HW1 Solutions (Ding Wang - TA for PHY 410, SP10)

1.1
(a)

There are $2^{4}=16$ microstates.

```
\uparrow\uparrow\uparrow\uparrow, \uparrow\uparrow\uparrow\downarrow,\uparrow\uparrow\downarrow\uparrow,\uparrow\uparrow\downarrow\downarrow, \uparrow\downarrow\uparrow\uparrow, \uparrow\downarrow\uparrow\downarrow,\uparrow\downarrow\downarrow\uparrow, \uparrow\downarrow\downarrow\downarrow,
\downarrow\uparrow\uparrow\uparrow,\downarrow\uparrow\uparrow\downarrow,\downarrow\uparrow\downarrow\uparrow,\downarrow\uparrow\downarrow\downarrow,\downarrow\downarrow\uparrow\uparrow,\downarrow\downarrow\uparrow\downarrow,\downarrow\downarrow\downarrow\uparrow,\downarrow\downarrow\downarrow\downarrow
(b)
s=2
\uparrow\uparrow\uparrow\uparrow
Probability = 1/16=0.0625
s=1
\uparrow\uparrow\uparrow\downarrow, \uparrow\uparrow\downarrow\uparrow, \uparrow\downarrow\uparrow\uparrow, \downarrow\uparrow\uparrow\uparrow
Probability = 4/16=0.25
s=0
\uparrow\uparrow\downarrow\downarrow,\uparrow\downarrow\uparrow\downarrow, \uparrow\downarrow\downarrow\uparrow,\downarrow\uparrow\uparrow\downarrow,\downarrow\uparrow\downarrow\uparrow,\downarrow\downarrow\uparrow\uparrow
Probability =6/16=0.375
s=-1
\uparrow\downarrow\downarrow\downarrow, \downarrow\uparrow\downarrow\downarrow, \downarrow\downarrow\uparrow\downarrow, \downarrow\downarrow\downarrow\uparrow
Probability = 4/16=0.25
s=-2
\downarrow\downarrow\downarrow\downarrow
```

Probability $=1 / 16=0.0625$
(c)

$$
g(N, s)=\frac{N!}{\left(\frac{N}{2}+s\right)!\left(\frac{N}{2}-s\right)!}
$$

We can get

```
g(4,2)=1
```

$g(4,1)=4$
$g(4,0)=6$
$\mathrm{g}(4,-1)=4$
$\mathrm{g}(4,-2)=1$

The same result as part (b).
1.2
(a) The number of all possible outcomes is $\mathrm{Z}=2^{20}=1048576$
(b) The probability of getting one exact order is
$1 / Z=9.5367 \times 10^{-7}$
(c) The probability is
$\frac{C_{20}^{12}}{Z}=\frac{125970}{1048576}=0.1201$
1.3

For $\mathrm{N}=40$, we have
$\mathrm{N}!=8.1592 \times 10^{47}$
$\log (\mathrm{N}!)=110.3206$
For approximation, we have
$N!\approx N^{N} e^{-N} \sqrt{2 \pi N}=8.1422 \times 10^{47}$
$\log N!\approx \frac{1}{2} \log 2 \pi+\left(N+\frac{1}{2}\right) \log N-N=110.3186$
1.4
(a)
$g(N, 0) \square(2 / \pi N)^{1 / 2} 2^{N}=2.5231 \times 10^{-12} \times 2^{10^{23}}$
$2^{10^{23}}$ is a huge number which cannot be print out by all the paper of the world.
(b)

The number of microstates explored is
$10^{9} \times 3600 \times 24 \times 365 \times 10 \times 10^{9}=3.1536 \times 10^{26}$

