PHY 410

Final Examination, Spring 2009
May 4, 2009 (5:45-7:45 p.m.)

PLEASE WAIT UNTIL YOU ARE TOLD TO BEGIN THE EXAM.

While waiting, carefully fill in the information requested below

Your Name:

Your Student Number:

DO NOT TURN THIS PAGE UNTIL THE EXAM STARTS

USEFUL CONSTANTS AND INTEGRALS

Avogadro's Number $\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23}$
Boltzmann's constant $\mathrm{k}=1.381 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
$=8.617 \times 10^{-5} \mathrm{eV} / \mathrm{K}$
Planck constant $\hbar=1.054 \times 10^{-34} \mathrm{~J} . \mathrm{s}$
Electron charge (magnitude) e $=1.602 \times 10^{-19} \mathrm{C}$
Electron mass $\mathrm{m}=9.109 \times 10^{-31} \mathrm{~kg}$ Speed of light $=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}$

$$
\begin{gathered}
1 \mathrm{~atm}=1.013 \mathrm{bar} \\
1 \mathrm{bar}=10^{5} \mathrm{~N} / \mathrm{m}^{2} \\
1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}
\end{gathered}
$$

There are 7 problems. To receive full credit for each answer, you must work neatly, show your work and simplify your answer to the extent possible.

Problem 1 (5 points)

A power plant produces 1 GW of electricity at an efficiency of 40%.
(i) What is the rate at which the power plant expels waste heat to the environment?

$$
\begin{aligned}
& \eta=\frac{W}{Q_{h}} ; W=\eta Q_{h}=\eta\left(W+Q_{l}\right) \Rightarrow W=\frac{\eta}{1-\eta} Q_{l} ; Q_{l}=\frac{1-\eta}{\eta} W \\
& \text { Given } \frac{d W}{d t}=1 G W \text { we have } \frac{d Q_{l}}{d t}=\frac{1-\eta}{\eta} \frac{d W}{d t}=\frac{1-0.4}{0.4} 1 \mathrm{GW}=1.5 \mathrm{GW}
\end{aligned}
$$

(ii) What is the rate at which it uses up energy at the hot end?

$$
\begin{aligned}
& \frac{d Q_{h}}{d t}=\frac{1}{\eta} \frac{d W}{d t}=\frac{1}{0.4} 1 G W=2.5 \mathrm{GW} \\
& \text { Alternatively } \frac{d Q_{h}}{d t}=\frac{d Q_{l}}{d t}+\frac{d W}{d t}=1.5 \mathrm{GW}+1 G W=2.5 \mathrm{GW}
\end{aligned}
$$

Problem 2 (7.5 points)

Consider a fuel cell that uses methane (gas) as fuel. The reaction is

$$
\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

The difference in Gibb's free energy (final - initial) is -800 kJ per mole of CH_{4}.
(i) Assuming ideal performance, how much electrical work can be produced by the cell for each mole of CH_{4}.

$$
800 \mathrm{~kJ}
$$

(ii)The two steps of this reaction are

At -ve electrode $\mathrm{CH}_{4}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CO}_{2}+8 \mathrm{H}^{+}+8 \mathrm{e}^{-}$and At +ve electrode $2 \mathrm{O}_{2}+8 \mathrm{H}^{+}+8 \mathrm{e}^{-} \rightarrow 4 \mathrm{H}_{2} \mathrm{O}$ What is the maximum voltage generated by the cell?

$$
\begin{aligned}
& (8 e) N_{A} V_{0}=800 \mathrm{~kJ} \\
& e V_{0}=\frac{800 \times 10^{3} \mathrm{~J}}{8 N_{A}}=\frac{800 \times 10^{3} \mathrm{~J}}{8 \times 6 \times 10^{23}} \frac{1 \mathrm{eV}}{1.6 \times 10^{-19} \mathrm{~J}}=1.04 \mathrm{eV}
\end{aligned}
$$

Therefore max voltage $V_{0}=1.04 \mathrm{~V}$

Problem 3 (10 points)

An ideal gas of N bosons of mass M is in a cubical box of volume V. The bosons are nonrelativistic. The density of orbitals (or states) is given by

$$
D_{3}(\varepsilon)=\frac{V}{4 \pi^{2}}\left(\frac{2 M}{\hbar^{2}}\right)^{3 / 2} \varepsilon^{1 / 2} ; \varepsilon \geq 0
$$

(i)Write down an expression for the number of particles in terms of $D_{3}(\varepsilon)$ and the Bose-Einstein distribution function $f_{B E}(\varepsilon)$.

$$
N=\int_{0}^{\infty} D_{3}(\varepsilon) \frac{1}{e^{(\varepsilon-\mu) / \tau}-1} d \varepsilon
$$

(ii) Derive an expression for the BE condensation temperature τ_{E} in terms M and the density N / V.(Use $\int_{0}^{\infty} \frac{x^{1 / 2}}{e^{x}-1} d x=1.306 \sqrt{\pi}$)

$$
\begin{aligned}
& N=\int_{0}^{\infty} D_{3}(\varepsilon) \frac{1}{e^{\varepsilon / \tau_{E}}-1} d \varepsilon=\frac{V}{4 \pi^{2}}\left(\frac{2 M}{\hbar^{2}}\right)^{3 / 2} \int_{0}^{\infty} \frac{\varepsilon^{1 / 2}}{e^{\varepsilon / \tau_{E}}-1} d \varepsilon \\
& \text { Put } x=\frac{\varepsilon}{\tau_{E}}: N=\frac{V}{4 \pi^{2}}\left(\frac{2 M}{\hbar^{2}}\right)^{3 / 2} \tau_{E}^{3 / 2} \int_{0}^{\infty} \frac{x^{1 / 2}}{e^{x}-1} d x \\
& \tau_{E}=\frac{\hbar^{2}}{2 M}\left(\frac{4 \pi^{3 / 2}}{1.306} \frac{N}{V}\right)^{2 / 3}
\end{aligned}
$$

(iii) How does τ_{E} change when the mass of the boson doubles?

It reduces by a factor of 2

Problem 4 (7.5 points)

The measured constant volume heat capacity of a metal at low temperature ($\tau \ll \tau_{F}=\varepsilon_{F}$ and $\tau \ll k_{B} \theta_{\text {Debye }}$) is given by

$$
C_{V}=A \tau+B \tau^{3}, \text { where } A \text { and } B \text { are constants. }
$$

(i)What are the physical origins of the above two different contributions to C_{V} ?

The linear terms comes from the Fermi Dirac statistics of electrons in a metal. The cubic terms comes from the phonons (lattice vibrations) of the atoms
(ii) What is the temperature dependence of entropy of the metal?

$$
\begin{aligned}
& C_{V}=\frac{d Q}{d \tau}=\tau \frac{d \sigma}{d \tau} \\
& \int d \sigma=\int \frac{C_{V}\left(\tau^{\prime}\right)}{\tau^{\prime}} d \tau^{\prime} \\
& \sigma(\tau)-\sigma(0)=\int_{0}^{\tau} \frac{C_{V}\left(\tau^{\prime}\right)}{\tau^{\prime}} d \tau^{\prime}=A \int_{0}^{\tau} d \tau^{\prime}+B \int_{0}^{\tau}\left(\tau^{\prime}\right)^{2} d \tau^{\prime}=A \tau+\frac{B \tau^{3}}{3}
\end{aligned}
$$

Usually

$$
\sigma(0)=0
$$

Problem 5 (10 points)

Consider a defect in a solid which has two energy levels with energy 0 and $\varepsilon>0$. The degeneracy of the ground level is 2 and that of the excited level is 1 . The solid is at a temperature τ.
(i) What is the partition function for this defect?
(ii) What is its average energy $U(\tau)$? Plot U as a function of τ.
(iii) What is $U(\tau)$ at $\tau=\infty$?
(iv) Find the temperature τ_{0} when the average energy $U\left(\tau_{0}\right)$ is half the average energy at $\tau=\infty, U(\infty)$.

$$
\begin{aligned}
& z=2+e^{-\varepsilon / \tau} \\
& U(\tau)=\frac{\varepsilon e^{-\varepsilon / \tau}}{2+e^{-\varepsilon / \tau}} \\
& U(\infty)=\frac{\varepsilon}{3} \\
& U\left(\tau_{0}\right)=\frac{U(\infty)}{2}=\frac{\varepsilon}{6}=\frac{\varepsilon e^{-\varepsilon / \tau_{0}}}{2+e^{-\varepsilon / \tau_{0}}} \\
& \text { Solve for } \frac{\varepsilon}{\tau_{0}} \text { and then } \tau_{0}=-\frac{\varepsilon}{\ln 2 / 5}
\end{aligned}
$$

Problem 6 (15 points)

The energy per unit volume of a black body radiation and the radiation pressure p are given by

$$
u=\frac{U}{V}=A \tau^{4} ; \text { where } A \text { is a const ant }, \quad p=\frac{u}{3}
$$

A gas of photon is used as the working medium of a heat engine. The gas undergoes an isothermal expansion at temperature τ_{h} from volume V_{1} to $V_{2}=2 V_{1}$.
(i) What is the work done by the photon gas, W_{12} ? If instead of a photon gas we use an ideal gas of $N \mathrm{Ar}$ atoms, what is the work done in this case?

$$
\begin{aligned}
& \text { PHOTONS : } W_{12}=\int_{1}^{2} p d V=\frac{1}{3} A \tau^{4} \int_{V_{1}}^{V_{2}} d V=\frac{A \tau_{h}^{4}}{3}\left(V_{2}-V_{1}\right)=\frac{A \tau_{h}^{4} V_{1}}{3} \\
& \text { ARGON ATOMS : } W_{12}=\int_{1}^{2} p d V=N \tau_{h} \int_{V_{1}}^{V_{2}} \frac{d V}{V}=N \tau_{h} \ln \left(\frac{V_{2}}{V_{1}}\right)=N \tau_{h} \ln (2)
\end{aligned}
$$

(ii) Now the photon gas undergoes an adiabatic expansion from $\left(\tau_{h}, V_{2}\right)$ to $\left(\tau_{l}, V_{3}\right)$ (where $\tau_{l}=\tau_{h} / 2, V_{3}=2 V_{2}$), and the work done by the photon gas is W_{23}. What is W_{23} / W_{12} ?

Start from the 1 st law of thermodynamics (Energy onservation) $d U=d Q+d W$ where $d W$ is the work done ON the gas
Work done BY the gas $=-d W=d Q-d U$
For an adiabatic process $d Q=0$
Work done BY the gas $=-d W=-d U$

$$
W_{23}=\int_{2}^{3}-d U=U(2)-U(3)=A V_{2} \tau_{h}^{4}-A V_{3} \tau_{l}^{4}
$$

Use result for W_{12} from (i) above

$$
W_{23} / W_{12}=\frac{A V_{2} \tau_{h}^{4}-A V_{3} \tau_{l}^{4}}{\left(A \tau_{h}^{4} V_{1}\right) / 3}=\frac{3 V_{2}}{V_{1}}\left(1-\left(\tau_{l} / \tau_{h}\right)^{4} \frac{V_{3}}{V_{2}}\right)
$$

NOW Plug in the different ratios.

Problem 7 (15 points)

Consider an ideal 2-dimensional gas of non-relativisitic electrons ($\operatorname{spin} 1 / 2$) of density $n=N / A$ at zero temperature. The density of states for this system is given by $D_{2}(\varepsilon)=\frac{A}{2 \pi}\left(\frac{2 m}{\hbar^{2}}\right) ; \varepsilon \geq 0$.
(i) Derive an equation relating the Fermi energy ε_{F} as a function of n , mass m , and other fundamental constant(s).

$$
\begin{aligned}
& N=\int_{0}^{\infty} D_{2}(\varepsilon) \frac{1}{e^{(\varepsilon-\mu) / \tau}+1} d \varepsilon=\int_{0}^{\varepsilon_{F}} D_{2}(\varepsilon) d \varepsilon=\frac{A}{2 \pi}\left(\frac{2 m}{\hbar^{2}}\right) \varepsilon_{F} \\
& \varepsilon_{F}=\frac{\hbar^{2}}{2 m}\left(\frac{2 \pi N}{A}\right)
\end{aligned}
$$

(ii) Calculate the average energy (energy/particle) in terms of the Fermi energy ε_{F}.

$$
\begin{aligned}
& U=\int_{0}^{\varepsilon_{F}} \varepsilon D_{2}(\varepsilon) d \varepsilon=\frac{A}{2 \pi}\left(\frac{2 m}{\hbar^{2}}\right) \frac{\varepsilon_{F}^{2}}{2} \\
& \frac{U}{N}=\frac{\varepsilon_{F}}{2}
\end{aligned}
$$

(iii) What is the Fermi energy ε_{F} (in electron volts) if $n=10^{18} \mathrm{~m}^{-2}$

$$
\begin{aligned}
& \varepsilon_{F}=2 \pi \times 10^{18} \frac{1}{m^{2}} \times \frac{\left(1.054 \times 10^{-34} \mathrm{~J} . \mathrm{s}\right)^{2}}{2 \times 9.1 \times 10^{-31} \mathrm{~kg}} \times \frac{1 \mathrm{eV}}{1.6 \times 10^{-19} \mathrm{~J}} \\
& =0.24 \mathrm{eV}
\end{aligned}
$$

