measurement signal (0 … +10 V) at the output (sensor cable connector Pin 2 and Pin 12). The maximum output signal is internally limited to +10 V (atmosphere). The measured value can be read as digital value through the RS232C interface (Pins 13, 14, 15) (→ 32). Gauges with a display show the value as pressure. The default setting of the displayed pressure unit is mbar. It can be modified via the RS232C interface (→ 32).

In addition to converting the output signal, the micro controller’s functions include monitoring of the emission, calculation of the total pressure based on the measurements of the two sensors, and communication via RS232C interface.

4.3 Putting the Gauge Into Operation

When the operating voltage is supplied (→ Technical Data), the output signal is available between Pin 2 (+) and Pin 12 (−) of the sensor cable connector (Relationship Output Signal – Pressure → Appendix A).

Allow for a stabilizing time of approx. 10 min. Once the gauge has been switched on, permanently leave it on irrespective of the pressure.

Communication via the digital interfaces is described in separate sections.
4.4 Degas

Contamination

- Gauge failures due to contamination are not covered by the warranty.

- Deposits on the electrode system of the BA gauge can lead to unstable measurement readings.

- The degas process allows in-situ cleaning of the electrode system by heating the electron collector grid to approx. 700 °C by electron bombardment.

- Depending on the application, this function can be activated manually by a switch or automatically by the system control via a digital interface. The BPG400 automatically terminates the degas process after 3 minutes, if it has not been stopped before.

- The degas process should be run at pressures below 7.2×10^{-6} mbar (emission current 5 mA).

- For a repeated degas process, the control signal first has to change from ON (+24 V) to OFF (0 V), to then start degas again with a new ON (+24 V) command. It is recommended that the degas signal be set to OFF again by the system control after 3 minutes of degassing, to achieve an unambiguous operating status.

4.5 Display (BPG400)

The gauges with part number

- 352-501 and
- 353-503

have a built-in two-line display with an LCD matrix of 32×16 pixels. The first line shows the pressure, the second line the pressure unit, the function and possible errors. The background illumination is usually green, in the event of an error, it changes to red. The pressure is displayed in mbar (default), Torr or Pa. The pressure unit can be changed via RS232C interface (→ [32]).

<table>
<thead>
<tr>
<th>Pressure display</th>
<th>Pressure reading, pressure unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(none)</td>
<td>Pirani operation</td>
</tr>
<tr>
<td>E</td>
<td>Emission 25 μA</td>
</tr>
<tr>
<td>E,</td>
<td>Emission 5 mA</td>
</tr>
<tr>
<td>D</td>
<td>Degas</td>
</tr>
<tr>
<td>R</td>
<td>1000 mbar adjustment (Pirani)</td>
</tr>
</tbody>
</table>

![Pressure display example](image)
Error display

1. no error (green background illumination)
2. Pirani sensor warning (red background illumination)
3. Pirani sensor error (red background illumination)
4. BA sensor error (red background illumination)

Internal data connection failure (red background illumination)
4.6 RS232C Interface

The built-in RS232C interface allows transmission of digital measurement data and instrument conditions as well as the setting of instrument parameters.

Caution

Caution: data transmission errors

If the gauge is operated with the INFICON VGC103 or VGC40x Vacuum Gauge Controller (RS232C) and a fieldbus interface at the same time, data transmission errors may occur. The gauge must not be operated with the RS232C interface and DeviceNet or Profibus at the same time.

4.6.1 Description of the Functions

The interface works in duplex mode. A nine byte string is sent continuously without a request approx. every 20 ms. Commands are transmitted to the gauge in a five byte input (receive) string.

Operational parameters

- Data rate 9600 baud set value, no handshake
- Byte 8 data bits 1 stop bit

Electrical connections

- TxD Pin 13
- RxD Pin 13
- GND Pin 5
 (Sensor cable connector)

4.6.1.1 Output String (Transmit)

The complete output string (frame) is nine bytes (byte 0 … 8). The data string is seven bytes (byte 1 … 7).

Format of the output string

<table>
<thead>
<tr>
<th>Byte No</th>
<th>Function</th>
<th>Value</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Length of data string</td>
<td>7</td>
<td>(Set value)</td>
</tr>
<tr>
<td>1</td>
<td>Page number</td>
<td>5</td>
<td>(For BPG400)</td>
</tr>
<tr>
<td>2</td>
<td>Status</td>
<td></td>
<td>→ Status byte</td>
</tr>
<tr>
<td>3</td>
<td>Error</td>
<td></td>
<td>→ Error byte</td>
</tr>
<tr>
<td>4</td>
<td>Measurement high byte</td>
<td>0 … 255</td>
<td>→ Calculation of pressure value</td>
</tr>
<tr>
<td>5</td>
<td>Measurement low byte</td>
<td>0 … 255</td>
<td>→ Calculation of pressure value</td>
</tr>
<tr>
<td>6</td>
<td>Software version</td>
<td>0 … 255</td>
<td>→ Software version</td>
</tr>
<tr>
<td>7</td>
<td>Sensor type</td>
<td>10</td>
<td>(For BPG400)</td>
</tr>
<tr>
<td>8</td>
<td>Check sum</td>
<td>0 … 255</td>
<td>→ Synchronization</td>
</tr>
</tbody>
</table>

Synchronization of the master is achieved by testing three bytes:

<table>
<thead>
<tr>
<th>Byte No</th>
<th>Function</th>
<th>Value</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Length of data string</td>
<td>7</td>
<td>Set value</td>
</tr>
<tr>
<td>1</td>
<td>Page number</td>
<td>5</td>
<td>(For BPG400)</td>
</tr>
<tr>
<td>8</td>
<td>Check sum</td>
<td>0 … 255</td>
<td>Low byte of check sum</td>
</tr>
</tbody>
</table>

1) High order bytes are ignored in the check sum.
Status byte

<table>
<thead>
<tr>
<th>Bit 1</th>
<th>Bit 0</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Emission off</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Emission 25 µA</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Emission 5 mA</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Degas</td>
</tr>
</tbody>
</table>

Bit 2

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

Bit 3

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 <= 1</td>
</tr>
</tbody>
</table>

Bit 5 / Bit 4

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

Bit 7 / Bit 6

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
</tr>
</tbody>
</table>

Error byte

<table>
<thead>
<tr>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Not used</td>
</tr>
</tbody>
</table>

Bit 7 / Bit 6 / Bit 5 / Bit 4

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

Software version

The software version of the gauge can be calculated from the value of byte 6 of the transmitted string according to the following rule:

\[
\text{Version No} = \frac{\text{ValueByte 6}}{20}
\]

(Example: According to the above formula, ValueByte 6 of 32 means software version 1.6)

Calculation of the pressure value

The pressure can be calculated from bytes 4 and 5 of the transmitted string. Depending on the currently selected pressure unit (→ byte 2, bits 4 and 5), the appropriate rule must be applied.

As result, the pressure value results in the usual decimal format.

\[
\begin{align*}
\rho_{\text{mbar}} &= 10^{\left(\frac{\text{high byte} \times 256 + \text{low byte}}{4000} - 12.5\right)} \\
\rho_{\text{Tor}} &= 10^{\left(\frac{\text{high byte} \times 256 + \text{low byte}}{4000} - 12.625\right)} \\
\rho_{\text{Pa}} &= 10^{\left(\frac{\text{high byte} \times 256 + \text{low byte}}{4000} - 10.5\right)}
\end{align*}
\]
The example is based on the following output string:

<table>
<thead>
<tr>
<th>Byte No</th>
<th>Value</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>7</td>
<td>(Set value)</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>BPG400</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>Emission = off</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>No error</td>
</tr>
<tr>
<td>4</td>
<td>242</td>
<td>High byte</td>
</tr>
<tr>
<td>5</td>
<td>48</td>
<td>Low byte</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>Software version</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>Sensor type</td>
</tr>
<tr>
<td>8</td>
<td>69</td>
<td>Check sum</td>
</tr>
</tbody>
</table>

The instrument or controller (receiver) interprets this string as follows:

<table>
<thead>
<tr>
<th>Byte No</th>
<th>Function</th>
<th>Value</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Length of data string</td>
<td>7</td>
<td>(Set value)</td>
</tr>
<tr>
<td>1</td>
<td>Page number</td>
<td>5</td>
<td>BPG400</td>
</tr>
<tr>
<td>2</td>
<td>Status</td>
<td>0</td>
<td>Emission = off</td>
</tr>
<tr>
<td>3</td>
<td>Error</td>
<td>0</td>
<td>No error</td>
</tr>
<tr>
<td>4</td>
<td>Measurement High byte</td>
<td>242</td>
<td>Calculation of the pressure:</td>
</tr>
<tr>
<td>5</td>
<td>Measurement Low byte</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Software version</td>
<td>20</td>
<td>Software version = 20 / 20 = 1.0</td>
</tr>
<tr>
<td>7</td>
<td>Sensor type</td>
<td>10</td>
<td>BPG400</td>
</tr>
<tr>
<td>8</td>
<td>Check sum</td>
<td>69</td>
<td>Check sum = 45hex = 69dec</td>
</tr>
</tbody>
</table>

Calculation of the pressure:

\[p = \frac{10^{(242 \times 256 + 48) / 4000 - 12.5}}{20} = 1000 \text{ mbar} \]

4.6.1.2 Input String (Receive)

For transmission of the commands to the gauge, a string (frame) of five bytes is sent (without <CR>). Byte 1 to byte 3 form the data string.

<table>
<thead>
<tr>
<th>Byte no</th>
<th>Function</th>
<th>Value</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Length of data string</td>
<td>3</td>
<td>(Set value)</td>
</tr>
<tr>
<td>1</td>
<td>Data</td>
<td>→ admissible input strings</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Data</td>
<td>→ admissible input strings</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Data</td>
<td>→ admissible input strings</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Check sum (from bytes No 1 … 3)</td>
<td>0 … 255</td>
<td>(low byte of sum) 1)</td>
</tr>
</tbody>
</table>

1) High order bytes are ignored in the check sum.

Admissible input strings

For commands to the gauge, six defined strings are used:

<table>
<thead>
<tr>
<th>Command</th>
<th>Byte No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set the unit mbar in the display</td>
<td>3 16 62 0 78</td>
</tr>
<tr>
<td>Set the unit Torr in the display</td>
<td>3 16 62 1 79</td>
</tr>
<tr>
<td>Set the unit Pa in the display</td>
<td>3 16 62 2 80</td>
</tr>
<tr>
<td>Power-failure-safe storage of current unit</td>
<td>3 32 62 62 156</td>
</tr>
<tr>
<td>Switch degas on (switches itself off after 3 minutes)</td>
<td>3 16 93 148 1</td>
</tr>
<tr>
<td>Switch degas off before 3 minutes</td>
<td>3 16 93 105 214</td>
</tr>
</tbody>
</table>

2) Only low order byte of sum (high order byte is ignored).
4.7 DeviceNet Interface (BPG400-SD)

This interface allows operation of BPG400-SD with part numbers 353-507 and 353-508 in connection with other devices that are suited for DeviceNet operation. The physical interface and communication firmware of BPG400-SD comply with the DeviceNet standard (→ [4], [6]).

Two adjustable switching functions are integrated in BPG400-SD. The corresponding relay contacts are available at the sensor cable connector (→ 8, 23, 38).

The basic sensor and sensor electronics of all BPG400 gauges are identical.

Caution: data transmission errors
If the gauge is operated via RS232C interface and DeviceNet interface at the same time, data transmission errors may occur.

The gauge must not be operated via RS232C interface and DeviceNet interface at the same time.

4.7.1 Description of the Functions

Via this interface, the following and further data are exchanged in the standardized DeviceNet protocol (→ [1]):

- Pressure reading
- Pressure unit (Torr, mbar, Pa)
- Degas function
- Gauge adjustment
- Status and error messages
- Status of the switching functions

4.7.2 Operating Parameters

As the DeviceNet protocol is highly complex, the parameters and programming of BPG400-SD are described in detail in the separate Communication Protocol (→ [1]).

4.7.2.1 Operating Software

Before the gauge is put into operation, it has to be configured for DeviceNet operation. A configuration tool and the device specific EDS file (Electronic Data Sheet) are required for this purpose. The EDS file can be downloaded via internet (→ [3]).

4.7.2.2 Node Address Setting

For unambiguous identification of the gauge in a DeviceNet environment, a node address is required. The node address setting is made on the gauge or programmed via DeviceNet.

Set the node address (0 … 63 dec) via the "ADDRESS" "MSD" and "LSD" switches. The node address is polled by the firmware when the gauge is switched on. If the setting deviates from the stored value, the new value is taken over into the NVRAM. If a setting higher than 63 is made, the previous node address setting remains valid.

If the „MSD“ switch is in the ”P“ position, the node address is programmable via DeviceNet (→ [1]).
4.7.2.3 Data Rate Setting

The admissible data rate depends on a number of factors such as system parameters and cable length [4], [6]). It can be set on the gauge or programmed via DeviceNet.

By means of the "RATE" switch, the data rate can be set to 125 ("1"), 250 ("2") or 500 kbaud ("5").

If the switch is in any of the "P" positions, the data rate is programmable via DeviceNet (→ [1]).

4.7.3 Status Lights

Two lights (LEDs) on the gauge inform on the gauge status and the current DeviceNet status.

<table>
<thead>
<tr>
<th>Light status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dark</td>
<td>No supply</td>
</tr>
<tr>
<td>Flashing red/green</td>
<td>Selftest</td>
</tr>
<tr>
<td>Green</td>
<td>Normal operation</td>
</tr>
<tr>
<td>Red</td>
<td>Non recoverable error</td>
</tr>
</tbody>
</table>

"STATUS MOD" (gauge status):

<table>
<thead>
<tr>
<th>Light status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dark</td>
<td>Gauge not online:</td>
</tr>
<tr>
<td></td>
<td>- Selftest not yet concluded</td>
</tr>
<tr>
<td></td>
<td>- No supply, → "STATUS MOD" light</td>
</tr>
<tr>
<td>Flashing green</td>
<td>Gauge online but no communication:</td>
</tr>
<tr>
<td></td>
<td>- Selftest concluded but no communication to other nodes established</td>
</tr>
<tr>
<td></td>
<td>- Gauge not assigned to any master</td>
</tr>
<tr>
<td>Green</td>
<td>Gauge online; necessary connections established</td>
</tr>
<tr>
<td>Flashing red</td>
<td>One or several input/output connections in "timed out" status</td>
</tr>
<tr>
<td>Red</td>
<td>Communication error. The gauge has detected an error that impedes</td>
</tr>
<tr>
<td></td>
<td>communication via the network (e.g. two identical node addresses (MAC IC) or</td>
</tr>
<tr>
<td></td>
<td>"Bus-off")</td>
</tr>
</tbody>
</table>

"STATUS NET" (network status):

Electrical connections

The gauge is connected to the DeviceNet system via the 5-pin DeviceNet connector (→ 24).
4.8 Profibus Interface
(BPG400-SP)

This interface allows operation of BPG400-SP with part number
353-505 and
353-506

in connection with other devices that are suited for Profibus operation. The physical
interface and communication firmware of BPG400-SP comply with the Profibus
standard (→ [7], [5]).

Two adjustable switching functions are integrated in the BPG400-SP. The corre-
sponding relay contacts are available at the sensor cable connector (→ 8, 23,
38).

The basic sensor and sensor electronics of all BPG400 gauges are identical.

Caution

Caution: data transmission errors

If the gauge is operated via RS232C interface and Profibus interface at
the same time, data transmission errors may occur.

The gauge must not be operated via RS232C interface and Profibus
interface at the same time.

4.8.1 Description of the Functions

Via this interface, the following and further data are exchanged in the standardized
Profibus protocol (→ [2]):
- Pressure reading
- Pressure unit (Torr, mbar, Pa)
- Degas function
- Gauge adjustment
- Status and error messages
- Status of the switching functions

4.8.2 Operating Parameters

As the DeviceNet protocol is highly complex, the parameters and programming of
BPG400-SP are described in detail in the separate Communication Protocol
(→ [2]).

4.8.2.1 Operating Software

For operating the gauge via Profibus, prior installation of the BPG400 specific GSD
file is required on the bus master side. This file can be downloaded via internet
(→ [3]).

4.8.2.2 Node Address Setting

For unambiguous identification of the gauge in a Profibus environment, a node
address is required. The node address setting is made on the gauge.

The node address (0 … 127 dec) is set in hexadecimal form
(00 … 3F hex) via the "ADDRESS", "MSD", and "LSD" switches.
The node address is polled by the firmware when the gauge is
switched on. If the setting deviates from the stored value, the
new value is taken over into the NVRAM. If a value higher than
127 dec (3F hex) is entered, the node address setting currently
stored in the device remains valid.

Electrical connections

The gauge is connected to Profibus via the 9-pin Profibus connector (→ 25).
4.9 Switching Functions (BPG400-SD, BPG400-SP)

The gauges BPG400-SD and BPG400-SP have two independent, manually settable switching functions. Each switching function has a floating normally open relay contact. The relay contacts are accessible at the sensor cable connector (→ 23).

The threshold values of switching functions A and B can be set within the pressure range 1×10^{-9} mbar … 100 mbar via potentiometers "SETPOINT A" and "SETPOINT B".

The Formula applied to calculate the corresponding threshold voltage $U_{\text{Threshold}}$ depends on the gauge version used (BPG400-SD or BPG400-SP).

For BPG400-SD:

$$U_{\text{Threshold}} = 0.75 \times (\log p_{\text{Setpoint}} - c) + 7.75$$

For BPG400-SP:

$$U_{\text{Threshold}} = 0.8129401 \times (\log p_{\text{Setpoint}} - c + 9.30102999)$$

Constant c is pressure unit dependent (→ Appendix A).

The hysteresis of the switching functions is 10% of the threshold setting.

4.9.1 Setting the Switching Functions

The threshold values of the two switching functions "SETPOINT A" and "SETPOINT B" are set locally on the potentiometers of the gauge that are accessible via the openings on one side of the gauge housing.

Required tools

- Voltmeter
- Ohmmeter or continuity checker
- Screwdriver, max. ø2.5 mm
The procedure for setting the switching functions is the same for both gauge types.

1. Put the gauge into operation.

2. Connect the \(+ \)-lead of a voltmeter to the threshold measurement point of the selected switching function ("Setpoint A" Pin 3, "Setpoint B" Pin 6) and its \(- \)-lead to Pin 5.

3. Using a screwdriver (max. \(\varnothing 2.5 \) mm), set the voltage of the selected switching function (Setpoint A, B) to the desired value \(U_{\text{Threshold}} \).

\[\checkmark \] Setting of the switching functions is now concluded.

There is no local visual indication of the statuses of the switching functions. However, a functional check of the switching functions (On/Off) can be made with one of the following methods:

- Reading the status via fieldbus interface \(\rightarrow 1 \) [1] for BPG400-SD, \(\rightarrow 2 \) [2] for BPG400-SP.
- Measurement of the relay contacts at the sensor cable connector with a ohmmeter/continuity checker (\(\rightarrow 23 \)).
5 Deinstallation

DANGER

Caution: contaminated parts
Contaminated parts can be detrimental to health and environment.
Before beginning to work, find out whether any parts are contaminated.
Adhere to the relevant regulations and take the necessary precautions
when handling contaminated parts.

Caution

Caution: vacuum component
Dirt and damages impair the function of the vacuum component.
When handling vacuum components, take appropriate measures to
ensure cleanliness and prevent damages.

Procedure

1 Vent the vacuum system.

! Before taking the gauge out of operation, make sure that this has
no adverse effect on the vacuum system.
Depending on the programming of the superset controller, faults
may occur or error messages may be triggered.
Follow the appropriate shut-down and starting procedures.

2 Take gauge out of operation.

3 Disconnect all cables from the gauge.

4 Remove gauge from the vacuum system.
5 Place the protective lid.

✓ The gauge is now deinstalled.
6 Maintenance, Repair

6.1 Maintenance

6.1.1 Cleaning the Gauge

Small deposits on the electrode system can be removed by baking the anode (Degas → 30). In the case of severe contamination, the baffle can be exchanged easily (→ 19). The sensor itself cannot be cleaned and needs to be replaced in case of severe contamination (→ 46).

A slightly damp cloth normally suffices for cleaning the outside of the unit. Do not use any aggressive or scouring cleaning agents.

Make sure that no liquid can penetrate the product. Allow the product to dry thoroughly before putting it into operation again.

Gauge failures due to contamination are not covered by the warranty.

6.2 Adjusting the Gauge

The gauge is factory-calibrated. Through the use in different climatic conditions, fitting positions, aging or contamination (→ 30) and after exchanging the sensor (→ 46) a shifting of the characteristic curve can occur and readjustment can become necessary. Only the Pirani part can be adjusted.

6.2.1 Adjustment at Atmospheric Pressure

At the push of a button the digital value and thus the analog output are adjusted electronically to 10 V at atmospheric pressure.

Adjustment is necessary if

- at atmospheric pressure, the output signal is <10 V
- the display reads < atmospheric pressure (if the gauge has a display)
- at atmosphere, the digital value of the RS232C interface is < atmospheric pressure
- at atmosphere, the digital value received by the bus controller of the fieldbus gauges (DeviceNet or Profibus) is < atmospheric pressure
- when the vacuum system is vented, the output voltage reaches 10 V (limited to 10 V by the software) before the measured pressure has reached atmosphere (gauges with display will show the error “5” at atmospheric pressure (Pirani sensor warning → 31))
- when the vacuum system is vented, the digital value of the RS232C interface reaches its maximum before the measured pressure has reached atmosphere
- when the vacuum system is vented, the digital value received by the bus controller of the fieldbus (DeviceNet or Profibus) reaches its maximum before the measured pressure has reached atmosphere
Required tools

- Pin approx. ø1.3 × 50 mm (e.g. a bent open paper clip)

Procedure

Gauges BPG400-SD and -SP are mechanically slightly different from the BPG400. The adjustment opening of BPG400-SD and -SP is on one side of the gauge housing. However, the adjustment procedure is the same for all gauge versions.

1. Operate gauge for approx. 10 minutes at atmospheric pressure.

 ! If the gauge was operated before in the BA range, a cooling-down time of approx. 30 minutes is to be expected (gauge temperature = ambient temperature).

2. Insert the pin through the opening marked <FULL SCALE> and push the button inside for at least 5 s.

 BPG400
 BPG400-SD
 BPG400-SP

 Gauges with display will show the reading "1000 mbar" and the function "A" when the button has been pushed for 4 s. Upon completion of the adjustment, the function indication "A" disappears.

 ! The gauge is automatically adjusted (≤10 s).

 ✔ The gauge is now adjusted at atmospheric pressure.

6.2.2 Zero Point Adjustment

A zero point adjustment is recommended
- after the sensor has been exchanged
- as part of the usual maintenance work for quality assurance

Required tools

- Pin approx. ø1.3 × 50 mm (e.g. a bent open paper clip)
Procedure

The push button <FULL SCALE> is also used for the zero point adjustment (→ Illustration in "Adjustment at Atmospheric Pressure").

1. Operate gauge for approx. 10 minutes at a pressure of 1×10^{-4} mbar.

2. Insert the pin through the opening marked <FULL SCALE> and push the button inside for at least 2 s.

The adjustment is done automatically and ends after 2 minutes.

The zero point of the gauge is now adjusted.

6.3 What to Do in Case of Problems

In the event of a fault or a complete failure of the output signal, the gauge can easily be checked.

- Voltmeter / ohmmeter
- Allen key, size 2.5 mm
- Spare sensor (if the sensor is faulty)

Required tools / material

- Voltmeter / ohmmeter
- Allen key, size 2.5 mm
- Spare sensor (if the sensor is faulty)

Troubleshooting (BPG400)

The output signal is available at the sensor cable connector (Pin 2 and Pin 12).

In case of an error, it may be helpful to just turn off the mains supply and turn it on again after 5 s.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible cause</th>
<th>Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output signal permanently 0V</td>
<td>Sensor cable defective or not correctly connected</td>
<td>Check the sensor cable</td>
</tr>
<tr>
<td></td>
<td>No supply voltage</td>
<td>Turn on the power supply</td>
</tr>
<tr>
<td></td>
<td>Gauge in an undefined status</td>
<td>Turn the gauge off and on again (reset)</td>
</tr>
<tr>
<td>Output signal $\geq 0.3 \text{ V}$ (Display: error = 8)</td>
<td>Hot cathode error (sensor faulty)</td>
<td>Replace the sensor (→ 46)</td>
</tr>
<tr>
<td>Output signal $\geq 0.5 \text{ V}$ (Display: error = 9)</td>
<td>Pirani error (sensor defective)</td>
<td>Replace the sensor (→ 46)</td>
</tr>
<tr>
<td>Output signal $= 0.5 \text{ V}$</td>
<td>Electronics unit not mounted correctly on sensor</td>
<td>Check the connection</td>
</tr>
<tr>
<td>Display:</td>
<td>Internal data connection not working</td>
<td>Turn the gauge off and on again after 5 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace the electronics unit</td>
</tr>
<tr>
<td>Gauge does not switch over to BA at low pressures</td>
<td>Pirani zero point out of tolerance</td>
<td>Carry out a zero point adjustment (→ 43)</td>
</tr>
</tbody>
</table>
If the cause of a fault is suspected to be in the sensor, the following checks can be made with an ohmmeter (the vacuum system need not be vented for this purpose). Separate the sensor from the electronics unit (→ 15). Using an ohmmeter, make the following measurements.

<table>
<thead>
<tr>
<th>Ohmmeter measurement between pins</th>
<th>Possible cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 + 4</td>
<td>≈37 Ω >37 Ω Pirani element 1 broken</td>
</tr>
<tr>
<td>4 + 5</td>
<td>≈37 Ω >37 Ω Pirani element 2 broken</td>
</tr>
<tr>
<td>6 + 7</td>
<td>≈0.15 Ω >0.15 Ω Filament of hot cathode broken</td>
</tr>
<tr>
<td>4 + 1</td>
<td>∞ ≪∞ Electrode - short circuit to ground</td>
</tr>
<tr>
<td>6 + 1</td>
<td>∞ ≪∞ Electrode - short circuit to ground</td>
</tr>
<tr>
<td>3 + 1</td>
<td>∞ ≪∞ Electrode - short circuit to ground</td>
</tr>
<tr>
<td>9 + 1</td>
<td>∞ ≪∞ Electrode - short circuit to ground</td>
</tr>
<tr>
<td>6 + 3</td>
<td>∞ ≪∞ Short circuit between electrodes</td>
</tr>
<tr>
<td>9 + 3</td>
<td>∞ ≪∞ Short circuit between electrodes</td>
</tr>
</tbody>
</table>

View on sensor pins

All of the above faults can only be remedied by replacing the sensor (→ 46).

Correction

Troubleshooting (BPG400-SD, BPG400-SP)

Error diagnosis of fieldbus gauges BPG400-SD and -SP can only be performed as described above for the basic sensor and sensor electronics. Diagnosis of the fieldbus interface can only be done via the superset bus controller (→ [1], [2]). For diagnosis of the BPG400-SD (DeviceNet) gauges, the status lights might produce some useful information (→ 36).
6.4 Replacing the Sensor

Replacement is necessary, when
- the sensor is severely contaminated
- the sensor is mechanically deformed
- the sensor is faulty, e.g. filament of hot cathode broken (→ § 44)
- the sensor is faulty, e.g. Pirani element broken (→ § 44)

Required tools / material
- Allen key, size 2.5 mm
- Spare sensor (→ § 47)

Procedure

1. Deinstall the gauge (→ § 40).

2. Deinstall the electronics unit from the faulty sensor and mount it to the new sensor (→ § 15).

3. Adjust the gauge (→ § 42).

✓ The new sensor is now installed.
7 Options

<table>
<thead>
<tr>
<th>Part number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>353-511</td>
<td>24 VDC power supply / RS232C line (∴ 26)</td>
</tr>
<tr>
<td>353-510</td>
<td>Extension 100 mm (∴ 16)</td>
</tr>
<tr>
<td>353-512</td>
<td>Baffle DN 25 ISO-KF / DN 40 CF-R (∴ 17)</td>
</tr>
<tr>
<td></td>
<td>INFICON Vacuum Gauge Controller VGC103, VGC40x (∴ 20)</td>
</tr>
<tr>
<td></td>
<td>Sensor cable BPG400 – VGC103 / VGC40x (∴ 20)</td>
</tr>
<tr>
<td></td>
<td>Sensor cable with D-Sub female connector for gauge on one side, no connector on other side</td>
</tr>
<tr>
<td></td>
<td>Connection elements, seals, accessories</td>
</tr>
</tbody>
</table>

1) See INFICON sales literature and data sources for controllers and our range of sensor cables (∴ 10]).

2) Since there is a vast variety of individual configurations and applications, please refer to the specific information for your individual configuration (∴ 10]).

8 Spare Parts

When ordering spare parts, always indicate:
- All information on the product nameplate
- Description and part number

<table>
<thead>
<tr>
<th>Part number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>354-490</td>
<td>Sensor BPG400, vacuum connection DN 25 ISO-KF (including Allen key)</td>
</tr>
<tr>
<td>354-491</td>
<td>Sensor BPG400, vacuum connection DN 40 CF-R (including Allen key)</td>
</tr>
</tbody>
</table>

9 Storage

Caution: vacuum component
Inappropriate storage leads to an increase of the desorption rate and/or may result in mechanical damage of the product.
Cover the vacuum ports of the product with protective lids or grease free aluminum foil. Do not exceed the admissible storage temperature range (∴ 11).
10 Returning the Product

WARNING

Caution: forwarding contaminated products

Contaminated products (e.g. radioactive, toxic, caustic or biological hazard) can be detrimental to health and environment.

Products returned to INFICON should preferably be free of harmful substances. Adhere to the forwarding regulations of all involved countries and forwarding companies and enclose a duly completed declaration of contamination (→ 53).

Products that are not clearly declared as "free of harmful substances" are decontaminated at the expense of the customer.

Products not accompanied by a duly completed declaration of contamination are returned to the sender at his own expense.

11 Disposal

DANGER

Caution: contaminated parts

Contaminated parts can be detrimental to health and environment.

Before beginning to work, find out whether any parts are contaminated. Adhere to the relevant regulations and take the necessary precautions when handling contaminated parts.

WARNING

Caution: substances detrimental to the environment

Products or parts thereof (mechanical and electric components, operating fluids etc.) can be detrimental to the environment.

Dispose of such substances in accordance with the relevant local regulations.

Separating the components

After disassembling the product, separate its components according to the following criteria:

- **Contaminated components**
 - Contaminated components (radioactive, toxic, caustic or biological hazard etc.) must be decontaminated in accordance with the relevant national regulations, separated according to their materials, and disposed of.

- **Other components**
 - Such components must be separated according to their materials and recycled.
Appendix

A: Relationship Output
Signal – Pressure

Conversion formulae

\[p = 10^{(U - 7.75) / 0.75 + c} \]

\[U = 0.75 \times (\log p - c) + 7.75 \]

where

<table>
<thead>
<tr>
<th>U</th>
<th>p</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>[V]</td>
<td>[mbar]</td>
<td>0</td>
</tr>
<tr>
<td>[V]</td>
<td>[Pa]</td>
<td>2</td>
</tr>
<tr>
<td>[V]</td>
<td>[Torr]</td>
<td>-0.125</td>
</tr>
</tbody>
</table>

Conversion curve
Conversion table

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3 / 0.5</td>
<td>0.51 ... 0.774</td>
<td>Sensor error (→ ⊕ 44)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inadmissible range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.774</td>
<td>5×10^{-10}</td>
<td>3.75×10^{-10}</td>
<td>5×10^{-8}</td>
</tr>
<tr>
<td>1.00</td>
<td>1×10^{-9}</td>
<td>7.5×10^{-10}</td>
<td>1×10^{-7}</td>
</tr>
<tr>
<td>1.75</td>
<td>1×10^{-8}</td>
<td>7.5×10^{-9}</td>
<td>1×10^{-6}</td>
</tr>
<tr>
<td>2.5</td>
<td>1×10^{-7}</td>
<td>7.5×10^{-8}</td>
<td>1×10^{-5}</td>
</tr>
<tr>
<td>3.25</td>
<td>1×10^{-6}</td>
<td>7.5×10^{-7}</td>
<td>1×10^{-4}</td>
</tr>
<tr>
<td>4.00</td>
<td>1×10^{-5}</td>
<td>7.5×10^{-6}</td>
<td>1×10^{-3}</td>
</tr>
<tr>
<td>4.75</td>
<td>1×10^{-4}</td>
<td>7.5×10^{-5}</td>
<td>1×10^{-2}</td>
</tr>
<tr>
<td>5.50</td>
<td>1×10^{-3}</td>
<td>7.5×10^{-4}</td>
<td>1×10^{-1}</td>
</tr>
<tr>
<td>6.25</td>
<td>1×10^{-2}</td>
<td>7.5×10^{-3}</td>
<td>1×10^{0}</td>
</tr>
<tr>
<td>7.00</td>
<td>1×10^{-1}</td>
<td>7.5×10^{-2}</td>
<td>1×10^{1}</td>
</tr>
<tr>
<td>7.75</td>
<td>1×10^{0}</td>
<td>7.5×10^{-1}</td>
<td>1×10^{2}</td>
</tr>
<tr>
<td>8.50</td>
<td>1×10^{1}</td>
<td>7.5×10^{0}</td>
<td>1×10^{3}</td>
</tr>
<tr>
<td>9.25</td>
<td>1×10^{2}</td>
<td>7.5×10^{1}</td>
<td>1×10^{4}</td>
</tr>
<tr>
<td>10.00</td>
<td>1×10^{3}</td>
<td>7.5×10^{2}</td>
<td>1×10^{5}</td>
</tr>
<tr>
<td>>10.00</td>
<td></td>
<td></td>
<td>Inadmissible range</td>
</tr>
</tbody>
</table>

B: Gas Type Dependence

Indication range above 10^{-2} mbar

Pressure indicated (gauge adjusted for air, Pirani-only mode)

![Graph showing pressure indication for different gas types and pressures]
The gas type dependence in the pressure range $10^{-2} \ldots 1$ mbar can be compensated by means of the following formula:

$$p_{\text{eff}} = C \times \text{indicated pressure}$$

where

<table>
<thead>
<tr>
<th>Gas type</th>
<th>Calibration factor C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air, O₂, CO</td>
<td>1.0</td>
</tr>
<tr>
<td>N₂</td>
<td>0.9</td>
</tr>
<tr>
<td>CO₂</td>
<td>0.5</td>
</tr>
<tr>
<td>Water vapor</td>
<td>0.7</td>
</tr>
<tr>
<td>Freon 12</td>
<td>1.0</td>
</tr>
<tr>
<td>H₂</td>
<td>0.5</td>
</tr>
<tr>
<td>He</td>
<td>0.8</td>
</tr>
<tr>
<td>Ne</td>
<td>1.4</td>
</tr>
<tr>
<td>Ar</td>
<td>1.7</td>
</tr>
<tr>
<td>Kr</td>
<td>2.4</td>
</tr>
<tr>
<td>Xe</td>
<td>3.0</td>
</tr>
</tbody>
</table>

(The above calibration factors are mean values.)

The gas type dependence in the pressure range $< 10^{-3}$ mbar can be compensated by means of the following formula (gauge adjusted for air):

$$p_{\text{eff}} = C \times \text{indicated pressure}$$

where

<table>
<thead>
<tr>
<th>Gas type</th>
<th>Calibration factor C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air, O₂, CO, N₂</td>
<td>1.0</td>
</tr>
<tr>
<td>N₂</td>
<td>1.0</td>
</tr>
<tr>
<td>He</td>
<td>5.9</td>
</tr>
<tr>
<td>Ne</td>
<td>4.1</td>
</tr>
<tr>
<td>H₂</td>
<td>2.4</td>
</tr>
<tr>
<td>Ar</td>
<td>0.8</td>
</tr>
<tr>
<td>Kr</td>
<td>0.5</td>
</tr>
<tr>
<td>Xe</td>
<td>0.4</td>
</tr>
</tbody>
</table>

(The above calibration factors are mean values.)

A mixture of gases and vapors is often involved. In this case, accurate determination is only possible with a partial-pressure measuring instrument.
C: Literature

Communication Protocol
DeviceNet™ BPG400-SD
tira03e1
INFICON AG, LI–9496 Balzers, Liechtenstein

Communication Protocol
Profibus BPG400-SP
tira36e1
INFICON AG, LI–9496 Balzers, Liechtenstein

Product descriptions and downloads
INFICON AG, LI–9496 Balzers, Liechtenstein

Open DeviceNet Vendor Association, Inc.
DeviceNet™ Specifications

Profibus user organization

[7] European Standard for Profibus EN 50170

[8] www.inficon.com
Instruction Sheet
BPG400 (all versions)
tima03e1 a
INFICON AG, LI–9496 Balzers, Liechtenstein

Instruction Sheet
BPG400-SD, BPG400-SP
tima36e1
INFICON AG, LI–9496 Balzers, Liechtenstein

INFICON AG, LI–9496 Balzers, Liechtenstein
Declaration of Contamination

The service, repair, and/or disposal of vacuum equipment and components will only be carried out if a correctly completed declaration has been submitted. Non-completion will result in delay. This declaration may only be completed (in block letters) and signed by authorized and qualified staff.

1. **Description of product**
 - Type
 - Part number
 - Serial number

2. **Reason for return**

3. **Operating fluid(s) used** (Must be drained before shipping.)

4. **Process related contamination of product**
 - Toxic no [] yes []
 - Caustic no [] yes []
 - Biological hazard no [] yes []
 - Explosive no [] yes []
 - Radioactive no [] yes []
 - Other harmful substances no [] yes []

 1) or not containing any amount of hazardous residues that exceed the permissible exposure limits

 2) Products thus contaminated will not be accepted without written evidence of decontamination!

5. **Harmful substances, gases and/or by-products**
 Please list all substances, gases, and by-products which the product may have come into contact with:

<table>
<thead>
<tr>
<th>Trade/product name</th>
<th>Chemical name (preferably with formula)</th>
<th>Precautions associated with substance</th>
<th>Action in case of human contact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. **Legally binding declaration:**

 We hereby declare that the information on this form is complete and accurate and that we will assume any further costs that may arise. The contaminated product will be dispatched in accordance with the applicable regulations.

 Organization/company:
 Address:
 Phone:
 E-mail:
 Name:

 Date and legally binding signature: Company stamp

This form can be downloaded from our website.

Copies: Original for addressee - 1 copy for accompanying documents - 1 copy for file of sender
Notes