Phy 410 Quiz #10, April 17, 2009

(1) Plot the Bose-Einstein distribution function $f_{BE}(\mathcal{E})$ as a function of \mathcal{E} at a given \mathcal{T} when the chemical potential $\mu = 0$.

$$f_{BE}(\varepsilon) = \frac{1}{e^{\frac{\varepsilon-\mu}{\tau}} - 1} = \frac{1}{e^{\frac{\varepsilon}{\tau}} - 1}; 0 < \varepsilon < \infty$$

This function diverges at $\varepsilon=0$ and goes to zero as $e^{-\varsigma}$ as $\varepsilon\to\infty$.

(2) The Einstein condensation temperature T_E for bosons of mass *M* and density *N*/*V* is given by

$$T_E = C \frac{\left(N/V\right)^{2/3}}{k_B M}$$

Where C is a constant. For Rb atoms at density 10^{13} /cm³ T_E is $10^{.7}$ K. If the density is increased to 10^{16} /cm³, what will be T_E .

$$T_E \propto (N/V)^{2/3}$$
 for fixed M; $T_E(10^{16}/cm^3) = T_E(10^{13}/cm^3) \left(\frac{10^{16}}{10^{13}}\right)^{2/3}$

 $T_E(10^{16}/cm^3) = 10^{-7} K(10^3)^{2/3} = 10^{-7} K(10^2) = 10^{-5} K$

What is T_E for hydrogen atom if the density is 10^{16} /cm³.

(Use
$$M_{Rb}$$
=85 amu; M_{H} =1 amu)

$$T_E \propto \frac{1}{M}$$
 for a fixed density
 $T_E(H) = 85xT_E(RB) = 85x10^{-5} K$