PLEASE WAIT UNTIL YOU ARE TOLD TO BEGIN THE EXAM

While waiting, carefully fill in the information requested below

Your Name: \qquad

Your Student Number:

There are 4 problems. Please answer them all.

USEFUL CONSTANTS AND EQUATIONS

$$
\begin{gathered}
\text { Avogadro's Number } \mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23} \\
\text { Boltzmann's constant } \mathrm{k}=1.381 \times 10^{-23} \mathrm{~J} / \mathrm{K} \\
=8.617 \times 10^{-5} \mathrm{eV} / \mathrm{K} \\
\text { Gas constant } \mathrm{R}=\mathrm{kN} \mathrm{~A}_{\mathrm{A}}=8.31 \mathrm{~J} / \mathrm{mol} . \mathrm{K} \\
\text { Planck constant } \mathrm{h}=6.626 \times 10^{-34} \mathrm{~J} . \mathrm{s} \\
\text { Electron charge }(\text { magnitude }) \mathrm{e}=1.602 \times 10^{-19} \mathrm{C} \\
\text { Electron mass } \mathrm{m}=9.109 \times 10^{-31} \mathrm{~kg} \\
1 \mathrm{~atm}=1.013 \mathrm{bar} \\
1 \mathrm{bar}=10^{5} \mathrm{~N} / \mathrm{m}^{2} \\
1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J} \\
\text { Stirling's formula: ln } \mathrm{x}!\sim \mathrm{x} \ln \mathrm{x}-\mathrm{x} \text { when } \mathrm{x} \gg 1 \\
\text { Secur Tetrode equation for } 3 \mathrm{dimensional} \text { gas } \\
S(N, V, U)=k N\left[\ln \left\{\left(\frac{V}{N}\right) c\left(\frac{U}{N}\right)^{3 / 2}\right\}+\frac{5}{2}\right] ; c=\left(\frac{4 \pi m}{3 h^{2}}\right)^{3 / 2}
\end{gathered}
$$

Problem 1 (10 points)

1 kg of ice at $0^{\circ} \mathrm{C}$ is left sitting on a kitchen table, the temperature of the kitchen is $30^{\circ} \mathrm{C}$. Ice melts and then the water warms up to the kitchen temperature. Ignore any effect of the volume change. For: ice Latent heat of melting $333 \mathrm{~J} / \mathrm{g}$; For water : $\mathrm{C}_{\mathrm{v}}=4.186 \mathrm{~J} / \mathrm{gK}$.
i) Calculate the total change in the entropy of the water.(3 points)
ii) Calculate the change in the entropy of the bath (kitchen)as it gives up heat to first melt then to heat the water to $30^{\circ} \mathrm{C}$. (5 points)
iii) Is the net change in the entropy (ice + water and kitchen) positive or negative?(2)
(i) For the ice water system

$$
\begin{aligned}
& \Delta S_{\text {ice }}=\frac{Q_{\text {latent }}}{T}=\frac{333 \mathrm{~kJ}}{273 \mathrm{~K}}=+1.220 \mathrm{~kJ} / \mathrm{K} \\
& \Delta S_{\text {water }}=\int_{T_{i}}^{T_{f}}(C / T) d T=C \ln \frac{T_{f}}{T_{i}}=4.186(\mathrm{~kJ} / \mathrm{K}) \ln \frac{303 \mathrm{~K}}{273 \mathrm{~K}}=+0.436 \mathrm{~kJ} / \mathrm{K} \\
& \Delta S_{\text {tot,ice }+ \text { water }}=(1.220+0.436) \mathrm{kJ} / \mathrm{k}=+1.656 \mathrm{~kJ} / \mathrm{K}
\end{aligned}
$$

(ii) For the kitchen bath (which is at cons $\tan t$ temperature 303 K)

$$
\Delta S_{\text {tot }, \text { kitchen }}=-\frac{333 \mathrm{~kJ}+4.186 \times 30 \mathrm{~kJ}}{303 \mathrm{~K}}=-1.513 \mathrm{~kJ} / \mathrm{K}
$$

(iii) Total entropy change
$\Delta S_{\text {net }}=\Delta S_{\text {tot,ice+water }}+\Delta S_{\text {tot,kitchen }}=(+1.656-1.513) \mathrm{kJ} / \mathrm{k}=+0.143 \mathrm{~kJ} / \mathrm{K}$
Total entropy must increase

Problem 2 (15 points)

The entropy of an ideal gas consisting of N particles confined to move in a one dimensional box of length L and total energy U is given by (c is a constant depending on mass, Planck's constant etc)

$$
S(N, L, U)=N k\left[\ln \left\{\left[\left(\frac{L}{N}\right) c\left(\frac{U}{N}\right)^{1 / 2}\right]\right\}+\frac{3}{2}\right]
$$

Since S is given as a function of N, L, U, we use the thermodynamic identity for entropy:
$T d S=d U+F d L-\mu d N$ sin ce the work done is $-F d L$, where F is the tension (sorry for the notation)
(i) What is the temperature of this system? How does it depend on N, U, and L ? (5 points)

$$
\begin{aligned}
& \frac{1}{T}=(\partial S / \partial U)_{L, N}=\frac{\partial}{\partial U}\left[N k\left\{\ln U^{1 / 2}+C(\text { independent of } U)\right\}\right]=(1 / 2) N k / U \\
& T=\frac{2 U}{N k} ; \propto U ; \propto \frac{1}{N} ; \text { independent of } L
\end{aligned}
$$

(ii) What is the equation of state for this system (corresponding to $\mathrm{PV}=\mathrm{NkT}$ for an ideal three dimensional gas). Hint: The mechanical work done in one dimensional gas is $F L$ where F is the tension (Force) along the gas which is the equivalent of P (Force/area) in three dimension?(5 points)

Use
$T d S=d U+F d L-\mu d N$
$F=T(\partial S / \partial L)_{N, U}$
$=T \frac{\partial}{\partial L}[N k \ln L+C($ independent of $L)]$
$=T N k / L$
$F L=N k T$ is the equation of state (corresponding to $P V=N k T$ for a $3 d$ gas)
Note that the dim ension of energy is FL (Force x dis \tan ce)
(iii) What is the temperature and density dependence of the chemical potential μ for this system? (5 points)

$$
\begin{aligned}
\mu & =-T(\partial S / \partial N)_{U, L} \\
& =-T\left[k \ln \left[\left\{\frac{L}{N} c\left(\frac{U}{N}\right)^{1 / 2}\right\}+\frac{3}{2}\right]+N k \frac{\partial}{\partial N}\left\{\ln \left(\frac{1}{N^{3 / 2}}\right)+C\right\}\right] \\
& =-T\left[k \ln \left[\left\{\frac{L}{N} c\left(\frac{U}{N}\right)^{1 / 2}\right\}+\frac{3}{2}\right]-\frac{3}{2}\right] \\
& =-k T \ln \left\{\frac{L}{N} c\left(\frac{U}{N}\right)^{1 / 2}\right\}=-k T \ln \left\{\frac{L}{N} c\left(\frac{k T}{2}\right)^{1 / 2}\right\} \\
\mu & \propto \ln \left(\frac{1}{\rho}\right) ; \rho=N / L \text { (density) } \\
\mu & \propto T \ln T^{1 / 2}
\end{aligned}
$$

Problem 3 (15 points)

(i) Derive the "thermodynamic identity for the Gibb's free energy G". What are the natural thermodynamic variables (which control in a measurement) of G ? (5 points)

$$
\begin{aligned}
& G=U-T S+P V \\
& d G=d U-T d S-S d T+P d V+V d P \\
& U s e: d U=T d S-P d V+\mu d N \\
& d G=-S d T+V d P+\mu d N
\end{aligned}
$$

The natural ther mod ynamic variables of Gare N, P, T
(ii) Using (i) obtain expressions for the entropy (S) and volume (V) in terms of partial derivatives of G.(2 points)

$$
\begin{aligned}
& S=-(\partial G / \partial T)_{N, P} \\
& V=(\partial G / \partial P)_{N, T}
\end{aligned}
$$

(iii) For 1 mole of liquid water at $25^{\circ} \mathrm{C}$ and at 1 bar pressure, $V=18.068 \mathrm{~cm}^{3}$, and the coefficient of thermal expansion $\beta=(1 / V)(\partial V / \partial T)_{P, N}=2.57 \times 10^{-4} 1 / \mathrm{K}$.
a) What is the change in G if the pressure is increased to 11 bars.(3 points)

$$
\begin{aligned}
& \Delta G=V \Delta P \text { for cons } \tan t T \text { and } N \\
& =18.068 \times 10^{-6} \mathrm{~m}^{3} \times 10 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2} \\
& =18.068 \mathrm{~J}
\end{aligned}
$$

b) How much is the change in entropy for the same increase in pressure? (5 points)

For this we need to know how entropy S changes with pressure P at cons $\tan t$ temperature $T-N$ is fixed; $(\partial S / \partial P)_{N, T}$
We need Maxwell Relation :From (ii) $(\partial S / \partial P)_{N, T}=-(\partial V / \partial T)_{N, P}=-V \beta$

$$
\begin{aligned}
\Delta S & =-V \beta \Delta P=-\beta \Delta G=-18.068 \times 10^{-6} \mathrm{~m}^{3} \times 2.57 \times 10^{-4}(1 / \mathrm{K}) \times 10 \times 10^{5}\left(\mathrm{~N} / \mathrm{m}^{2}\right) \\
& =-4.643 \times 10^{-3} \mathrm{~J} / \mathrm{K}
\end{aligned}
$$

Problem 4 (10 points)

a) A heat engine is used to extract useful work. It operates between $800^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$. What is the maximum amount of kilowatt-hours of energy that can be extracted for every kilowatt-hour of thermal energy extracted from the hot source?(4)

$$
\begin{aligned}
& \text { Efficiency } \eta=\frac{W}{Q_{h}}=\frac{Q_{h}-Q_{c}}{Q_{h}}=1-\frac{Q_{c}}{Q_{h}}=1-\frac{T_{c}}{T_{h}}(\text { for ideal engine }) \\
& \eta=1-\frac{373 K}{1073 K}=0.652 \\
& W=\eta Q_{h}=0.652 x 1 \text { kilowatt }-h r=0.652 \text { kilowatt }-h r
\end{aligned}
$$

b) For a perfect engine how much energy is discarded at the cold end for 1 MJ of energy extracted from the hot source. (4)

$$
\begin{aligned}
& \text { Given } Q_{h}=1 M J \text { what is } Q_{c} \\
& \text { Since } 1-\frac{Q_{c}}{Q_{h}}=\eta ; \frac{Q_{c}}{Q_{h}}=1-\eta ; Q_{c}=(1-\eta) Q_{h} \\
& Q_{c}=(1-0.652) 1 M J=0.348 M J
\end{aligned}
$$

c) Calculate the net change in entropy in (b).(2)

$$
\Delta S=-\frac{Q_{h}}{T_{h}}+\frac{Q_{c}}{T_{c}}=0
$$

If I calculate ihe individual terms there are round - off errors

$$
\begin{aligned}
& =-\frac{1 M J}{1073 K}+\frac{0.348 M J}{373 K} \\
& =+1 J / K \approx 0
\end{aligned}
$$

