PHY 410 HW#5

Assigned 8 Feb 10: Due 15 Feb 10

- 5.1 What are the thermal wavelengths λ_{th} (or quantum length l_{ϱ}) for the following particles
 - (i) N₂ molecules at T=300K; (ii) electrons at 300K; (iii) He atoms at 1K
 - If the densities for these systems are $10^{19}/\text{cc}$, $10^{22}/\text{cc}$, and $10^{22}/\text{cc}$ respectively, then which of these can be treated as classical systems. (6 points)
- 5.2 An ideal gas is isothermally compressed from volume V to V/2 keeping N fixed. What is the change in entropy σ per particle? If the same gas is heated from temperature τ to 2τ , keeping the volume V and N constant, what is the change in σ per particle? (4 points)
- 5.3 Problem # 6, Chapter 3 of the Text (Kittel and Kroemer). This problem deals with the rotation of diatomic molecules. (12 points)
- 5.4 Problem # 8, Chapter 3 of the Text (Kittel and Kroemer). (10 points)
- 5.5 Problem # 11, Chapter 3 of the Text (Kittel and Kroemer). This problem explores the relationship between thermodynamics (or statistical physics) and the physical dimensionality of a system. (8 points).