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Real systems in physics, chemistry and biology are always subject to ¯uctuations that

change qualitatively the systems’ dynamics. In particular, rare large ¯uctuations are

responsible for the nucleation at phase transitions, mutations in DNA sequences, protein

transport in cells and failure of electronic devices. In many cases of practical interest

systems are away from thermal equilibrium, and understanding the ¯uctuations in such

systems is one of the fundamental problems of statistical physics that has challenged

researchers for decades. Recent progress in the solution of this problem is closely related

to the emerging understanding of patterns of deterministic trajectories underlying

non-equilibrium ¯uctuations. These trajectories correspond to the Hamilton equations of

motion written for the asymptotic solution of the Fokker ± Planck equation and were often

thought of as a mere mathematical abstraction. The possibility of quantitative experiments

could not be entertained until the appropriate statistical quantity (prehistory probability

distribution) had been introduced. In this paper it is shown how such trajectories can be

measured experimentally in a number of systems and how the knowledge of these trajectories

can be used to solve long standing problems in the theory of ¯uctuations and in the control

theory.

1. Introduction

Almost all systems, whether in nature or in technology, are

noisy and nonlinear [1]. Sometimes the nonlinearity can be

ignored Ð e.g. for very small perturbations about a stable

state Ð and one can hope that the eVect of ¯uctuations will

average out. In general, however, such assumptions are

unjusti®ed. There are many situations where the behaviour

of the system can only be understood if the nonlinearity and

noise are taken explicitly into account. Such studies are of

wide applicability to many branches of science and

technology, where identical model equations often arise in

diverse contexts.

An archetypal example is the irregular motion of small

pollen grains suspended in water, discovered by Robert

Brown{ in 1827. A satisfactory explanation did not come

until 1905, when Einstein [2] suggested that ` . . . bodies of

microscopically visible size will perform movements . . . on

account of the molecular motions of heat.’ Einstein

described this motion in terms of the diVusion equation

and considered his theory as a strong argument supporting

the kinetic theory of heat. Some time later Langevin [3]

wrote the so-called Langevin equation of motion of a

Brownian particle in the form of Newton’s law

m �x ˆ ¡G _x ‡ x…t† …1†

where x is the position of a Brownian particle and G is

friction coe� cient. The two terms on the right-hand side

represent viscous drag and random force. (In what follows

we put m ˆ 1 for the sake of simplicity.)

The unusual properties of the random force are respon-

sible for the peculiarities of Brownian motion observed in the

experiment and suggest that on the microscopic scale one

may expect to ®nd new (often counterintuitive) principles of

the operation of mechanical systems. One such principle was

discussed by Feynman [4] in his analysis of so-called

Brownian ratchets. Feynman’s ideas have been found

recently very useful [5, 6] to the understanding of the physical

principles underlying motion of molecular motors that are

currently studied extensively in biology [7 ± 9].
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As was ®rst noticed by Johnson and Nyquist in 1928 [10,

11] analogous random force aVects the dynamics of the

current in electronic circuits and appears due to the thermal

motion of electrons. This source of noise sets fundamental

limits to the accuracy of the electronic circuits and it can

induce jumps from one dynamical state of the circuit to the

other. For example, the problem of accuracy and stability of

Josephson voltage standards has received considerable

attention in recent years [12]. Corresponding general

problem of stability of a metastable state in the presence of

¯uctuations was formulated by Kramers [13] (see surveys of

the 50 years of development of Kramers problem in [14, 15]).

It is perhaps surprising, at least at ®rst glance, that

equations of motion similar to (1) can also describe

macroscopic dynamics, e.g. of the earth’s ice ages [16].

Moreover, it was shown that quite counterintuitively the

presence of noise with small intensity can very strongly

enhance the eVect of weak slow modulation of the

temperature induced by the variations of the eccentricity

of the earth’s orbit and thus might be responsible for global

climatic changes [16, 17].

The so-called phenomenon of stochastic resonance (see

[18 ± 21] for the reviews), in which a weak periodic signal can

be enhanced by adding noise to the system, was subsequently

observed in a broad variety of systems including lasers [22],

passive optical bistable devices [23], cray®sh mechanorecep-

tors [24], chemical systems [25], social ills [26] and a bistable

SQUID (superconducting quantum interference device) [27].

Already this brief outlook of some stochastic problems

illustrates our point that in many branches of science and

technology identical model stochastic equations of the type

(1) often arise in diverse contexts.

When dealing with stochastic diVerential equations of type

(1) one has to specify accurately the meaning of the random

forces present in the equations of motion. To see the

properties of the random force in equation (1) it is convenient

to introduce [2] `a time-interval t . . . which is to be very small

compared with the observed interval of time, but, never-

theless, of such a magnitude that the movements executed by

a particle in two consecutive intervals of time t are to be

considered as mutually independent phenomena.’ Then the

amplitudes of noise x(t) in (1) at subsequent intervals of

coarse-grained time are completely independent. At any

given time interval amplitudes of noise x(t) being a result of

great many independent impacts of individual molecules are

distributed according to a Gaussian distribution. The

random force with such properties is called white Gaussian

noise (corresponding stochastic processes are called Markov

processes) and will be used throughout this paper.

Note, however, that the approach based on the

analysis of deterministic patterns of noise is not limited

to Markov processes [28]. See the discussion of the

general case of Gaussian noise in [29, 30] (see also [32,

33] for reviews).

Once a random force is introduced into the equations of

motion it is usually assumed [34, 35] that one can no longer

speak about deterministic trajectories and that a probabil-

istic approach has to be used instead. For example, for

stochastic process (1) one may be interested in ®nding the

probability r(u,t) for a Brownian particle to have the velocity

u ˆ _x at the time moment t. To this end it is convenient to

think of an ensemble of identical Brownian particles. Then

the fraction r of particles that have velocities in the interval u,
u+du satis®es the Fokker ± Planck equation

@r

@t
ˆ @

@u

³
Gur ‡ D

2

@r

@u

´
; …2†

where the diVusion coe� cient D ˆ 2GkT as was shown by

Einstein [2], T is temperature, and k is the Boltzmann

constant. The equation (2) is a continuity equation in the

space of velocities with two contributions to the current

J ˆ ¡Gur ¡ D=2@r=@u given by the deterministic drift and

by Fick’s law.

However, as we shall see shortly, a statistical approach to

the description of Brownian motion does not in fact imply

that deterministic trajectories can no longer be used in the

analysis of the ¯uctuational dynamics. Moreover, recent

advances in this branch of statistical physics have demon-

strated that a description of stochastic motion in terms of

motion along deterministic optimal paths often provides a

deep physical insight into the ¯uctuational dynamics and

helps to solve some longstanding problems of the theory of

¯uctuations. Here we review some results showing how the

deterministic patterns of noise can be measured in an

experiment and how the information obtained from this

measurements can sometimes be used to advance the theory.

This paper is organized as follows. After a historical

remark in section 2 we outline brie¯y some basic known

ideas of Hamiltonian formalism and explain how the

corresponding physical quantities can be measured in the

experiment using the method of prehistory probability

distribution [36] and method of the measurement of the

optimal force [37]. In section 3 we discuss an analogy

between the Hamiltonian theory of ¯uctuations and

Pontryagin’s formalism in control theory. Then we demon-

strate how the solution of two longstanding problems of the

stability of the chaotic attractor in the presence of random

perturbations and of energy-optimal control of switching

from a chaotic attractor can be advanced using the

experimental technique introduced in the previous section.

2. Deterministic patterns of noise

2.1. Historical remark

The possibility to describe ¯uctuational dynamics in

terms of the motion along some deterministic trajectories

exists as long as one is interested in the probability of
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large (as compared to the amplitude of noise /
����
D

p
)

deviations of the system from state of equilibrium. The

term `large ¯uctuations’ was coined by Ludwig Boltz-

mann in his lecture in St Luise in 1904 in the context of

the discussion of the thermodynamic arrow of time.

Later Lars Onsager [38] noticed that by adding thermal

¯uctuations to the kinetic equations corresponding to the

deterministic laws of thermodynamics one can prove the

symmetry properties of kinetic coe� cients{ relying

entirely on the time reversal symmetry of microscopic

equations of motion [38]. However, he noticed further

that an apparent contradiction with Boltzmann ideas

arise since `We have assumed microscopic reversibility,

and at the same time we have assumed that the average

decay of ¯uctuations will obey the ordinary laws . . . ’ of

non-equilibrium thermodynamics.

The resolution of this contradiction requires, in parti-

cular, that a large random deviation of the velocity of the

Brownian particle from zero has to follow very closely the

path _u ˆ Gu given by the time reversed law of deterministic

relaxation of the velocity. Note that this symmetry between

relaxational and ¯uctuational paths in thermal equilibrium

discussed by Onsager has a deep physical meaning and is

closely related to the property of detailed balance [38, 39]

and to the ¯uctuation-dissipatio n theorem [28, 40, 41] (cf.

with the ®rst proof by Einstein of this theorem for the case

of Brownian motion [2]).

These qualitative arguments can be veri®ed both

theoretically and experimentally. To see this, note that

the probability distribution in (2) has Boltzmann form

r…u† ˆ z…u† exp…¡S…u†=D† ˆ 1�����������
2pkT

p exp…¡u2
=2kT†;

where S…u† ˆ Gu2 and D ˆ 2GkT. Substituting this ansatz

into the Fokker ± Planck equation and collecting lowest

order terms …/ D
¡1† we obtain

H ˆ 1

2
p

2 ¡ pGu ˆ 0; p ˆ @S

@u;

which can be viewed [43] as a Hamilton ± Jacobi

equation of some auxiliary dynamical system with

trajectories given by the solution of the Hamiltonian

equations

_u ˆ @H

@p
ˆ p ¡ Gu; _p ˆ ¡ @H

@u
ˆ pG:

On substituting the trivial solution p ˆ 0 of the

Hamilton ± Jacobi equation into the Hamiltonian equa-

tions we obtain the deterministic law of the decay of the

velocity. The nontrivial solution p ˆ 2Gu corresponds to

the deterministic law for the average growth of

¯uctuations in the form _u ˆ Gu. Note that this result

was ®rst proved by Onsager himself in 1953 [44] using a

somewhat diVerent approach based on the path-integral

formulation of the problem of ¯uctuations. Thus we see

that the theory can describe both average decay and

average growth of ¯uctuations in terms of motion along

the deterministic trajectories. But the questions arise: Do

the ¯uctuational trajectories exist in reality or in other

words can they be measured experimentally? How can

information about these trajectories be used to advance

our understanding of ¯uctuations in non-equilibrium

systems?

2.2. Formalism

Before we turn to the problem of the experimental

measurement of the optimal paths, let us generalize the

formalism introduced in the previous section. For

details of this formalism see [42,43,45 ± 50] (see also

[28 ± 30,44,51 ± 53] for details of an alternative path

integral approach). We commence by writing a system

of Langevin equations in the form

_xi ˆ fi…x; t† ‡ xi…t†; i ˆ 1; . . . ; n;

hxi…t†i ˆ 0; hxi…t†xj…0†i ˆ DQijd…t†;
…3†

where xi are n state variables of the system, fi(x,t) are

components of the deterministic force, xi(t) are compo-

nents of white Gaussian noise with intensity D, and Qij

is a diVusion matrix. The corresponding Fokker ±

Planck equation takes the form

@r

@t
ˆ @

@xi
fir ‡ D

2

@2

@xi@xj

µ
Qijr

¶
…4†

To ®nd a numerical asymptotic solution of the

Fokker ± Planck equation in the general case of the

system away from thermal equilibrium one can assume

that in the limit D ! 0 the distribution probability

function has a Boltzmann-like form

r…x; t† ˆ z…x; t† exp…¡S…x; t†=D†; D ! 0; …5†

where S plays the role of the generalized non-

equilibrium potential. On substituting the asymptotic

form for the probability distribution into (4) and

collecting the terms / D
¡1 we have

@S

@t
‡ 1

2
piQijpj ‡ pifi ˆ 0; pi ˆ @S

@xi
; H ˆ 1

2
piQijpi ‡ pifi;

…6†

which can be viewed as a Hamilton ± Jacobi equation of

an auxiliary Hamiltonian system, where H is the so-

called Wentzel ± Freidlin Hamiltonian [43]. The equation

(6) is solved by covering t, x-space by a family of{Nobel prize in chemistry 1968.
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trajectories obtained by integrating Hamiltonian equa-

tions of motion

_xi ˆ @H

@pi

ˆ fi ‡ Qijpj;

_pi ˆ @H

@xi

ˆ ¡ @fj

@xi
_pj ¡ @Qjk

@xi
pjpk;

_S ˆ St ‡ @S

@xi
_xi ˆ 1

2
piQijpj;

…7†

with given initial conditions. It is important to note

that the diVusion matrix is non-negative de®nite and

the action is a non-decreasing function along the

trajectories. Although in general system (7) S is not

diVerentiable it can be proved [43, 54] that S is almost

everywhere diVerentiable. These two properties of S as

a non-decreasing almost everywhere diVerentiable func-

tion justify its use as a generalized non-equilibrium

potential of the systems away from thermal equilibrium

(see discussion in [54, 55] and references therein).

2.3. Experimental technique

For a long time the existence of optimal ¯uctuational paths

remained untested experimentally. The experimental in-

vestigation of large ¯uctuations is complicated by two

factors. First, by de®nition, these ¯uctuations occur only

occasionally . Secondly, in general the coordinate space has

two or more dimensions.

However, it was suggested recently by Dykman et al. [36]

that the optimal ¯uctuational paths can be measured

directly in the experiment. In this technique the dynamics of

the system is followed continuously . The problem of

statistics can be overcome, at least in part, by using a

multichannel technique. Several dynamical variables of the

system and the random force (when available ) are recorded

simultaneously , and then the statistics of all actual

trajectories along which the system moves in a particular

subspace of the coordinate space is analysed. The theory

predicts and the experiment demonstrates [36, 37, 56 ± 60]

that the so-called prehistory probability distribution of

such trajectories moving the system from the equilibrium

state to the remote state are sharply peaked about the

optimal ¯uctuational path.

It is clear that information about stochastic processes

obtained in this way is much more detailed than that

obtained by the standard method of measuring stationary

probability distributions. In our technique, not only do we

count rare events (i.e. arrivals of the system at a given point

in con®guration space), but we also learn how each of these

events comes about.

This technique has been mainly developed through

applications to the analysis of ¯uctuations in electronic

circuits and has only recently been extended to investiga-

tions of ¯uctuations in real physical systems (see next

section). Throughout this paper we will use analogue

electronic models to verify by experiment many theoretical

ideas. This approach has been found to be of great value in

practice [59, 61, 62].

We now consider a particular example: the overdamped

single-well Du� ng oscillator used in this section. The

equation to be modelled is of the form

_x ¡ x ‡ x3 ˆ h cos Ot ‡ x…t†; …8†

where the oscillator is driven by a periodic force of

amplitude h, frequency O, and x(t) is zero-mean white

Gaussian noise of intensity D such that

hx…t†i ˆ 0; hx…t† x…0†i ˆ Dd…t†: …9†

The circuit used to model (8) is shown in ®gure 1. The basic

principles of the circuit design can be found in [59, 61 ± 64].

We use superscript primes to distinguish times and

frequencies in the circuit (in units of s and Hz) from the

corresponding dimensionless times and frequencies that

appear in equation (8). To understand the relationships

between quantities in the circuit and in (8), we sum the

currents at point A, and those at point B, and equate them

to zero in each case (using KirchhoV’s law and the

assumption of in®nite input impedance of an operational

ampli®er). The equations for the points A and B are

respectively

C
dV2

dt
0 ‡ 1

R1
x

0…t0† ‡ 1

R
h

0
cos …O0

t
0† ‡ 1

R2
V1 ˆ 0;

1

10R
V1 ‡ 1

10R
V2 ‡ 1

R
V3 ˆ 0:

Noting (see ®gure 1) that

V3 ˆ ¡ V2
3

10

it is straightforward to show that

R1C
dV2

dt
0 ‡ x

0…t0† ‡ R1

R2
V2

3 ¡ R1

R2
V2 ‡ R1

R
h

0
cos …O0

t
0† ˆ 0:

By making the transformations V2 ! x; t
0 ! tt;

x
0…t0† ! x…t†, and choosing the circuit component values

R1 ˆ R2 ˆ R ˆ 10kO; C ˆ 10nF; t ˆ CR1;

we then arrive at equation (8).

We drive the circuit with zero-mean quasi-white Gaus-

sian noise from a shift-register noise generator, and with a

periodic signal from the HP signal generator. Starting with

the system in the close vicinity of one of the stable states
…xi º §1†, successive blocks of x(t) time series were

digitized and examined. Note that the time in all the ®gures

was measured in units of ½ ˆ 100ms and coordinates and

velocities are measured in volts. However, dimensionless

coordinates that appear in the equations may represent

diVerent physical quantities including, for example, posi-
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tion of the Brownian particle, intensity of light in lasers,

and number of species in chemical reactions. That is why

the ®gures use dimensionless coordinates and time that

appears in the equations of motion.

2.4. Example from ecology

Note that the idea of continuous monitoring of dynamical

variables and driving forces is not entirely new. For

example in forest ecology [65] the frequency of ®res and

the area burned (that can be considered as dynamical

variables) and the weather parameters (that can be

considered as driving forces with periodic and random

components) have been monitored continuously for some

forests for more than a century.

In the context of forest ecology large ¯uctuation of a

dynamical system corresponds to a large ®re. Interestingly

enough historical data collected by forest ecologists have

led them to the conclusion [66] that: the climate for a year

or more preceding ®res in¯uences ecological eVects during

extended droughts . . . extended droughts also set the stage

for ®res that consume most of the organic layer. Thus we

see that large deviations in the weather parameters that are

analogous to the optimal force drive the occurrence of large

®res by setting extended droughts that are analogous to the

optimal paths along which the forest is evolving towards

large ®res.

However, the reality is far more complicated than the

simple qualitative arguments discussed above. Many

diVerent processes in¯uencing fuel accumulation and

consumption in diVerent types of forests have to be taken

into account to reveal quantitative relations between

parameters characterizing a ®re’s succession. The corre-

sponding research is currently under way.

To guide researchers through the complexity of the

possible stochastic dynamical behaviour it is very useful to

analyse in detail the stochastic dynamics of large ¯uctua-

tions in simpler dynamical models as described in the

following sections.

2.5. Time symmetry of ¯uctuations

Let us now verify by experiment Onsager’s proposition

about the symmetry between average growth and average

decay of ¯uctuations for a system in thermal equilibrium.

To do so one can use, for example, the analogue electronic

circuit described in the previous subsection and set the

amplitude of the driving force to zero (see also [60, 67] for

the details of how similar experiments can be performed in

lasers). To compare directly in the experiment the laws of

average growth and average decay of ¯uctuations one has

to collect an ensemble of the actual ¯uctuational trajec-

tories moving the system from the equilibrium state to the

remote state and back to equilibrium. The corresponding

Figure 1. Block diagram of an analogue electronic circuit modelling an overdamped double-well Du� ng oscillator (equation (8)) either
with, or without, the periodic force h ’ cos O ’t ’.
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distribution of the ¯uctuational trajectories that include

both relaxational and ¯uctuational parts we denote for

brevity pf(x, t) (see [36, 58, 59] for details).

Examples of trajectories including ¯uctuational and

relaxational parts as observed in an analogue electronic

circuit are shown in ®gure 2(a). The corresponding model is

an overdamped motion of a Brownian particle

_x ˆ f…x† ‡ x…t†; 5x…t†4 ˆ 0; 5x…t†x…0†4 ˆ Dd…t†;
…10†

in a Du� ng potential U(x) ˆ ¡ x
2
/2+x

4
/4, f(x) ˆ ¡ U’(x).

The distribution pf(x, t) build from an ensemble of such

trajectories is shown in ®gure 2(b). To compare these

results with the theoretical prediction, notice that the

Hamilton ± Jacobi equation in this case takes the form

H ˆ 1/2p
2
+f(x)p ˆ 0. And the Hamiltonian equations of

motion are _x ˆ p ¡ U
0…x†; _p ˆ pU

00…x† (cf section 2.1 and

[36, 38]). Two solutions of the Hamilton ± Jacobi equation,

p ˆ 0 and p ˆ ¡ 2f(x), correspond to the relaxational
… _x ˆ ¡U

0…x†† and ¯uctuational … _x ˆ ‡U
0…x†† deterministic

paths respectively. It can be seen from ®gure 2 that the

ridges of the distributions coincide with the optimal paths

predicted by the theory thus demonstrating time-reversed

symmetry between average growth and average decay of

¯uctuations.

Note that although the system (10) is relatively simple, it

describes very well the ¯uctuational dynamics of many real

physical systems. In particular, a behaviour qualitatively

similar to the one shown in ®gure 2 was observed recently

in experiments with semiconductor lasers [60, 67].

In the work by Hales and co-authors [60] the prehistory

distribution was observed experimentally using a semicon-

ductor laser with optical feedback. Near the solitary

threshold, the system was unstable: after a period of nearly

steady operation, the radiation intensity decreased; then it

recovered comparatively quickly, growing to regain its

original value; decreased again; and the cycle repeated. In

the experiment, the output intensity was digitized with 1 ns

resolution and the prehistory probability density of large

¯uctuations near solitary threshold was built. The results

were in agreement with the results of numerical simulation

for the system (10).

In the work by Willemsen and co-authors (see [67] and

references therein) the three Stokes polarization parameters

were studied during polarization switches in a vertical-

cavity semiconductor laser. It was demonstrated that when

the linear part of the absorptive anisotropy is close to zero,

the laser is bistable and switches stochastically between two

polarizations . The analysis of large ¯uctuations of polar-

izations in the system [67] reveals what authors have called

a `stochastic inversion symmetry’, which is analogous to the

time reversal symmetry observed for the model (10) and

shown in ®gure 2.

We now turn to experimental methods of investigation of

momenta.

2.6. An optimal force

The physical meaning of the momenta in equations (7) has

been the subject of dispute in the literature. For example in

the paper [46] it is noted that the momentum p determines

the D ! 0 limit of the logarithmic gradient of the

stationery probability density and can be interpreted as a

measure of the extent to which optimal trajectories move

against the deterministic drift f.

An important idea by Dykman [29] is that momenta

are ultimately related to the optimal ¯uctuational force

corresponding to the optimal path and thus they can be

also sometimes measured experimentally as ensemble

average of the realizations of the random force corres-

ponding to a given optimal path. This point is often

glossed over in the theoretical literature, with some

authors describing p as a mere theoretical abstraction. In

the particular case of analogue experiment or numerical

simulations, where the noise is external and thus is

accessible to measurement, the momentum can be

identi®ed as the averaged value of the force driving the

¯uctuation.

We have therefore performed simultaneous measure-

ments [37] of x(t) and of the random force x(t) in the system

(10) during transitions between potential wells. The paths

traced out by the ridges of the distribution of the

realizations of random force pf(p,t) are shown in ®gure 3

as compared to the theoretically predicted trajectories.

Note that even in thermal equilibrium Hamiltonian theory

envisages the ¯uctuational and relaxational trajectories as

belonging to two diVerent manifolds of the system (10),

with p ˆ 2U’(x) and p ˆ 0 respectively. The direct experi-

mental measurements of the momenta demonstrate quan-

titative agreement with the theory.

We conclude that the momenta appearing in the

Hamiltonian theory of ¯uctuations are physically obser-

vable. Further insight into the physical meaning of the

momenta will be provided in section 3.2.

Note that for the system in thermal equilibrium

considered so far the time symmetry between average

growth and average decay of ¯uctuations simpli®es

considerably investigations of the optimal paths. In

particular, this symmetry implies that optimal paths can

be found from an analysis of the relaxation and thus they

cannot display any singular behaviour. However, away

from thermal equilibrium the time reversal symmetry is

broken and as a result the patterns of the optimal

¯uctuational paths may display singularities. Thus under-

standing ¯uctuations in systems away from thermal

equilibrium requires investigation of the patterns of the

optimal ¯uctuational paths and analysis of the correspond-
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ing singularities. These ideas can be illustrated by analysing

overdamped motion of a Brownian particle in a periodi-

cally driven potential as the simplest nontrivial example of

the system away from thermal equilibrium.

2.7. Periodically driven system

Let us consider the stochastic dynamics of the following

system

_x ˆ f…x; t† ‡ x…t†; …11†

where f…x; t† ˆ ¡U
0…x† ‡ h cos Ot is deterministic force,

U…x† ˆ ¡x2=2 ‡ x4=4 is the Du� ng potential, and x(t) is

a zero-mean white Gaussian noise as above. This system

was investigated in a broad variety of applications in the

context of stochastic resonance [18 ± 21]. Note that the

only diVerence from the previous case is the addition of

periodic driving. However, in the presence of a periodic

force with frequency close to the inverse relaxation time of

the system (11) no general methods exist to ®nd a solution

of the Fokker ± Planck equation. The corresponding

problem of so-called non-adiabatic driving is a well-known

longstanding unsolved problem of the theory of ¯uctua-

tions [68, 69]. The Hamiltonian theory of ¯uctuations

provides a powerful approach to the numerical analysis of

this problem [59] (see also [70, 71] for alternative

numerical approaches).

Figure 3. Results of measurements of the optimal force. The
inset shows p(x) for two typical transitional trajectories from
x ˆ ¡ 1 to x ˆ 1 (full jagged line). The main ®gure shows the
paths traced out by the ridges of the pf(p,x) distribution built
as an ensemble average of such transitional trajectories in the
phase space of the system (10). The ¯uctuational part from
x ˆ ¡ 1 to x ˆ 0 is shown by yellow squares, and the
relaxational part by green circles. The full blue and red
curves are the corresponding paths predicted by the Hamilto-
nian theory. See section 2.3 for a discussion of the units for
coordinates and momenta.

Figure 2. (a) The coordinate of an overdamped Du� ng oscillator x(t) was monitored continuously, waiting for large
¯uctuations reaching a chosen preset voltage threshold representing xf. Fluctuational paths x(t) reaching xf were preserved for
later analysis, and so also were the relaxational paths from xf back towards the stable state at x ˆ ¡ 1. Two typical
¯uctuations (jagged lines) from the stable state at x ˆ ¡ 1 to the remote state xf ˆ ¡ 0.1, and back again, are compared with
the deterministic (noise-free) relaxational path from xf to the stable state (full, smooth, curve) and its time-reversed (t? ¡ t)
mirror image (dashed curve). The ¯uctuational and relaxational parts of the trajectory are labelled f and r respectively. (b)
The probability distribution pf(x,t) built up by ensemble-averaging a sequence of trajectories like those in ®gure 1. The top-
plane plots the positions of the ridges of pf(x,t) for the ¯uctuational (yellow squares) and relaxational (green circles) parts of
the trajectory for comparison with theoretical predictions (curves) based on a Hamiltonian approach. Time t in both ®gures is
given in units of integration time of the electronic circuit t ˆ 100ms and the coordinates are in volts (see section 2.3 for a
discussion.)
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Equations (6) and (7) in this case take the form

@S

@t
‡ H ˆ @S

@T
‡ pf…x; t† ‡ p2

=2 ˆ 0; …12†

_x ˆ f…x; t† ‡ p; _p ˆ ¡f
0…x; t†p; _S ˆ 1

2
p

2
; …13†

where f
0…x; t† ˆ @f…x; t†=@x. Unlike in the previous case of

a one-dimensional system in thermal equilibrium an

analytical solution cannot be obtained. The numerical

integration of equations (13) requires a knowledge of the

initial conditions. In the general case the initial condi-

tions can be found by a perturbation procedure [42, 49]

(see, however, the discussion of a chaotic state in the

next section). For system (12) we have (see Dykman et

al. [31])

x ˆ xd…t† ‡ dx; S ˆ 1=2a…t†dx2
; p ˆ a…t†dx; …14†

where xd(t) is the point on the deterministic trajectory at

time t, dx is a small time-independent deviation from

xd(t), and the periodic function a(t) is a second derivative

of the action at this point that satis®es the equation

_a ˆ ¡2f
0…x; t†a ¡ a2.

It is known [72] from the theory of dynamical systems

that the trajectories found by solving (13) with initial

conditions (14) form a one-parameter set (x(t,dx), p(t,dx))

lying on a Lagrangian manifold (LM) in t, x, p-space.

The corresponding manifold is shown in ®gure 4. The

projection of these trajectories on the coordinate t, x-

plane form the extreme paths shown at the bottom of

®gure 4 and in ®gure 5(a). It is evident from these ®gures

that the pattern of optimal paths is periodic in time and

that for each period there is one most probable escape

trajectory, i.e. trajectory connecting the stationary peri-

odic state (at t? ¡ ?) with the stable state (at t??).

Several extreme paths may arrive from the stationary

periodic state xd(t) to the same remote state. And, in

general, computation of S requires minimization over the

set of all trajectories starting at the stable state and

terminating at a given remote state.

It is also known that the only types of singularities that

occur in the system (13) are folds of the LM emerging in

pairs from the cusp point and giving rise locally to a

swallow-tail singularity of the action surface [31, 72] (see

®gure 4). Topological [73] and numerical [54] analysis

shows that in the D?0 limit the only observable

singularities in the corresponding patterns of the pattern

of extreme paths are cusp and so-called switching line, a

singularity separating regions that are approached via

diVerent ¯uctuational paths. The switching lines are

Figure 4. From top to bottom: Lagrangian manifold (LM); action surface; and extreme paths calculated [59] for the system (11) using
equations (13). The parameters for the system were h ˆ 0.264 and O ˆ 1.2. To clarify interrelations between singularities in the pattern
of optimal paths, action surface, and LM surface, they are shown in a single ®gure, as follows: the LM has been shifted up by one unit;
and the action surface has been scaled by a factor 1/2 and shifted up by 0.4.
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projections of the intersection of the two lowest sheets of

the action surface onto the t, x-plane.

The nontrivial features of the pattern of optimal paths,

including occurrence of the switching line and of the

cusp, can be tested experimentally [31, 56, 58, 59] using

the technique described in the previous section. Figure

5(b) shows as an example the measured pf(x,t) when xf is

placed on the calculated switching line [56]. It can be seen

that the ridges of the distribution are strongly asym-

metric in time, but agree well with the ¯uctuational and

relaxational paths predicted from (13). Note that the

observed asymmetry of the distribution implies [74] a

lack of detailed balance, and leads directly [47, 48] to

macroscopic irreversibility in the D?0 limit where the

width of the distribution tends to zero. In verifying the

existence of the switching line, the results demonstrate

the non-diVerentiability of the generalized non-equili -

brium potential [54, 55] discussed in section 2.2.

2.8. The theory of logarithmic susceptibility

Perhaps one of the most interesting examples of how the

knowledge of the optimal paths can advance our under-

standing of ¯uctuations in periodically driven systems is the

recent development of the theory of logarithmic suscept-

ibility (LS) [75, 76]. This theory describes the eVect of a

comparatively weak ®eld on the escape probability in terms

of the work that the ®eld does on the system as it moves

along the optimal path. This approach leads to the

analytical solution [77] of the non-adiabatic escape problem

(11) described in the beginning of this subsection. It follows

from the theory that in the case of periodic driving

F…t† ˆ h cos…Ot†, the leading-order correction dR to the

activation energy of escape is dR ˆ ¡jÀ…O†jh, where the

logarithmic susceptibility w(O) for the escape is given [75, 76]

by the Fourier transform of the velocity along the most

probable escape path in the absence of driving (F(t) ˆ 0). We

have already noted that, for systems in thermal equilibrium,

optimal ¯uctuational paths are the time-reversed relaxa-

tional paths in the absence of noise [44, 57, 78].

The LS theory was used recently to describe the

localization of a Brownian particle in a three-dimensional

optical trap [79]: a transparent dielectric spherical silica

particle of diameter 0.6 mm suspended in a liquid [80]. The

particle moves at random within the potential well created

with a gradient three-dimensional optical trap. The

potential was modulated by a biharmonic force. By

changing the phase shift between the two harmonics it

was possible to localize the particle in one of the wells in

very good quantitative agreement with the theoretical

predictions.

Another important application of the LS theory is the

analysis of the dynamics of Brownian ratchets. The term

`Brownian ratchets’ is used to describe systems that display

a unidirectional diVusion of the Brownian particles in a

periodic potential when the net force (averaged over the

period of driving) acting on the particle is zero. Such

systems have attracted recently considerable attention in

view of their technological applications and as possible

models describing motion of molecular motors (see the

Introduction). The LS theory predicts, in particular, the

occurrence of resonant activation, recti®cation of ¯uctua-

tions, and current reversal in an asymmetric periodic

potential in the presence of external periodic driving [75].

These predictions were recently con®rmed in analogue

electronic experiment [81].

The last two examples illustrate how a knowledge of the

optimal paths can help to control ¯uctuational dynamics in

non-equilibrium systems by applying an external ®eld. This

brings us close to the subject of the next section where an

application of the Hamiltonian theory of ¯uctuations to

control theory is considered.

Such applications are based on simultaneous measure-

ments of the optimal force and of the optimal paths

described in this section. These measurements pave the way

for direct experimental investigations of the structure of the

Lagrangian manifold underlying the dynamics of a system

in the presence of ¯uctuations or in the presence of the

control, even when theoretical predictions are not available.

Therefore we suggest that our technique can be used to

advance some unsolved problems in the theory of ¯uctua-

tions and in the control theory. In particular, in the work

by Dykman and Smelyanskiy [82] it was also noted that the

optimal ¯uctuational force can sometimes be identi®ed with

the control function. These ideas will be further discussed in

the following section.

3. The problem of the control of chaos

The problem of the control of chaos is a subject of broad

interdisciplinar y interest, both from the point of view of

applications and for fundamental research [83]. The

methods available for the control of chaos are diverse [83,

84] and include entraining to some arbitrary `goal

dynamics’ that necessarily require large modi®cations of

the system’s dynamics [85, 86] and a variety of `minimal’

forms of interaction [89 ± 92] that are restricted by the linear

approximations adopted. However, the energy-optimal

implementation of switching from the basin of attraction

of a chaotic attractor (CA) has remained an unsolved

archetypal problem [91] for a long time. Its solution will

extend very substantially the variety of model-exploration

objectives (cf [85] and [89]) that can be achieved by

`minimal’ forms of control.

At the same time, the question of stability of a CA in the

presence of noise has remained a major scienti®c challenge

ever since the ®rst attempts to generalize the classical escape

problem to cover this case [94 ± 97].
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The two problems mentioned above are usually con-

sidered separately within the two distinct ®elds of

deterministic and stochastic nonlinear dynamics. Here we

discuss how they can be addressed via a novel approach

based on an analogy between the Hamiltonian formula-

tions of both problems and the statistical analysis of the

¯uctuational trajectories.

The di� culty in solving these problems stems from the

complexity of the system’s dynamics near a CA and is

related, in particular, to the delicate problems of the

uniqueness of the solution and the boundary conditions

at a CA (cf with the discussion of the problem of initial

conditions in section 2.7). The approach we are going to

adopt is based on the fact that the Wentzel ± Freidlin

Hamiltonian arising in the problem of ¯uctuations (see

section 2.2) is equivalent to Pontryagin’s Hamiltonian

that arises in the control problem [91] with an additive

linear unrestricted control. The optimal control function

in this case is equivalent to the optimal ¯uctuational

force [82].

3.1. Model

Consider the motion of a periodically driven nonlinear

oscillator:

_x1 ˆ f1 ˆ x2;

_x2 ˆ f2 ˆ ¡2Gx2 ¡ o2
0x1 ¡ bx2

1
¡ gx3

1
¡ h cos …Ot† ‡ u…t†:

…15†

Here u(t) is the control function. Parameters were chosen

such that the potential is monostable …b5Go2
0
†, the

dependence of the energy of oscillations on their frequency

is nonmonotonic … b2

Go2
0
4 9

10
†, and the motion is under-

damped G ½ O º 2o0. This model is of interest in a

number of contexts and the theoretical analysis is possible

for a wide range of parameter values [96]. It is a system in

which chaos can be observed at relatively small values

h&0.1 of the driving force amplitude.

For a given damping (G ˆ 0.025) the amplitude and the

frequency of the driving force were chosen so that the

chaotic attractor coexists with the stable limit cycle (S1 in

®gure 6(b)). This regime is often encountered in applica-

tions which are of practical interest [12, 97, 98]. The chaotic

state appears via period-doubling bifurcations as shown in

the ®gure 6(a) and thus corresponds to a non-hyperboli c

attractor. Its boundary of attraction dO is nonfractal and is

formed by the saddle cycle of period 1 (SC). For details

about the phase diagram see [99].

We have considered the following energy-optimal con-

trol problem. The system (15) with unconstrained control

function u(t) is to be steered from the CA to the stable limit

cycle in such a way that the energy (cost) functional R is

minimized, with t1 unspeci®ed

R ˆ inf

Z
t1

t0

f0…x; t†dt; f0…x; t† ˆ 1

2
u

2…t†: …16†

Here the control set U consists of functions (control

signals) able to move the system from the CA to the SC.

3.2. Analogy between two problems

It can be shown [91] that, if a solution of the control

problem …u…t†; x…t†† exists, then there also exists a

continuous piece-wise diVerentiable function

p(t) ˆ {p1(t), p2(t)} such that Hc ˆ
P

iˆ0;2 pifi. Here Hc is

the so-called Pontryagin’s Hamiltonian, the variables

p1(t), p2(t) are not simultaneously zero, p0 is constant

50. If the optimal control function u…t† at each instant

takes those values u(t) ˆ p2 that maximize Hc over U, the

corresponding equations of motion for this problem take

the form

Hc ˆ 1=2p2
2

‡ p1f1 ‡ p2f2;

_xi ˆ @Hc

@pi
; _pi ˆ ¡ @Hc

@xi
; i ˆ f1; 2g:

…17†

It can be seen that Hc in (17) coincides with the

Wentzel ± Freidlin Hamiltonian in (6) if the control signal

u(t) in (15) is substituted with zero-mean white Gaussian

noise x(t) such that

�x ‡ 2G _x ‡ o2
0x ‡ bx2 ‡ gx3 ‡ h cos …Ot† ˆ x…t†;

hx…t†i ˆ 0; hx…t†x…0†i ˆ 4GkTd…t†
…18†

and Qij ˆ di2dj2 in equation (6). Thus the optimal control

signal u…t† can be identi®ed with the optimal ¯uctuational

force [82] that drives the system from the CA to the SC.

We note that both u…t† and the optimal force are related

to p2 in (17).

An analysis of the analogy between two problems

requires a more general formulation of the stochastic

control problem which goes beyond the scope of the

present paper (see [84, 102 ± 104] and references therein).

Here we provide some additional semi-qualitative argu-

ments to illustrate this idea. This interrelationship is

intuitively clear because, in thermal equilibrium

(D ˆ 4GkBT), the probability of ¯uctuations is determined

by the minimum work from the external source needed

to produce the corresponding change in the thermo-

dynamic quantities r / exp…¡Rmin=kBT† [40] and for the

system (15) Rmin is given by R in (16). On the other hand

the same probability is given by the optimal

realization of the random force x(t) minimizing

integral in the probability density functional

P‰x…t†Š / exp…¡1=8GkT
R

t1

t0
x2…t†dt† [44, 51]. On substitut-

ing x(t) from (18) and u(t) from (15) into this integral we

obtain the same variational problem in both cases. We
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Figure 5. (a) The pattern of the extreme paths forming unstable manifold of the stable state of system (11) with h ˆ 0.1, O ˆ 4.0 is
shown by thin blue solid lines. The most probable escape trajectories (see the text) are shown by thick solid lines. The stable and unstable
periodic states are shown by yellow and red circles respectively. (b) The measured prehistory distribution pf(x,t) for a remote state
xf ˆ ¡ 0.63, t ˆ 0.83 that lies on the switching line of system (11) with h ˆ 0.264, O ˆ 1.2. Fluctuational (yellow circles) and relaxational
(red circles) paths determined by tracing the ridges of the distribution, are compared with the corresponding (black solid) theoretical lines
predicted from (13) at the top of the ®gure. The stable and unstable states are shown by the dashed black line. See section 2.3 for a
discussion of the units for coordinates and momenta.

Figure 6. (a) A phase-parametric diagram for the system described by equation (15) in PoincareÂ cross-section obtained with
Ot ˆ 0(mod2p), O ˆ 1.005 shows values of x1 for diVerent h. The region of hysteresis for the period 2 resonance lies between the arrows 1
and 4. The region of coexistence of the two resonances of period 2 lies between arrows 2 and 5; that of the large stable limit cycle of
period 1 lies between arrows 3 and 9. Arrows 6 ± 9 show the boundaries of the chaotic states. (b) The basin of attraction (shaded red) of
the stable limit cycle S1 (black circle) and that of the chaotic attractor CA (white) in PoincareÂ cross-section with Ot ˆ 0.6p(mod2p),
O ˆ 0.95. The boundary SC of the CA’s basin of attraction, the saddle cycle of period 1, is shown by the black square. The saddle cycle
of period 3 is shown by black pluses. The intersections of the actual escape trajectory with the PoincareÂ cross-section are indicated by the
blue circles.
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therefore suggest that the optimal control function u…t†
can be found by applying experimental technique

described in the previous section.

3.3. Escape from a chaotic attractor

The idea that the energy-control of chaos can be eVected

via statistical analysis of the ¯uctuational trajectories has

been tested through analogue electronic modeling of (15)

and digital simulation following the prescriptions of

[103]. Qualitatively similar results were obtained but,

because precision is of particular importance here, most

of the data reported here are those from the digital

simulations. The underlying mechanism is that, when the

system (15) is driven by a random force x(t) instead of

u(t), it will occasionally ¯uctuate to dO. In doing so in

the limit where the noise intensity tends to zero, the

system will follow very closely the deterministic trajec-

tories of (17). For the technique to be applicable a

solution of (17) moving the system from the CA to dO
must exist, and the boundary conditions for this solution

on the CA must be identi®ed.

As described in the previous section the method involves

monitoring the system continuously and collecting all

successful realizations …xesc…t†; _xesc…t†; xesc…t†† moving it

from the CA to dO. One of actual escape trajectories is

indicated in PoincareÂ cross-section by the blue ®lled circles

in ®gure 6(b). From these realizations, a time-dependent

prehistory distribution is built [37].

The typical situation as measured in the analogue

simulations is shown in ®gure 7. The ®gure shows 65

measured ¯uctuational escape trajectories, each of which

has been shifted in time so that the regions corresponding

to the transition from chaotic to regular motion coincide

with each other.

It is evident that all the trajectories end up close

together, passing through the immediate neighbourhood

of some optimal trajectory within a tube of radius
/

����
D

p
; at earlier times, however, they separate into

distinct groups. The number of optimal trajectories of

the transition CA?S3 depends on the choice of the

working point. If the noise intensity is reduced further,

one of the escape paths becomes exponentially more

probable than all the others. In what follows we

concentrate on the properties of this most probable

escape path.

A typical optimal escape path and the corresponding

optimal force, obtained by averaging a few hundred such

trajectories, are shown in ®gure 8(a). Analysis of the

optimal path reveals that the system leaves the CA along

the unstable manifold of the saddle cycle of period 5 (S5

with multipliers m1
ˆ 0.0415751 and m2

ˆ 4.6040372841)

embedded in the CA. At this moment the optimal

¯uctuational force hxesc…t†i switches on, driving the

system to dO via the saddle cycle of period 3 (S3 with

multipliers m1 ˆ 0.0487351 and m2 ˆ 7.60831241). It can

be seen from ®gure 6(b) that the saddle cycle S3 is not

embedded in the CA. It is probably the nearest saddle

cycle to the boundary of the basin of attraction of the

CA in terms of the action variable, and can be

considered as the boundary of the CA itself. Near the

saddle cycle SC that forms the boundary of the basin of

attraction the optimal force dies out. Note that no action

is required to bring the system from S1 to the stable limit

cycle. As discussed above, this path is an approximation

(because of the ®nite intensity of the noise) to the

optimal control function u…t†.
The form of the boundary conditions is one of the central

results of the analysis. The boundary conditions are found

by analysis of how the energy-optimal escape path
…hxesc

1
…t†i; hxesc

2
…t†i† merges with the CA as shown in ®gure

8(b). It can be inferred that most of the escape trajectories

pass close to the saddle cycle of period 5 embedded in the

CA. This inference can be further elaborated by reducing

the noise intensity as explained in [104].

Note that the topological features of the prehistory

distribution yield direct insight into the control problem:

where the prehistory distribution does not develop a well-

de®ned ridge in the D?0 limit, we may infer that control

via a simple function is not achievable. In the present case,

this distribution turns out to be characterized by a narrow

ridge, as the noise intensity is decreased, allowing us to

de®ne an approximate solution uÄ (t) for the control function

(the exact solution is u…t† ˆ limD!0 ~u…t†), as an ensemble

average hxesc…t†i of the realizations of the random force

corresponding to the energy-optimal escape path (of

section 2.6).

Thus we conclude that the solution uÄ(t) and the

corresponding boundary conditions can be found using

our new experimental method. Moreover the escape

problem has in this case been reduced to the analysis

of transitions between three saddle cycles S5?S3?SC,

in qualitative agreement with the well-known statement

that saddle cycles provide detailed invariant character-

izations for dynamical systems of low intrinsic dimen-

sion [105, 106]. We note that the solution found is

independent of the initial conditions on the chaotic

attractor: the transient time required for the system to

reach S5 (in the presence of noise) from arbitrary

initial conditions is exponentially smaller than average

escape time; and the quasi-periodic steady state

distribution is formed on the attractor prior to escape

[104].

Once boundary conditions are speci®ed one can solve the

corresponding boundary value problem for the system (17)

numerically [104]. The results of the numerical solution of

the boundary value problem obtained by the relaxational

method are shown in ®gure 8(a) by the dotted lines and are
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Figure 7. Escape trajectories (black lines) found in the analogue simulations for the parameters h ˆ 0.19, O&1.045, o0&0.597,
T&0.005. The red triangles show the calculated saddle cycle of period 1 at the boundary of the basin of attraction. The back-plane shows
for comparison the PoincareÂ cross-section and the basins of attraction chaotic attractor (blue-shaded) and stable limit cycle (white) for
Ot ˆ 0. The red ®lled circle and the black ®lled square indicate, respectively, the intersections of the stable limit cycle and saddle cycle
with the PoincareÂ section. Time is measured as a number N of periods T ˆ 2p/O of the driving force. See section 2.3 for a discussion of
the units for coordinates.

Figure 8. (a) Main ®gure: the most probable escape path (full blue curve) from S5 to SC, found in the numerical simulations. Single
periods of the unstable saddle cycles of period 5, 3 and 1 are shown by green circles, black squares and mauve triangles respectively; the
stable limit cycle is shown by blue rhombus. The parameters were h ˆ 0.13, O&0.95, o0&0.597, D&0.01. Inset: the optimal force (full
blue curve) corresponding to the optimal path, after ®ltration. The red-dotted line in both parts of the ®gure is from a numerical solution
of the boundary value problem. (b) Contour plot of the prehistory probability distribution of escape trajectories for the same parameters
as in ®gure 7. The colours of the contour plot show relative intensity (in arbitrary units) of the prehistory distribution as indicated by the
colourbar on the right-hand side. The blue squares show one period of the saddle cycle S3. The black circles, showing one period of S5,
have been displaced vertically in the interests of clarity. The red triangles indicate the stable limit cycle. Time is measured as the number
N of periods T ˆ 2p/O of the driving force as in the previous ®gure.
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in a good agreement with the solution found from the

analysis of ¯uctuational trajectories.

3.4. Energy-optimal entraining of the chaotic attractor

To demonstrate that the optimal force uÄ(t) found in the

experiment really does minimize the energy of the control

function steering the system (15) from the CA to the SC

we set it to arbitrary initial conditions in the basin of

attraction of the CA and let it evolve deterministically

until it passed through the initial part of the unstable

manifold of S5. At this moment the deterministic control

function was switched on. For a given shape of the

control function and/or initial conditions, its amplitude

was set to the threshold for switching of the system from

chaotic to regular motion on SC.

It was found that the system is very sensitive to small

variations in the control function: any deviation from the

shape of uÄ(t), or from the initial conditions found in the

experiment, leads to a substantial increase in the energy

required to attain SC. Some experimental results are shown

in ®gure 9. It can be seen that the energy of the control

function is approximately twice as large if the optimal force is

approximated by the sine function modulated by a Gaussian

u…t† ˆ a1 sin …a2t† exp …¡…t ¡ a3†2
a4†, and it is respectively

¹4 and ¹20 times larger if the optimal force is approximated

by rectangular pulses or distorted with an arbitrary low-

frequency perturbation.

We have also performed experiments using an open-plus-

closed-loop control technique [85] and an adaptive control

algorithm [86] to steer the system from the CA to the SC.

Although these methods are designed to optimize the

recovery time, rather than to minimize the energy of the

control function, they are e� cient in entraining the system

dynamics to the goal dynamics. So it is interesting to

compare their performance with that of the control

function found in our experiment. The energy of the

control functions (see ®gure 8(a)) obtained by these

methods is more than an order of magnitude larger than

the energy of the optimal control function u(t) found by our

new technique. The best results obtained by the open-plus-

closed-loop control are also shown in ®gure 9.

Of course, the time required for the system to approach

S5 (which is where the optimal control force can be

switched on) varies for diVerent initial conditions on the

CA: it is typically eDp, where e is the linear dimension of the

region and the Dp is the pointwise dimension of a periodic

point in this region [106]. In order to reduce this initial

waiting period, and thus the average transition time, one

could apply the techniques [90, 107] developed earlier for

eVecting switching between controlled saddle periodic

orbits embedded in an CA.

In conclusion, a novel technique for the energy

optimal steering of a nonlinear oscillator away from the

basin of attraction of an CA have been proposed and

veri®ed experimentally. The technique is based on

statistical analysis of the ¯uctuational trajectories in

the control-free system. It can readily be combined with

established minimal forms of control, extending sub-

stantially the range of model-exploration objectives that

can be achieved by such methods. We infer that it can

be further extended to treat cases where the boundaries

of attraction are fractal. The obtained results open the

possibility of the analytical estimations of stability of

non-hyperboli c attractors in the presence of ¯uctua-

tions.

Figure 9. (a) The control functions (not to the same scale) used
in the numerical experiments: 1 Ð optimal force found by
statistical analysis of the ¯uctuational escape trajectories;
2 Ð approximation of the optimal force by u(t) ˆ a1sin(a2t)
exp(-(t-a3)

2
a4) where ai are constants; 3 Ð approximation of the

optimal force by rectangular pulses; 4 Ð arbitrary perturbation
of the optimal force with a low-frequency perturbation;
5 Ð control functions produced by the OPCL (open-plus-
closed-loop) algorithm. (b) Energies of the control functions
shown in (a).
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4. Conclusions

An idea to describe highly irregular stochastic motion in

terms of deterministic motion along trajectories of

auxiliary Hamiltonian system is often the key to under-

standing ¯uctuational dynamics away from thermal

equilibrium. This idea underlies the recent rapid advances

in the theory of ¯uctuations. The optimal ¯uctuational

paths, that appear formally in the asymptotic analysis of

the Fokker ± Planck equation (or, alternatively, in the

path-integral formulation of the problem of ¯uctuations),

are physically observable. The introduction of the

prehistory probability distribution, have set the area on

an experimental basis for the ®rst time, and helped to

stimulate new advances in the theory. These have

included the logarithmic susceptibility, described above,

which provided analytical solution to the long-standing

problem of non-adiabatic driving. Studies of the ¯uctua-

tional escape from chaotic attractors have already

provided strong guidance for future developments in

the theory. It seems certain that the emergence of many

new results and phenomena may be anticipated over the

new few years.
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