Summary of the basic things covered in the lecture (Phy 410) Feb 18, 2009

1. Microstates and Macrostates (N spins and N quantum harmonic oscillators)
2. Multiplicity of a given macrostate $(g(N, s)$ or $g(N, U)$, or $g(N, M)$ for magnets, $g(N, n)$ or $g(N, \varepsilon)$ for oscillators where U is the energy, M is total magnetic moment).

Spins or magnets with 2 states/magnet

$$
\begin{aligned}
& g(N, s)=\frac{N!}{\left(\frac{N}{2}+s\right)!\left(\frac{N}{2}-s\right)!} \\
& \sum_{s} g(N, s)=2^{N} \\
& M=2 s m, U=-M B=-2 s m B
\end{aligned}
$$

N quantum harmonic oscillators, each with same frequency ω, energy $\varepsilon_{s}=s \hbar \omega$. Multiplicity factor of the macrostate with energy $\varepsilon=n \hbar \omega$

$$
g(N, n)=\frac{(N-1+n)!}{(N-1)!n!}
$$

3. Multiplicity of two systems (N_{1} and N_{2}) in thermal contact with total energy U fixed.

$$
g(N, U)=\sum_{U_{1}, U_{2} ; U_{1}+U_{2}=U} g_{1}\left(N_{1}, U_{1}\right) \bullet g_{2}\left(N_{2}, U_{2}\right)
$$

For spin systems (2 s is the spin excess etc)

$$
g(N, s)=\sum_{s_{1}, s_{2}, s_{1}+s_{2}=s} g_{1}\left(N_{1}, s_{1}\right) \bullet g_{2}\left(N_{2}, s_{2}\right)
$$

4. Concept of entropy, thermal equilibrium and temperature (for system with fixed energy, closed system)

$$
\begin{aligned}
& \sigma(N, U)=\ln g(N, U) \\
& \frac{1}{\tau}=\left(\frac{\partial \sigma}{\partial U}\right)_{N}
\end{aligned}
$$

Equilibrium corresponds to the most probable distribution when the two systems have the same temperature. This corresponds to a particular division of energy between the two systems, \bar{U}_{1} and $\bar{U}_{2}=U-\bar{U}_{1}$.

$$
\frac{1}{\tau_{1}}=\left(\frac{\partial \sigma_{1}}{\partial U_{1}}\right)_{N_{1}, U_{1}=\bar{U}_{1}}=\left(\frac{\partial \sigma_{2}}{\partial U_{2}}\right)_{N_{2}, U_{2}=\bar{U}_{2}}=\frac{1}{\tau_{2}}
$$

At equilibrium

$$
\begin{aligned}
& g(N, U)=g_{1}\left(N_{1}, \bar{U}_{1}\right) \bullet g_{2}\left(N_{2}, \bar{U}_{2}\right) \\
& \sigma\left(N, U=\sigma_{1}\left(N_{1}, \bar{U}_{1}\right)+\sigma_{1}\left(N_{2}, \bar{U}_{2}\right)\right.
\end{aligned}
$$

For two independent systems Multiplicity Factor is a PRODUCT of multiplicity factor for each component. IN CONTRAST Entropy is additive.
5. For thermally open systems (system in equilibrium with a reservoir at temperature τ), probability of a given microstate s with energy \mathcal{E}_{s} is given by

$$
\begin{aligned}
& P\left(\varepsilon_{s}\right)=\frac{e^{-\varepsilon_{s} / \tau}}{Z} ; \\
& Z=\sum_{s} e^{-\varepsilon_{s} / \tau} ; \text { Partition function }
\end{aligned}
$$

Two non interacting systems A and B the partition function $Z_{A+B}=Z_{A} \bullet Z_{B}$
For N non interacting systems (spins, osillators, particles etc)
$Z_{N}=Z_{1} \bullet Z_{1} \bullet Z_{1} \bullet Z_{1} \ldots=\left(Z_{1}\right)^{N}$. Z_{1} will also depend on the physical system. Also for indistinguishable particles we need to divide Z_{N} by N !
6. Helmholtz free energy $F=U-\tau \sigma=-\tau \ln Z$

$$
\begin{aligned}
& U=\sum_{s} \varepsilon_{s} P\left(\varepsilon_{s}\right)=\tau^{2} \frac{\partial}{\partial \tau} \ln Z \\
& C_{V}=\left(\frac{\partial U}{\partial T}\right)_{V, N}
\end{aligned}
$$

For two non-interacting systems A and $B, F_{A+B}=F_{A}+F_{B}$
7. Thermodynamic identities (when N is constant)

$$
\begin{aligned}
& \tau d \sigma=d U+p d V \\
& d F=-\sigma d \tau-p d V
\end{aligned}
$$

You can use these identities to calculate temperature, entropy and pressure under various types of external constraints.
8. Maxwell velocity (\vec{v}) and speed (v) distribution

$$
P(\vec{v})=\left(\frac{M}{2 \pi \tau}\right)^{3 / 2} e^{-\frac{M \bar{v}^{2}}{2 \tau}} ; D(v)=\left(\frac{M}{2 \pi \tau}\right)^{3 / 2} 4 \pi v^{2} e^{-\frac{M v^{2}}{2 \tau}}
$$

9. Equipartition principle in classical systems
10. Thermal properties of black body radiation (Quantum Harmonic Oscillator model). Average total energy U / V and energy density u_{ω} as a function of the radiation frequency ω.
