Phy 410
Quiz \#1, Jan 23, 2009
a) There are 6 magnets each can point either up or down with equal probability (6 points)
i) How many possible microstates are there for this system?
ii) What is the probability of seeing the microstate ($\uparrow \uparrow \uparrow \uparrow \downarrow) ?$
iii) What is the probability of seeing a macrostate (\mathbf{N}, \mathbf{s}), 2s=spin excess, for $\mathbf{N}=6, \mathbf{s}=0$?
i) $\quad 2^{6}=64$; \quad ii) $1 / 64$;
iil)
$P(N, s)=g(N, s) \cdot \frac{1}{2^{N}}=\frac{N!}{\left(\frac{N}{2}+s\right)!\left(\frac{N}{2}-s\right)!} \bullet \frac{1}{2^{N}}=\frac{20}{64}=\frac{5}{16}$
b) Consider a system consisting of 2 quantum harmonic oscillators ($\mathbf{N}=2$). The total energy of the system is 3 (in units of energy quantum hw i.e. $n=3$). (4 points)
i) How many microstates ($\mathbf{N} ; \mathrm{s}_{1}, \mathrm{~s}_{\mathbf{2}}$) correspond to this macrostate (\mathbf{N}, n)?
ii) Write down these microstates.
i) $g(N, n)=\frac{(N-1+n)!}{(N-1)!n!}=\frac{(2-1+3)!}{(2-1)!3!}=4$
ii) $s_{1}+s_{2}=3$;

The microstates are:
$(2 ; 0,3),(2 ; 3,0),(2,2,1) ;(2 ; 1,2)$

