Phy 410
 Quiz \#6, March 5, 2010

(i) The temperature of s_{1} is τ_{1} and of $s 2$ is τ_{2}. Only energy is exchanged. If $\tau_{1}>\tau_{2}$ then which direction the energy flows?(2.5pts)

From 1 to 2
(ii) Two systems have same τ but can exchange particles. If $\mu_{2}>\mu_{1}$, which directions the particles flow? (2.5pt)

From 2 to 1

(iii) Two ideal gas systems A and B are at the same τ and have the above μ / τ. Which atoms are heavier and why? (5 points)

$$
\mu / \tau=\ln \left(\frac{n}{n_{Q}}\right) ; n_{Q}=\frac{1}{\lambda_{t h}^{3}} \propto M^{3 / 2}
$$

From the figure:

For fixed $\mu / \tau ; n_{A}>n_{B} ;$ Therefore $n_{Q A}>n_{Q B}$
OR for fixed $\ln (n)$ or $n ; \mu_{A} / \tau<\mu_{B} / \tau$; Therefore $n_{Q A}>n_{Q B}$
Since $n_{Q A}>n_{Q B}$ and $n_{Q} \propto M^{3 / 2} ; M_{A}>M_{B}$

