Phy 410
 Quiz \#7, March 19, 2010

The average number of particles of an ideal gas (mass m) at temperature τ and pressure P adsorbed on a surface is given by

$$
f=\frac{\langle N\rangle}{N_{S}}=\frac{p}{p+p_{0}} ; p_{0}=\tau n_{Q} e^{-E / \tau}
$$

where E and n_{Q} are the binding energy of the atoms to the surface and quantum concentration respectively.
A) Sketch f vs p. Does the slope near $p=0$ increase or decrease with p_{0} ?

Slope near $\mathbf{p}=\mathbf{0}$ is $\frac{1}{p_{0}}$
Therefore slope decreases as p_{0} increases
B) Two types of gases (1 and 2) are exposed to the same surface and have exactly the same E. At a given τ, f for 1 rises faster than that for 2 near $p=0$. Which atoms are lighter, 1 or 2?

Since \mathbf{f} for 1 rises faster than that for 2 near $p=0$ its slope is larger.

$$
p_{0,1}<p_{0,2}
$$

Since τ and binding energy are the same
$n_{Q, 1}<n_{Q, 2}$
Since $n_{Q} \propto m^{3 / 2}$
$m_{1}<m_{2}$; Particle 1 is lighter

