Phy 410 Quiz #9, April 9, 2010

The Fermi energy (FE) of an Ideal gas of spin $\frac{1}{2}$ fermions of mass m and density N/V is given by

$$\varepsilon_F = \frac{\hbar^2}{2m} \left(3\pi^2 \frac{N}{V} \right)^{2/3}$$

The Fermi energy of electrons ($m=m_e$) in metal with density 2.5x10²⁸ (1/ m^3) is 3.1 eV.

(i) What is the FE of electrons in a doped semi-conductor with density 2.5x10²⁵(1/m³)

Since
$$\varepsilon_F \propto \left(\frac{N}{V}\right)^{2/3}$$
; $\varepsilon_F = 3.1 \, eVx \left(\frac{2.5x10^{25}}{2.5x10^{28}}\right)^{2/3} = 3.1x10^{-2} \, eV$

(ii) What is the FE of heavy fermions with mass $m=1000m_e$ with the same metallic density, 2.5×10^{28} (1/m³)?

Since
$$\varepsilon_F \propto \frac{1}{m}$$
; $\varepsilon_F = 3.1 \, eVx \left(\frac{m_e}{1000 m_e} \right) = 3.1 \, x 10^{-3} \, eV$