HW\#11

11.1
(i)

The Hydrogen atom consists of one electron and one proton. They both have $1 / 2 \mathrm{spin}$. Thus, the spin of Hydrogen atom is $1 / 2+1 / 2=1$. We can treat it as a boson.
(ii)

Let the average distance to be d, every atom take a average volume of a sphere with radius $r=d / 2$, thus
$N \times \frac{4}{3} \pi r^{3}=V \Rightarrow \frac{N}{V} \times \frac{4}{3} \pi r^{3}=1$
For $\frac{N}{V}=1.8 \times 10^{14}$ atoms $/ \mathrm{cm}^{3}$, we can obtain
$r=1.1 \times 10^{-5} \mathrm{~cm} \Rightarrow d=2 r=2.2 \times 10^{-5} \mathrm{~cm}$
(iii)

We have
$\frac{N}{V}=1.8 \times 10^{14} / \mathrm{cm}^{3}=1.8 \times 10^{20} / \mathrm{m}^{3}$
$M=1.673 \times 10^{-27} \mathrm{Kg}$
From (7.72), we can obtain
$\tau_{E}=\frac{2 \pi \hbar^{2}}{M}\left(\frac{N}{2.612 V}\right)^{2 / 3}$
$\Rightarrow T_{E}=\frac{2 \pi \hbar^{2}}{k_{B} M}\left(\frac{N}{2.612 V}\right)^{2 / 3}=5.09 \times 10^{-5} \mathrm{~K}=50.9 \mu \mathrm{~K}$

The result is very close to the measured value of $50 \mu \mathrm{~K}$.

11.2

We have
$M=6.697 \times 10^{-27} \mathrm{Kg}$
$\frac{N}{V}=\frac{M_{\text {all }} / M}{M_{\text {all }} / \rho}=\frac{\rho}{M}=2.165 \times 10^{28} / \mathrm{m}^{3}$
From (7.72), we can obtain
$\tau_{E}=\frac{2 \pi \hbar^{2}}{M}\left(\frac{N}{2.612 V}\right)^{2 / 3}$
$\Rightarrow T_{E}=\frac{2 \pi \hbar^{2}}{k_{B} M}\left(\frac{N}{2.612 V}\right)^{2 / 3}=3.1 K$
The result is greater than experimental value of 2.17 K .

11.3

From (7.65), we have
$D(\varepsilon)=\frac{V}{4 \pi^{2}}\left(\frac{2 M}{\hbar^{2}}\right)^{3 / 2} \varepsilon^{1 / 2}$
Thus, we can get the energy
$U=\int_{0}^{\infty} \varepsilon D(\varepsilon) f(\varepsilon) d \varepsilon=\int_{0}^{\infty} \varepsilon \frac{V}{4 \pi^{2}}\left(\frac{2 M}{\hbar^{2}}\right)^{3 / 2} \varepsilon^{1 / 2} \frac{1}{\mathrm{e}^{(\varepsilon-\mu) / \tau}-1} d \varepsilon$
$=\frac{V}{4 \pi^{2}}\left(\frac{2 M}{\hbar^{2}}\right)^{3 / 2} \int_{0}^{\infty} \varepsilon^{3 / 2} \frac{1}{\lambda^{-1} \mathrm{e}^{\varepsilon / \tau}-1} d \varepsilon$
With $x=\varepsilon / \tau, \lambda=1$, we have
$U=\frac{V}{4 \pi^{2}}\left(\frac{2 M}{\hbar^{2}}\right)^{3 / 2} \tau^{5 / 2} \int_{0}^{\infty} \frac{x^{3 / 2}}{\mathrm{e}^{x}-1} d x$
For the integral, we have
$\int_{0}^{\infty} \frac{x^{3 / 2}}{\mathrm{e}^{x}-1} d x=\Gamma(5 / 2) \zeta(5 / 2) \approx \frac{3}{4} \sqrt{\pi} \times 1.341 \approx 1.783$
Thus
$U=1.783 \frac{V}{4 \pi^{2}}\left(\frac{2 M}{\hbar^{2}}\right)^{3 / 2} \tau^{5 / 2}$
For $d \sigma=\left(\frac{d U}{\tau}\right)_{V}$, we can obtain
$\sigma=\int \frac{d U}{\tau}+$ constant
$=1.783 \frac{V}{4 \pi^{2}}\left(\frac{2 M}{\hbar^{2}}\right)^{3 / 2} \int_{0}^{\tau} \frac{5}{2} \tau^{3 / 2} \frac{d \tau^{\prime}}{\tau^{\prime}}+$ constant
$=1.783 \frac{5}{2} \frac{V}{4 \pi^{2}}\left(\frac{2 M}{\hbar^{2}}\right)^{3 / 2} \int_{0}^{\tau} \tau^{1 / 2} d \tau^{\prime}+$ constant
$=\left.1.783 \frac{5}{2} \frac{V}{4 \pi^{2}}\left(\frac{2 M}{\hbar^{2}}\right)^{3 / 2} \frac{2}{3} \tau^{13 / 2}\right|_{0} ^{\tau}+$ constant
$=\left.1.783 \frac{5}{2} \frac{V}{4 \pi^{2}}\left(\frac{2 M}{\hbar^{2}}\right)^{3 / 2} \frac{2}{3} \tau^{13 / 2}\right|_{0} ^{\tau}+$ constant
$=1.783 \frac{5}{3} \frac{V}{4 \pi^{2}}\left(\frac{2 M}{\hbar^{2}}\right)^{3 / 2} \tau^{3 / 2}+$ constant
For $\sigma \rightarrow 0$ as $\tau \rightarrow 0$, thus
$\sigma=1.783 \frac{5}{3} \frac{V}{4 \pi^{2}}\left(\frac{2 M}{\hbar^{2}}\right)^{3 / 2} \tau^{3 / 2}$
11.4

For Bose-Einstein distribution function (7.53), we have

$$
f(\varepsilon, \tau)=\frac{1}{\exp [(\varepsilon-\mu) / \tau]-1}
$$

Thus,

$$
\begin{aligned}
& f(0)=\frac{1}{\exp (-\mu / \tau)-1} \Rightarrow \exp (-\mu / \tau)=1+\frac{1}{f(0)} \\
& f(\varepsilon)=\frac{1}{\exp [(\varepsilon-\mu) / \tau]-1} \Rightarrow \exp [(\varepsilon-\mu) / \tau]=1+\frac{1}{f(\varepsilon)}
\end{aligned}
$$

Also, we have
$\frac{f(0)}{f(\varepsilon)}=2 \Rightarrow f(0)=\frac{2}{3} N, f(\varepsilon)=\frac{1}{3} N$
For $N \gg 1$, we can make some approximation
$\exp (-\mu / \tau)=1+3 / 2 N, \exp [(\varepsilon-\mu) / \tau]=1+3 / N$
$\Rightarrow \exp (\varepsilon / \tau)=\frac{\exp [(\varepsilon-\mu) / \tau]}{\exp (-\mu / \tau)}=\frac{1+3 / N}{1+3 / 2 N}=1+\frac{3 / 2 N}{1+3 / 2 N} \approx 1+3 / 2 N$
$\Rightarrow \varepsilon / \tau=\ln (1+3 / 2 N) \approx 3 / 2 N$
$\Rightarrow \tau=2 N \varepsilon / 3$
11.5
(a)

For reversible heat pump, from (8.4), we have
$\sigma_{l}=\sigma_{h} \Rightarrow Q_{l} / \tau_{l}=Q_{h} / \tau_{h}$
$\Rightarrow Q_{l}=\frac{\tau_{l}}{\tau_{h}} Q_{h}$
Thus
$W=Q_{h}-Q_{l}=Q_{h}-\frac{\tau_{l}}{\tau_{h}} Q_{h}=\frac{\tau_{h}-\tau_{l}}{\tau_{h}} Q_{h}=\eta_{c} Q_{h}$
$\Rightarrow \frac{W}{Q_{h}}=\eta_{c}=\frac{\tau_{h}-\tau_{l}}{\tau_{h}}$
For irreversible heat pump, we have
$\sigma_{l}<\sigma_{h} \Rightarrow Q_{l} / \tau_{l}<Q_{h} / \tau_{h}$
$\Rightarrow Q_{l}<\frac{\tau_{l}}{\tau_{h}} Q_{h}$
Thus
$W=Q_{h}-Q_{l}>Q_{h}-\frac{\tau_{l}}{\tau_{h}} Q_{h}=\frac{\tau_{h}-\tau_{l}}{\tau_{h}} Q_{h}=\eta_{c} Q_{h}$
$\Rightarrow \frac{W}{Q_{h}}>\eta_{c}=\frac{\tau_{h}-\tau_{l}}{\tau_{h}}$
More work is required for irreversible heat pump.
(b)

We have
$\frac{W}{Q_{h}}=\frac{\tau_{h}-\tau_{l}}{\tau_{h}}, \frac{W}{Q_{h h}}=\frac{\tau_{h h}-\tau_{l}}{\tau_{h h}}$
Thus
$\frac{Q_{h h}}{Q_{h}}=\frac{W / Q_{h}}{W / Q_{h h}}=\frac{\tau_{h}-\tau_{l}}{\tau_{h}} \times \frac{\tau_{h h}}{\tau_{h h}-\tau_{l}}=\frac{300-270}{300} \times \frac{600}{600-270}=\frac{2}{11}$
(c)

