Phy 410 Quiz #10, April 16, 2010

- (1) Plot the Bose-Einstein distribution function $f_{BE}(\mathcal{E})$ as a function of \mathcal{E} at a given \mathcal{T} when the chemical potential $\mu = 0$.
- (2) The Einstein condensation temperature T_E for bosons of mass *M* and density *N/V* is given by

$$T_E = C \frac{\left(N/V\right)^{2/3}}{k_B M}$$

Where C is a constant. For Rb atoms at density 10^{13} /cm³ T_E is 10^{-7} K. If the density is increased to 10^{16} /cm³, what will be T_E

Since
$$T_E \propto \left(\frac{N}{V}\right)^{2/3}$$
; $T_E = 10^{-7} Kx \left(\frac{10^{16}}{10^{13}}\right)^{2/3} = 10^{-5} K$

What is T_E for hydrogen atom if the density is 10^{16} /cm³.

(Use M_{Rb}=85 amu; M_H=1 amu)

Since
$$T_E \propto \frac{1}{M}$$
; $T_E = 10^{-5} Kx \left(\frac{1/1}{1/85}\right) = 85x10^{-5} K$