PLEASE WAIT UNTIL YOU ARE TOLD TO BEGIN THE EXAM

While waiting, carefully fill in the information requested below

Your Name:

Your Student Number:
There are 4 problems. Please answer them all. Total time is 1 Hour

USEFUL CONSTANTS AND EQUATIONS

Stirling's formula: $\ln \mathrm{N}!\sim \mathrm{N} \ln \mathrm{N}-\mathrm{N}$ when $\mathrm{N} \gg 1$
Thermal wavelength $\lambda_{t h}=\sqrt{\frac{2 \pi \hbar^{2}}{M \tau}}$
Quantum concentration $n_{Q}=\left(\frac{M \tau}{2 \pi \hbar^{2}}\right)^{3 / 2}=\frac{1}{\lambda_{t h}^{3}}$
Planck's const. $\hbar=1.05459 \times 10^{-34} \mathrm{Js}$
Boltzmann const. $k_{B}=1.38066 \times 10^{-23} \mathrm{~J} / \mathrm{K}$ $a m u=1.66057 \times 10^{-27} \mathrm{~kg}$

Problem 1 (10 points)

Consider a system containing 6 spins. Each spin can point either up or down. Magnetic moment associated with each spin is m . There is no external magnetic field. (4 points)
(i) What is the total number of microstates for this system?

$$
2^{6}=64
$$

(ii) If all the microstates are equally accessible then what is the probability of finding the system in any one of these microstates?

$$
\frac{1}{64}
$$

(iii) What is the probability of finding the system in the macrostate $N_{\uparrow}=4$?

$$
g\left(N, N_{\uparrow}\right) \frac{1}{2^{N}}=g(6,4) \frac{1}{2^{6}}=\frac{6!}{4!2!} \frac{1}{64}=\frac{15}{64}
$$

Now apply an external magnetic field B. Energy of each spin is either $-m B$ (when \uparrow) or $+m B$ (when \downarrow). The system is in equilibrium with a reservoir at temperature τ. (6 points)
(i) What is the probability of finding the system with total energy $U=0$?

$$
\begin{aligned}
& U=0 \text { implies } N_{\uparrow}=N_{\downarrow}=3 \\
& g(6,3)=\frac{6!}{3!3!}=20 \\
& \operatorname{Pr} o b=g(6,3) \frac{e^{-0 / \tau}}{Z}=\frac{20}{Z} \\
& Z=\left(Z_{1}\right)^{6}=\left(e^{m B / \tau}+e^{-m B / \tau}\right)^{6}=\left(e^{6 m B / \tau}+6 e^{4 m B / \tau}+15 e^{2 m B / \tau}+20+15 e^{-2 m B / \tau}+6 e^{-4 m B / \tau}+e^{-6 m B / \tau}\right)
\end{aligned}
$$

(ii) What is the probability of finding the system with total energy $U=6 m B$?
$\operatorname{Pr} o b=g(6,0) \frac{e^{-6 m B / \tau}}{Z}$, where Z is the same as in (i) above

Problem 2 (15 points)

Thermal properties of an impurity atom adsorbed on the surface of a solid can be described by a simple model consisting of finite number of microstates with different energies. A simple such model consists of 4 microstates, one with energy 0 and the other three, each with energy $\Delta>0$. The impurity atom and the solid are in equilibrium at temperature τ.
(i) What is the partition function for this impurity atom? (3 points)

$$
Z=1+3 e^{-\Delta / \tau}
$$

(ii) What is its average energy $U(\tau)$? Plot qualitatively U as a function of τ / Δ. (6 points)

$$
U=\tau^{2} \frac{\partial}{\partial \tau}(\ln Z)=\tau^{2} \frac{\frac{\partial Z}{\partial \tau}}{Z}=\frac{3 \Delta e^{-\Delta / \tau}}{1+3 e^{-\Delta / \tau}}=\frac{3 \Delta}{e^{\Delta / \tau}+3}
$$

(iii) What is the heat capacity?(3 points)

$$
C=\frac{\partial U}{\partial \tau}=3\left(\frac{\Delta}{\tau}\right)^{2} \frac{e^{\Delta / \tau}}{\left(e^{\Delta / \tau}+3\right)^{2}}=3\left(\frac{\Delta}{\tau}\right)^{2} \frac{e^{-\Delta / \tau}}{\left(1+3 e^{-\Delta / \tau}\right)^{2}}
$$

(iv) Find the temperature τ_{0} when the average energy $U\left(\tau_{0}\right)$ is equal to $\Delta / 2$. (3 points)

$$
\frac{3 \Delta e^{-\Delta / \tau}}{1+3 e^{-\Delta / \tau}}=\frac{\Delta}{2} ; e^{-\Delta / \tau}=1 / 3 ; \tau=\frac{\Delta}{\ln 3}=0.91 \Delta
$$

Problem 3 (13 points)

An ideal gas of N indistinguishable He atoms is contained inside a cubic box of volume V at $T=100 \mathrm{~K}$ and density $n=10^{24} / \mathrm{m}^{3}$.
(i) What is the thermal wave length $\lambda_{t h, H e}$ associated with these atoms? Can we treat this system classically or not, why? (5 points)

$$
\begin{aligned}
& \lambda_{t h}=\sqrt{\frac{2 \pi \hbar^{2}}{M \tau}}=\sqrt{\frac{2 \pi(1.05)^{2} \times 10^{-68}}{4 \times 1.66 \times 10^{-27} \times 1.38 \times 10^{-23} \times 10^{2}}}=0.87 \times 10^{-10} \mathrm{~m} \\
& n_{Q}=\frac{1}{\lambda_{t h}^{3}}=1.52 \times 10^{30} / \mathrm{m}^{3} . \text { Since } n \ll n_{Q}, \text { the system can be treated classically }
\end{aligned}
$$

(ii)What is the partition function of this gas $Z_{H e}$ if the partition function of 1 He atom is $Z_{1, H e}=\left(\frac{V}{\lambda_{k l, H e r}^{3}}\right)$?(3 points) (Express your answer in terms of N, V, and $\lambda_{t h, H e}$.

Drop the He suffix for simplicity

$$
Z_{N}=\frac{\left(Z_{1}\right)^{N}}{N!}
$$

(iii) What is the Helmholtz free energy/atom and the average energy/ atom? (5 points) (Show your work)

$$
\begin{aligned}
& F / N=-\tau \ln Z_{N} / N=-\tau\left[N \ln Z_{1}-\operatorname{lm} N!\right] / N \approx-\tau\left[\ln \left(\frac{Z_{1}}{N}\right)+1\right]=-\tau\left[\ln \left(\frac{V}{N \lambda_{t h}^{3}}+1\right)\right] \\
& U / N=\tau^{2}\left[\frac{\partial}{\partial \tau} \ln Z_{N}\right] / N=\tau^{2} \frac{\partial}{\partial \tau}\left[\ln \tau^{3 / 2}+\text { Cons } \tan \text { tindependent of } \tau\right]=\frac{3}{2} \tau
\end{aligned}
$$

Problem 4 (12 points)

Consider a system consisting of 3 quantum harmonic oscillators, all with the same frequency ω. Microstates of each oscillator are characterized by an integer $\mathrm{s}=0,1,2, \ldots$ with energy $\varepsilon_{s}=s \hbar \omega$.
(i) If the total energy of this system $U=2 \hbar \omega$, how many microstates are associated with this energy? Enumerate these microstates using a suitable notation (4points)
Use notation ($N ; s_{1}, s_{2}, s_{3}$)

$$
\text { (3;0,0,2);(3;0,2,0);(3;2,0,0);(3;1,1,0);(3;1,0,1);(3;0,1,1) Total } 6 \text { microstates }
$$

(ii) Bring a second system consisting of 4 magnets in an external field B , each magnet can point either parallel or antiparallel to B, with total magnetic moment exactly equal to 0 . Don't let these systems exchange energy. What is the total number of microstates associated with the combined oscillatormagnet system?(3 points)

Total magnetic moment is exactly equal to zero $N_{\uparrow}=N_{\downarrow}=2$
Multiplicity of magnetic system is $\frac{4!}{2!2!}=6$
Multiplicity of the non-exchanging magnet-QHO system is $\mathbf{6 x 6}=36$
(iii) Now consider a different physical situation where a system of N_{1} QHOs with average energy/atom, $\mathrm{U}_{1} / \mathrm{N}_{1}=4 \hbar \omega$ is brought in thermal contact with a system of N_{2} noninteracting magnets in the presence of an external field B , with average energy/magnet $\mathrm{U}_{2} / \mathrm{N}_{2}=0$. In which direction will the energy flow, from oscillators to magnets or vice-versa? (Hint: compare the temperatures of the two systems) Give reasons for your answer. (5 points)

$$
Q H O: \frac{U_{1}}{N_{1}}=\frac{\hbar \omega}{e^{\hbar \omega} \tau_{\tau_{1}}}-1=4 \hbar \omega \quad ; M A G N E T: \frac{U_{2}}{N_{2}}=-m B \tanh \frac{m B}{\tau_{2}}=0
$$

This gives $\tau_{2} \equiv \tau_{\text {magnet }}=\infty$ BUT $\tau_{1} \equiv \tau_{\text {Qно }}$ is finite
Magnets are hotter than the QHOs. Therefore the energy will flow from the magnets to the QHP's

