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Detecting quantum light

CHRISTINE SILBERHORN*

Max-Planck Research Group, IOIP, Günther Scharowsky-Str. 1/Bau 24,
91058 Erlangen, Germany

(Received 30 July 2007; in final form 20 August 2007)

The quantization of light is the basis for quantum optics and has led to the observation

of a multitude of genuine quantum effects which cannot be explained by classical

physics. Yet, there exist different views when we refer to the distinct quantum character

of light as opposed to classical fields. A major impact on how we describe photonic

states is caused by the detection method we use for the quantum state characterization.

In the theoretical modelling measuring light always means the recording of photon

statistics of some kind, though the way we interpret the results is quite different and

depends mainly on the intensity of actual detected light. If we use conventional

photodiodes and monitor bright light, we attribute the detected statistics to quadrature

measurements in a phase space representation, or—in other words—we identify the

quantum state by studying its uncertainties of its field amplitude and phase properties

which correspond to conjugate quantum observables. For multi-photon states with very

low intensity we have to employ avalanche photodiodes (APDs) to be able to see any

signal, but photon number resolution seems difficult in this regime. Recent develop-

ments allow one to ascertain information about the photon statistics from APD

measurements opening up new routes for characterizing photonic states. In this article

we review the different methods for modern quantum state metrology where we include

theoretical aspects as well as the description of the state-of-the-art technology for

measuring photon statistics.

1. Introduction

The observation of light has a long history which has led to

surprising insights in our understanding of modern physics.

Classical optics describes light propagation and its interac-

tion with matter as waves which can exhibit different

optical frequencies, polarizations and wave propagation

vectors. As an underlying principle we interpret light waves

as coherent electromagnetic radiation with defined electric

and magnetic field vectors. The propagation behaviour of

the associated fields can be derived from Maxwell’s

equations which have been extremely successful in explain-

ing the observations of a manifold of interference and

diffraction experiments. Thus, at the beginning of the last

century most scientists believed in the wave nature of light

and considered research in optics as being completed in

terms of fundamental physics.

Yet, one phenomena remained where physicists puzzled

to find a good agreement between their theory and

experimental results: studying the spectral intensity dis-

tribution of black-body radiation it appeared impossible to

come up with one single formula which was valid for the

high and low frequency range. In 1900 Max Planck

succeeded in deriving an appropriate black-body radiation

law by proposing the idea that light could only be emitted

in discrete energy portions. Whereas Max Planck himself

was convinced that his assumption had a purely for-

mal background, his invention has actually led to the
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development of the theory of quantum mechanics. During

the same time in 1902 Lenard conducted an experiment

investigating the energy of electrons generated by the

illumination of a metal surface. Today we know his results

as the photoelectric effect, which again appears difficult to

describe by the absorption of light wave radiation. It was

Einstein, who proposed in the year 1905 the quantization

the light field and called one energy quant of light a photon.

His theory could explain both Max Plancks laws and the

photoelectric effect; it was the starting point for a new

research discipline: quantum optics.

Lenard’s experiment also already illustrated that light

can cause an electric current in response to the flow of

photons impinging on a photoemissive cathode. The

released photons are denoted as photo-electrons. Devices

monitoring the optical fields by this principle have become

one of the most important instruments in light applications,

known as photoelectric detectors.

2. Quantum light

Quantum optics investigates distinct properties of light,

which reflect the quantum character of the light. By

introducing the field quantization light is considered to

exhibit simultaneously both wave and particle properties.

Depending on the experimental arrangements and our

information about the system, our observations of light

phenomena highlight either the coherence of the fields or

the graining of the energy. Research in quantum optics in

the last century has been extremely successful and has

given rise to the development of novel technologies, most

prominently the invention of the laser. In addition, it also

stimulated theoretical studies of fundamental aspects of

our understanding of quantum physics. The importance

and topicality of this area can be seen by the award of

several Nobel prizes during the last decades. In 2005, Roy

Glauber received the Nobel prize for research where the

committee recognized ‘his contribution to quantum theory

of optical coherence’. The theory of optical coherence

investigates the properties of light in terms of correlation

functions between two distinct fields or of a single field at

different points in time and space. Laser light is character-

ized by extraordinary small fluctuations in its field

amplitude, which implies that it exhibits extremely long

coherence lengths. Thus, in classical optics we consider

laser light as ideal monochromatic waves with constant

electromagnetic field amplitudes which allow for high

contrast interference patterns. In quantum optics laser

light is described by coherent states, which are considered

as the most ‘classical’ light since they come closest to

our expectations we have from our understanding of light

as electromagnetic waves.

The quantum properties of light originate from the

quantization of electromagnetic field radiation. A

monochromatic mode of an optical field with frequency o
and wave vector k can be represented classically as a

harmonic oscillation{

Eðr; tÞ / A exp �iðot� k � rÞ½ � þ A�exp iðot� k � rÞ½ �;

where A 2 C is defined as the complex field amplitude.

Alternatively, we may use a completely real description

Eðr; tÞ / X cos ðot� k � rÞ þ Y sin ðot� k � rÞ

and define the quadratures X and Y as the real and

imaginary part of A.

We introduce the quantization of light by interpreting

the monochromatic optical mode as a quantum harmonic

oscillator, which exhibits discrete energy levels. For

quantum states of light we call these energy levels photons,

i.e. one field containing one, two or three photons exhibits

energies corresponding to the first, second or third

excitation. The formal analogy between the quantum

mechanical harmonic oscillator and the oscillation of the

field modes allows us to associate the following quantum

operators to the classical parameters:

â$ A; ây $ A�; x̂$ X; p̂$ Y:

Hereby, the operators â; ây denote the ladder operators of
the quantum oscillator and are interpreted for optical field

modes as photon creation and annihilation operators. The

operators x̂ and p̂ correspond to the position and momen-

tum of a quantum harmonic oscillator, which are known to

fulfill the Heisenberg uncertainty relationship as non-

commuting variables. Accordingly for photonic states the

two orthogonal quadrature components{ X̂ ¼ âþ ây;
Ŷ ¼ �iðâ� âyÞ define a pair of non-conjugate variables

which can never be determined simultaneously with

absolute accuracy. More generally we can define the

quadrature operator

X̂f ¼ â exp ð�ifÞ þ ây exp ðifÞ

describing the quadrature X̂f, which is rotated relative to X̂

by the angle f.
Coherent light with classical field amplitude a corre-

sponds to a quantum state with minimal uncertainty with

symmetric distribution in the quadrature components, such

that

a D2X̂f
�� ��a� �

¼ a D2X̂fþp=2
�� ��a� �

for all f 2 R:

{Note, that these definitions assume implicitly a global reference phase;

different reference phases correspond to rotated coordinate systems in the

phase space representation.

{For simplicity we neglect normalization factors.
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Describing the coherent field mode formally as quantum

state jai we obtain

jai ¼ exp ðaây � a�âÞj0i;

with j0i being the ground state of the optical mode. The

operator DðâÞ ¼ exp ðaây � a�âÞ characterizes a displace-

ment of the vacuum state j0i in the phase space (see below)

according to the classical field amplitude a. Furthermore, it

is easy to show that coherent states are eigenstates of the

annihilation operator â with eigenvalue a, i.e âjai ¼ ajai.
Expanding coherent states in the photon number basis we

obtain

jai ¼ exp � jaj
2

2

 !X
n

an

ðn!Þ1=2
jni:

The associated probability distributions are known from

mathematics as Poissonian distribution, which are typical

for the statistics of random processes (see figure 1).

For arbitrary quantum states of light we can assign two

different descriptions. They provide both a complete char-

acterization of the state, but highlight different properties

of the light. The particle nature of the light corresponds to

the observation of photon number statistics. A pure state

can be defined in the photon number basis as

jCi ¼
X
n

cnjni; cn 2 C;

whereas more generally every mixed state can be repre-

sented by

r̂ ¼
X
m;n

cmn mihnj j; cmn 2 C:

The quantumness is reflected by the discreteness of the

allowed energies and shows up in measurements of photon

statistics.

Alternatively we may characterize a photonic state in a

phase space representation which is closer related to the

wave nature of light. In a classical picture a coherent

optical mode can be represented by its complex field

amplitude in a phase space where the quadratures X and Y

serve as the coordinate axes. Remember, that the quantum

quadratures X̂ and Ŷ are conjugate variables and thus

cannot be simultaneously be well defined in the quantum

phase space. For this reason the generalization of the

classical phase space into an appropriate quantum repre-

sentation is not straightforward. There actually exist

different types of quasi-probability distributions defining

quantum phase space representations. These distributions

all relate the probabilities of measurement outcomes to the

formal description of the states. But since single points are

ill-defined they can become singular or even negative. The

representations distinguish each other by different defini-

tion of the meaning of one point in phase space. The

Glauber – Sudarshan P-representation interprets every

point as a coherent state and the respective density matrix

is then given by [1]

r̂ ¼
Z

PðaÞ aihaj j;

where P(a) denotes the quasi-probability distributions

corresponding to the P-representation. In this representa-

tion the coherent states serve as a basis for the state

characterization, but due to the over-completeness{ of the

set of coherent states P(a) the P-functions become singular

and/or negative for many quantum states, including the

coherent states themselves. Contrariwise, the Husimi

Q-function overcomes this problem as it characterizes

states by introducing the overlap between the signal state r̂
and all possible coherent states such that it is defined by

QðaÞ ¼ 1

p
ajr̂jah i:

The definition of Wigner functions emphasizes the un-

certainty of the quadratures X and Y in phase space and

provide the closest link to homodyne measurements (see

below). Formally it is described as

WðX;YÞ ¼ 1

2p

Z 1
�1

exp ðiY xÞ X� x

2
r̂j jXþ x

2

D E
dx:

Figure 2 depicts the Wigner function of a coherent state

in phase space. The quasi-probability distributions of a

coherent state corresponds to a Gaussian function where

the variances of the quadratures are directly related to the

widths of the Gaussian. For a simplified illustration of

quantum light we can use cross-sections of Wigner

functions to depict the associated quantum light with its

uncertainties.

Figure 1. Photon number probabilities of a coherent state;

the statistics are given as Poissonian distribution with

D2n¼ n.

{This means that two coherent states with field amplitudes a and b are

actually non-orthogonal to each other ajjbh ij j2¼ exp ð�ja� bj2Þ, but the

set of all coherent states fulfills the completeness relationship

ð1=pÞ
R
aihaj jd2a ¼ 1, which is needed to define a basis set.

Detecting quantum light 145
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We can distinguish quantum properties of light in

comparison to coherent states and superpositions of

these, which denote as ‘classical’ light by definition{. In

terms of the P-representation we then understand light as

non-classical if it exhibits negative contributions. Trans-

lating this condition to the photon number statistics they

become non-classical if they cannot be described by a

mixture of Poissonian probability distributions [1]

(see figure 3).

For Wigner functions negative values of the phase space

representation clearly indicate the quantum character of the

light. Though states which have completely positive Wigner

functions are also considered as non-classical if their

uncertainty is non-compatible with coherent state mixtures.

This is, for example, the case if one of the quadratures has a

reduced uncertainty at the expense of its conjugate one.

These states are known as so-called quadrature squeezed

states (see e.g. [2]; see figure 4). More generally one defines

Gaussian states as quantum states which exhibit a Gaussian

Wigner function and thus are completely characterized by

their first- and second-order moments. They are typically

described by a pair of conjugate quadrature operators, and

since these exhibit a continuous eigen value spectra the

corresponding states are also referred to as continuous

variable (CV) states.

Figure 2. Representation of a coherent state in phase space by its Wigner function. The state has a field amplitude

a¼ jaj exp (if); the integration over one quadrature yields the probabilities to measure specific values for the conjugate qua-

drature as indicated in the figure. The corresponding probability distributions are called the marginal quadrature distributions.

Figure 3. Photon number statistics of non-classical states

(see text); (a) photon number state and (b) single mode

squeezed state.

Figure 4. Phase space representation of squeezed states; the

uncertainty of one quadrature is reduced at the expense of

an enlarged uncertainty in the conjugate quadrature.

{Although this definition suggests that coherent light has no quantum

properties, one should keep in mind that in the framework of quantum

optics actually all states are quantum states; coherent states do actually

exhibit properties which cannot be understood by classical optics.

146 C. Silberhorn
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3. Theory of photo-detection

Photo-detection describes the process of photons being

absorbed by some medium and converted into electric

charges, which get subsequently detected as photocurrent.

In the classical description we relate the generated

photocurrent to the time-averaged energy or intensity of

the incident light field Eðr; tÞ

I /
Z

dt Eðr; tÞj j2¼ hAA�i;

where A is the defined complex field amplitude. The

probability of a photon being absorbed at time t during

the time interval Dt can then be defined by

pðtÞ / DthIi:

If we translate by analogy the classical quantities to its

associated quantum operators we find that the probability

of photon-absorption is given by

iðtÞ ¼ pðtÞh i
Dt
/ hâyâi ¼ hN̂i:

Thus, the averaged resulting photocurrent i(t) is propor-

tional to the flux or number of impinging photons.

In a more precise approach we can understand the

process of photon absorption by considering the transition

amplitudes of the photon annihilation operator. For a

given input state jini and a basis set of possible output

states joutif g we obtain for one specific output state jouti
the expression outjâjinh i. To calculate the total transition

probability we have to allow for all possible output states

and obtainX
out

outjâjinh ij j2¼
X
out

hinjâyjouti outjâjini:h

With the completeness relation
P

out outihoutj j ¼ 1 this

expression yields the same photon counting probability

pðtÞh i / injâyâjin
D E

¼ hn̂i:

For an unknown input state of an ensemble measurement

we have to average over all possible input states. In a more

formal treatment this is described by introducing mixed

states with density operators r̂ such that the averaged

photon counting probability becomes

pðtÞh i ¼
X
in

pinhinjâyâjini ¼ trðr̂âyâÞ:

In counting experiments we are often not only interested in

averaged measurement results—such as the mean value or

variance of the photon number distributions—but we also

want to predict the probability of one single-shot measure-

ment. Thus, we would like to define measurement operators

M̂N for individual detection events, which fulfill the

conditions jouti / M̂Njini ¼ jNi, and the probability

pn ¼ injM̂Njin
� �

. By rewriting our derived photo-detection

operator of ensemble measurements we find

âyâ ¼
X
N

âyâ NihNj j ¼
X
N

N NihNj j:

If we associate M̂N ¼ NihNj j with single-shot measure-

ments of a perfect photon counting detector the measured

statistics become consistent with the interpretation of

projecting states onto the photon number basis with the

probability trðr̂ NihNj jÞ. For the pure state jini the

probability of a N photon detection event takes the familiar

form hinjNihNjini:

4. Photo-detectors

For standard applications in optical technologies the

detection of light is accomplished by photodiodes (see

figure 5). These diodes are built from p- and n-doped

semiconductor materials where the corresponding bandgap

determines the detectable optical wavelengths. At the p – n

junction a charge carrier depletion region with a corre-

sponding internal field develops. When light of sufficient

photon energy impinges on the diode a mobile electron

gets excited and creates an electron – hole pair. Due to the

internal field across the depletion region a measurable

photocurrent proportional to the number of incident

photons is generated.

Figure 5. Conventional photodiodes are built from p- and

n-doped semiconductor material such that at the interface

between these materials a space-charge layer is formed.

Every incident photon causes the generation of an

electron – hole pair, which can be detected photon current

if a voltage U is applied across the diode. Ideally these

diodes allow a perfect mapping of the photon statistics to

measured currents. However, photodiodes always also

show some noise background such that single or few

photons cannot be seen.

Detecting quantum light 147
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The performance of photodiodes is characterized by its

responsivity, which directly relates to the quantum effi-

ciency, and its noise behaviour specified by the dark current

and noise-equivalent power. The quantum efficiency Z is

defined as the ratio between the detected photons, i.e.

created electron – hole pairs, and incident photons. De-

pending on the wavelengths, respectively, the used semi-

conductor materials, the quantum efficiency varies, but can

reach very high values over 95%. Due to noise contribu-

tions caused by thermal excitations conventional photo-

diodes cannot be used for the detection of single photons or

light with low photon numbers, i.e. they lack single-photon

sensitivity. For intense light these noise contributions can

largely be neglected and for a perfect detector with Z¼ 1 the

photon current relates to the light statistics as

iðtÞ ¼ neðtÞe
Dt

;

where ne is defined as the number of photo-electrons and e

as the elementary charge. If we want to take into account

the finite quantum efficiency Z we can model the real

detector by an ideal detector preceded by a beam splitter

representing an effective loss of 17 Z (see e.g. [3]).

For the detection of single photons the signal of the

absorbed photon has to be internally amplified to generate

an electronic output which lies above the noise floor

(see figure 6). This can be accomplished by avalanche

photodiodes (APDs) which are designed such that in

addition to an absorption region they exhibit a multi-

plication area. If an electron – hole pair is generated by

photon absorption, a high voltage across the multiplication

region causes the generation of secondary electrons. In these

diodes impact ionization allows for high internal photon-

current gain. For single-photon detection the APDs have to

be operated in the Geiger mode where the APD is biased

above its breakdown voltage. Thus, a single electron – hole

pair can activate an avalanche process with an exponential

growth of free carriers leading to macroscopic photocur-

rents. In order to prevent damage and to enable subsequent

detection the avalanche has to be quenched by lowering the

applied voltage. In active quenching circuits the current flow

gets actively interrupted to increase the speed of resetting

the APD. An APD module operated in the Geiger mode is

specified by its basic properties: quantum efficiency, dark

count rate and dead time. In the case of APDs, the quantum

efficiency denotes the probability that a single photon gets

recorded. A typical top value for the quantum efficiency of

an APD at the wavelength regime around 700 to 800 nm is

given as 60% to 70%; for wavelengths between 1200 and

1600 nm the newest generation of APDs reaches values over

25%. The dark count rate corresponds to the noise of the

detector and is defined by the number of detection events in

the absence of an optical signal. We have again to

distinguish between APDs at 800 nm—where dark count

rates as low as 100 counts per second can be easily

achieved—and APDs in the telecommunication wavelength

regime with dark count rates so high that active gating is

essential. For a gate time of 1 ns their typical dark noise

shows values between 1075 to 1076. The dead time of the

APDs specifies the minimum time which is needed to

register consecutive detection events. For 800 nm APDs

dead times as low as 50 ns are common, for APDs around

1500 nm the active gating requires dead times over 1 ms.
Figure 7 shows the output of an APD module for an

optical signal with an average of more than one photon per

dead time interval. Since the dead time sets a minimum time

delay between detection events the repetition rate of

avalanche photo-detection is restricted. The depicted output

signal is provided by the electronics of the APDmodules and

should be understood as logic ON/OFF or ‘CLICK’ readout.

5. Detecting quantum with conventional photodiodes

5.1 Direct detection

For intense light standard photodiodes can serve to

characterize quantum properties of light by direct detec-

tion. An important parameter for the quality of state

characterization is the quantum efficiency of the detectors

since it defines the accuracy of the mapping of the photon

statistics onto detected distributions of photo-electrons.

Because photodiodes exhibit high quantum efficiencies they

are best suited to detect quantum effects which are highly

Figure 6. Avalanche photodiodes (APD) are binary

detectors. They exhibit single-photon sensitivity, but can

only measure if any light is present not how many photons

are incident.

Figure 7. Typical output signal of an APD module [4],

when it is operated at ‘high’ intensities. During the dead-

time Td no subsequent signal gets registered even though

there are optical signals impinging on the diode.

148 C. Silberhorn
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sensitive to the detection efficiency, or losses, respectively.

However, direct photocurrent measurements are restricted

to the investigation of the amplitude quadrature, which is

defined as the quadrature direction orientated along the

classical displacement a (see figure 8).

For large field amplitudes the field operator â is typically

decomposed into the ‘classical’ displacement a and the

quantum operator dâ, yielding â ¼ aþ dâ. If a� 1 we can

employ a linearized approach and consider only the first-

order terms of da. For photo-detection without reference

phase we can further assume that a is real. The photon

number operator then reads

N̂ ¼ a2 þ adX̂a;

which indicates that the photocurrent corresponds directly

to an amplitude quadrature measurement. Hence, the

properties of the amplitude quadrature can be measured

by analysing the generated photocurrent iðtÞ / hN̂i.

5.2 Homodyne detection

For dark quantum states with low mean photon number,

i.e. a9 1, we can use the interference between the low

intensity signal state and an intense laser beam at a beam

splitter to acquire information about the signal quantum

state. The setup for such measurements is depicted

in figure 9; it constitutes the well-established homodyne

detector. The intense reference laser beam with field ampli-

tude jbj� 1 is taken as a coherent quantum field and is

called a local oscillator. By applying the beam splitter

relationships ĉ ¼ 2�1=2ðâþ b̂Þ; d̂ ¼ 2�1=2ðâ� b̂Þ and calcu-

lating the photon numbers N̂c=d at the output, we derive in

the linearized approximation

N̂c=d ¼ jbj2 þ b�db̂þ bdb̂y � bdâ� b�dây:

The difference of the output photocurrents is then

determined by

hN̂d � N̂ci / b�âþ bây ¼ jbjhX̂a
fi;

where we use for the local oscillator the definition

b¼ jbj exp(7if) and denote for the signal input state X̂a
f

as the general quadrature operator. Note that in the

homodyne setup the uncertainties of the signal state get

effectively amplified by the coherent field amplitude b of the

local oscillator. If we assume the local oscillator to be a

coherent state with hdXdb
f i ¼ 1 we further obtain for the

sum of the photocurrents

hN̂d þ N̂ci ¼ hb� db̂þ b db̂yi ¼ jbjhX̂db
f i ¼ jbj:

Thus, detecting the difference of the photocurrents yields a

measurement of a general quadrature where the phase angle

f defines a rotation with respect to X̂ (see figure 9). The

sum of the photocurrents provides the reference such that

the ratio between the sum and difference currents reflects a

measurement of the normalized marginal distributions of

the corresponding quadrature in the phase space.

Technically the detection of quadrature uncertainties

requires one to analyse the fluctuations of the generated

photocurrent iðtÞ / hn̂i where a lot of experiments employ

a radio frequency (rf) spectrum analyser to determine the

Fourier components of the time-dependent quadrature

measurements

dX̂ðOÞ ¼ F dX̂ðtÞ
� ���

O¼
Z þ1
�1

dX̂ðtÞ exp ðiOtÞdt:

The radio frequency O can be understood in a semi-

classical approach as the frequency of the side band of an

amplitude oscillation. Note that for pulsed state generation

Figure 8. Amplitude Xa and phase quadrature Ya of an intense light beam with ‘classical’ field amplitude a in a phase space

representation.
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rf detection schemes imply an averaging over several pulses

hindering single-shot resolved detection. Time-resolved

homodyne detection employs different electronics to

integrate the photocurrent over the duration of one light

pulse, such that single-shot measurements of the quad-

rature operator become possible [5 – 9].

Homodyne detection allows one to measure phase

sensitive properties of light and can indeed be used to

reconstruct the Wigner function of the state by tomo-

graphic reconstruction [10]. Since there exists a unique

mapping between the Wigner function of a state and its

density matrix, the method of homodyne tomography is

suited for the complete state characterization. Once the

density matrix of a state is known, we can also assess the

photon statistics which are given as diagonal elements of

the matrix [11]. The homodyne detection technique was

first demonstrated by Smithey et al. in 1993 [8]. Since then

the virtue of homodyning has been proven in a multitude of

experiments (for review see [12]) and can be explained by

the possibility to utilize standard photodiodes which can

exhibit very high quantum efficiencies.

Nevertheless, the method of homodyning implies a few

drawbacks one should be aware of, especially if we are

mainly interested in the photon statistics of the signal.

First of all the tomographic reconstruction is only an

indirect ascertainment of the photon statistics, which

requires a laborious series of measurements. Secondly,

the usage of a local oscillator is inevitable which in turn

implies that the mode of the local oscillator has to be

perfectly matched with the signal state. This impacts the

state characterization twofold: every mode mismatch has

the same characteristic as loss such that it is hard to give a

good estimate of the efficiency of the detection. Further-

more, the need for a local oscillator also entails an intrinsic

filter operation, since only the part of the signal which

overlaps spatially and spectrally with the local oscillator

mode gets amplified by the interference and subsequently

detected by the photodiodes. In current research homo-

dyne detection is an essential tool for continuous variable

quantum communication systems [13], which employ a

pair of conjugate quadratures to encode information.

However, it has been shown recently [14] that more

complex communication networks based on continuous

variable states require necessarily to combine homodyning

with some type of avalanche photo-detection to counteract

decoherence effects of quantum channels by so-called

entanglement distillation. This task can be accomplished

by preparing photonic states with non-Gaussian Wigner

functions by conditioning on APD detection events [15 –

17]. For these states a more elaborated theoretical

description, which takes into account the spectral and

spatial properties of the light, is needed to study the impact

conditional state preparation in combination with homo-

dyne detection [18].

6. Avalanche photo-detection

While APDs exhibit single-photon sensitivity they cannot

distinguish between different photon numbers. They deliver

binary outcomes ‘CLICK’ and ‘NO CLICK’, which indicate

whether any light was incident or not, but a photon number

resolved detection remains difficult. Thus, the question

arises how much information can be gained with a

single APD.

Figure 9. (a) Homodyne detection setup: the dark ‘vacuum’ signal is superimposed with a local oscillator at a symmetric beam

splitter and subsequently detected with two conventional photodiodes. (b) The sum and difference currents yield information

about the marginal quadrature corresponding to the angle f (see text).

150 C. Silberhorn



D
ow

nl
oa

de
d 

B
y:

 [M
ic

hi
ga

n 
S

ta
te

 U
ni

ve
rs

ity
 L

ib
ra

rie
s]

 A
t: 

21
:4

1 
6 

Ja
nu

ar
y 

20
08

 

For a single photon with exact photon number n¼ 1, the

probability that an APD records a ‘CLICK’ event is given

by the associated quantum efficiency Z, and likewise the

probability of ‘NO CLICK’ is 17 Z. If n photons are

impinging on the APD, they will only not cause an

avalanche process if all of them get lost and thus do not

generate an initializing electron – hole pair. Hence, the

probability of the ‘NO CLICK’ event for a quantum state with

exactly n photons is given by (17 Z)n and the correspond-

ing measurement operator reads

M̂‘NO CLICK’ ¼
X1
N¼0
ð1�NÞN NihNj j:

Since the probabilities of outcomes ‘CLICK’ and ‘NO CLICK’

have to add up to one, i.e. in terms of measurement

operators they sum up to the unity operator 1, the

measurement operator of an APD is given by

M̂APD ¼ 1� M̂‘NO CLICK’:

To find the probability of an APD ‘CLICK’ for a general

quantum state r̂ ¼
P

m;n cmn nihmj j we can calculate in

analogy to the photon counting probabilities

p‘CLICK’ ¼ 1� tr r̂M̂APD

� �
¼
X
n

cnnð1� ZÞn;

where the diagonal elements cnn of the density matrix

denote the probability of a n-photon number contribution.

The derived formula indicates that the binary APD

response actually contains some information about the

impinging photon numbers if different efficiencies are taken

into account. The efficiency can be artificially modified by

introducing a well-defined loss in front of the APD, i.e.

performing attenuation measurements with a beam splitter

with variable calibrated transmission coefficient Zt. A

n-photon number state jni will then show an attenuation

behaviour corresponding to the function (17 Zt)
n and

different photon number can principally be distinguished in

ensemble measurements if APD ‘CLICK’ statistics are recorded

for various values of Zt. For general photonic states a com-

plete reconstruction of the photon-number statistics can be

feasible if sufficient data with various Zt is recorded [19,20].

Contrariwise, if we want to test the validity of the APD

modelling with the described measurement operators we

need to control the influence of the photon statistics

precisely. To do so, we can utilize attenuated coherent light

which is known to exhibit Poissonian statistics (see above).

Describing the variable attenuation as a beam splitter with

transmission parameter Zt we find that for coherent states

only the mean field amplitude is lowered to a value of Zt � a,
whereas all higher moments remain unchanged, i.e.

jai ! jZtai ¼ exp � jZtaj
2

2

 !X
n

ðZtaÞ
n

ðn!Þ1=2
jni:

For the probability of an APD ‘CLICK’ we obtain

p0CLICK0 ¼ 1� exp �jZtaj
2

� �
:

Thus, we can conclude that for very low intensities of the

laser light a5 1, the rate of APD counts shows a linear

dependency on the attenuation factor as expected from the

scaling of the light intensity as well as for single-photon

states. Though for higher intensities we find a nonlinear

response indicating the saturation of the APDs which is

caused by multi-photon contributions. The exponential

dependency of APD rates can be nicely demonstrated

experimentally by setting up an experiment with appro-

priate calibrated loss (see figure 10); note, however, that the

measurement of the absolute field amplitude a for small

alpha is difficult, because the effective value detection

efficiency Zt is typically not very well calibrated.

The dead time of the avalanche process imposes another

limitation on APD detection, which restricts ultimately the

maximum speed of possible data acquisition. For cw light

APD modules are specified that they can only accept count

rates up to a Mcounts s71, such that it seems that a

maximum repetition rate of 1 MHz is possible for pulsed

systems. However, the dead times of the actively quenched

APD modules is specified to lie around 50 ns, which

corresponds a to repetition rate of 20 MHz. This dis-

crepancy can be understood if one considers the impact of

dead time for increasing intensities. If an APD records a

detection event, it cannot detect a second event within the

Figure 10. APD detection: influence of multi-photon

contributions [21]. APD detection rates for laser light

with variable attenuation shows a nonlinear response

according to the expected exponential behaviour. The

nonlinearity can be attributed to multi-photon con-

tributions of the Poissonian statistics [21].
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dead time, i.e. it is effectively blocked during this time

period. This APD operation is illustrated in figure 11.

For cw light possible detection events are randomly

distributed over time, such that with increasing intensities

the probability that a second event following an APD

‘CLICK’ becomes more and more likely. In this situation a

noticeable difference between expected and measured count

rates can be observed for rates above 1 MHz. Conversely,

for pulsed systems we can ensure that there is no possible

detection event during the dead time by adjusting the

repetition rate accordingly. In this situation we can show

for sufficiently low a that up to a repetition rate

fmax
rep ¼ 1=TD a linear response is recorded, and a step-

shaped fall-off of the count rates around fmax
rep indicates that

the APD are ready for another APD event with the same

detection efficiency shortly after the dead time [21].

7. Photon number resolved detection

Up to very recently no practical photon-number resolving

(PNR) detectors were available. Thus, most of the previous

experimental work in the field for characterizing properties

of multi-photon states with low mean photon numbers is

based on homodyne detection schemes. To date there exists

various approaches to realize PNR detectors utilizing

different methods. As benchmarks one can specify the

characteristics of quantum efficiency, dark counts, operating

temperature and possible time resolution.

One of the first attempts to accomplish the direct

detection of photon statistics was performed in 1982 with

a photo-multiplier tube [22]. Though the time resolution

can be pretty high, the main drawback of this detection is a

comparatively low quantum efficiency 520%, such that a

good mapping between impinging and detected photon

statistics is not provided. In more recent developments

superconducting devices, such as transition edge transistors

or balometers [23 – 27], have been investigated. They have

high quantum efficiencies and comparatively low dark

count noise, but require cryogenic cooling devices in order

to achieve the extremely low operating temperatures. A

promising development is the ‘visible light photon counter’

(VLPC) offering extraordinarily high quantum efficiencies

around 90%, but it lacks a low dark noise level and again

relies on cryogenic cooling [28].

As an alternative one can apply a multiplexed detection

scheme utilizing binary APDs for the actual detection itself.

In this approach the signal input light gets probabilistically

split into a sufficiently large number of output modes by

optical means in front of the binary detectors, which

themselves are not capable of resolving photon numbers,

but exhibit single-photon sensitivity. The probability of two

or more photons of staying together and ending up in the

same mode—such that they do not get registered as two or

accordingly more—scales with the number of output

modes. For example, for two photons the probability that

they will not be seen as two is given by 1/N, where N is the

number of output modes. The detected ‘CLICK’ statistics

reflect a good measurement of the input photon statistics.

The quality of this type of PNR detectors depends crucially

on N, which means we need a multiplexing of the input

modes which is adopted to the number of expected input

photon numbers. The first suggestion to implement this

idea experimentally was presented 1996 by Paul et al. [29]

and later analysed in more detail [30], where it is proposed

to utilize a beam splitter cascade followed by N APDs. A

scheme of such a setup is shown in figure 12. The first beam

splitter divides the input light into two beams, where each

of them is again subdivided into two parts. By repeating the

described procedure an arbitrary number of output modes

can be obtained in principle, but unfortunately the

experimental complexity and the number of required APDs

scales accordingly.

To circumvent the difficulties of spatial multiplexing

Banaszek and Walmsley suggested and characterized in

2003 a scheme which implements the ‘photon-chopping’ for

pulsed light by using temporal modes instead of spatial

ones [31]. Though their layout still employed a fast optical

switch in combination a fibre loop. The active optical

switch was required to find a good compromise between a

high transmission for coupling the signal light into the loop

and a low transmission for the output coupling for the

pulses prepared for ‘CLICK’ detection. A more elaborate

setup, which is also based upon time-multiplexing and fibre

networks, but does not necessitate active optical elements

was presented in 2003 independently by Achilles et al. [32]

and Fitch et al. [33]. Their time-multiplexing detector

(TMD) utilizes two spatial modes and an ‘arbitrary’ num-

ber of temporal modes. In its simplest form (see figure 13)

it consists of three 50:50 beam splitters and fibre loops of

Figure 11. APD detection: influence of dead time. After a

detection event (depicted as read pulse) with corresponding

electronic signal TAPD (green curve) the APD is not ready

for registering a second event during the dead time Td

(indicated by the red region). Possible detection events

(grey pulse) during this time period get lost in the recorded

signal; pulses immediately following the dead time (green

pulse) are again detected (figure: courtesy: H. Coldenstrodt-

Ronge).
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variable lengths, such that at the output of the fibre system

input pulses are split into two times four temporal modes

(see figure 14). In contrast to a typical beam splitter

cascaded system the outputs of one beam splitter stage in

the cascade are not left separated but recombined on the

beam splitter of the next stage. A time delay is properly

chosen and introduced into one of the arms before

combining the two signal paths again, such that the APD

signals resulting from earlier modes do not overlap and

disturb each other within their dead times. This setup can

be extended with subsequent stages to achieve 2k (k being

the number of stages) modes.

For states with low enough mean photon numbers the

count statistics will indicate the photon number distribu-

tion of the input quantum state, but not directly match it.

Their are two ‘flaws’, which have to be considered. First of

all, we know that the detection efficiency of the APDs does

not reach close to unity and furthermore, the fibre network

also introduces additional losses. Secondly, although the

effect of photons not being separated by the fibre network

can always be suppressed by a larger number of modes N,

this reduces the allowed repetition rates, i.e. the speed of the

detection.

For quantum state characterization, i.e. in ensemble

measurements, one can nevertheless show that the photon

number statistics can be reconstructed from the count

statistics and the involved convolution can actually be

treated independent of the losses [34]. The probability Pk of

detected ‘CLICK’ statistics is linked to the signal photon

number distribution pn by

Pk ¼
X
n

pknðkjnÞpn;

where pkn(kjn) denotes the conditional probability of

obtaining k ‘CLICK’s if the observed photon number of the

Figure 13. Time-multiplexed detector (TMD): the beam splitter cascade for dividing the input light into a sufficiently large

number of output modes is realized in a time-multiplexed scheme which utilizes only passive linear elements. The time

multiplexing is accomplished by two spatial modes and in this case four temporal modes. After the first beam splitter the

pulsed input light is separated into two spatial modes and a fibre loop in the upper mode introduces a delay of the

corresponding pulse. At the next beam splitter—now corresponding to the first stage of figure 12—the delayed pulse and

the pulse from the lower arm do not interfere with each other resulting into a division into 26 2¼ 4 modes. Each iteration of

this step leads to a doubling of the previous mode number, i.e. after k stages one can generate 26 2k output modes for

subsequent detection realized by 2 APDs.

Figure 12. Multiplexed detection scheme: the input light is

divided into eight output modes which are subsequently

detected by binary APD measurements. In this scheme each

stage needed for doubling the modes requires a 2k beam

splitter, where k labels the numbering of the stages (see

figure); the detection is carried out by N APDs. The click

statistics represent the photon statistics of the input mode

provided the number of outgoing modes is much larger

than the expected photon numbers of the input light.
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quantum measurement corresponds to pn. In a matrix

representation the same equation can be written as

Pk ¼ C � LZpn;

where we now introduced the probability vectors Pk¼ (Pk)

and pn¼ (pn) and the matrices C and LZ reflect the

convolution and loss imperfections, respectively. It can be

shown that treating these two effects independently one

after the other is justified by lumping all losses in front of

the detector and considering it as an effective overall loss

[35]. The loss matrix is given by

Lkn ¼
n
k

	 

Zkð1� ZÞn�k

defining
�
n
k

�
¼ 0 for n5 k. If we assume an idealized TMD

with absolutely symmetric splitting we obtain for the

convolution matrix the form [29]

Ckn ¼
N
k

	 
Xk
i¼0

k
i

	 

ð�1Þi k� i

N

	 
n

:

Note that in this approach there exists a deterministic

relationship between the observed ‘CLICK’ statistics and the

actual signal photon number distribution of the input light.

Thus, after measuring a sufficiently large collection of

equivalently prepared signal states{; we can determine the

corresponding frequencies of the number of ‘CLICK’ to

obtain a good estimate of measured probabilities Pk. This

allows us to invert the described matrix relationship

between the photon number and ‘CLICK’ statistics. Provided

that the parameter Z is well known, the original statistics of

the incident photon numbers can be acquired. In contrast

to typical homodyning detection in such measurements

losses and/or mode overlap considerations do not play any

role anymore. Though, similar to judging the loss calibra-

tion for APD measurements, it is difficult to evaluate the

loss parameter Z with sufficient accuracy for the relevant

quantum states with very low mean photon number. Still,

with the described inversion method it becomes possible to

accomplish loss-tolerant characterization of photon num-

ber statistics, if we employ a priori information about the

source of the signal states [36]. This allows us to study

quantum properties of light with an alternative approach

which encounters other experimental imperfections other

than homodyne tomography.

For the complete characterization of quantum light

the determination of photon statistics is not sufficient, since

the phase relationships between the different photon

number contributions is not determined, i.e. the phase

of the complex coefficient cn in the state description

jCi ¼
P

n cnjni or equivalently the offdiagonal components

cmn in the density matrix representation r̂ ¼
P

m;n cmn mihnj j
are not fixed. Thus, we need an additional reference beam,

Figure 14. Modelling of the time-multiplexed detector

(TMD): (a) ideally the click statistics reflect directly the

incident photon statistics of the input pulse. The four input

photons get distributed into different time slots by the

network and can get detected by APDs; the theoretical

modelling requires to include convolution and loss effects,

but there exists a deterministic matrix relationship between

‘CLICK’ statistics and the photon statistics. (b) and (c)

Imperfections of TMD detection: (b) due to the statistical

nature of the splitting in the network exists a finite

probability that two photons stick together in one pulse

and the ‘CLICK’ count a too small photon number; in the

matrix relationship this can be taken into account by

the convolution matrix C: (c) some photons can get lost

during detection; the loss matrix L accounts for this in the

theoretical description.

{We would like to stress that for state characterization it is always

implicitly assumed that a large sample of identical signal states is prepared

and measured, because a single measurement outcome does not render any

information about probability distributions, which are necessary for

quantum state characterization.
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as done in homodyning, to establish a thorough quantum

state characterization utilizing direct detection of photon

statistics. In this context, it has been shown, however, that

the Wigner function at the origin a¼ 0, i.e. X¼ 0 and Y¼ 0,

can be directly related to photon statistics by evaluating the

parity of the state [37], i.e.

Wð0Þ ¼ 2

p

X
n

ð�1Þn njr̂jnh i ¼
X
n

ð�1Þnpn:

If we now apply the displacement operator D̂ðaÞ ¼
expðaây � a�âÞ to the signal state and probe the parity

of the photon statistics, we sample effectively the Wigner

function at the displaced value a by

WðaÞ ¼
X
n

ð�1ÞnhnjD̂ðaÞr̂D̂yðaÞjni:

For the implementation of the displacement the signal state

has to be overlapped with a strong reference beam at a

highly asymmetric beam splitter with high transmission.

Traditionally we are used to characterizing multi-photon

states by homodyne detection in phase space and determin-

ing photon statistics in ensemble measurement by tomo-

graphic means. For conditional preparation homodyne

measurement results can only be used to select specific

states based on quadrature measurements such that

conditioning on a specific photon number—needed for

the preparation of non-Gaussian states—is intrinsically

impossible. Contrariwise, we can also accomplish complete

state characterization in the photon number basis by using

photon number resolving detectors. Each single measure-

ment result for a single shot measurement corresponds to

measurements of photon statistics which offers the possi-

bility of preparing more sophisticated quantum states.

Ensemble measurements for different photon numbers can

be used vice versa to determine the complete Wigner

function in phase space where in contrast to homodyne

detection we sample the Wigner function point by point

defined by the applied displacement. Further studies

between the different detection approaches can be expected

to give us a deeper understanding for quantum state

characterization, preparation and manipulation in general.

8. Conclusion

The detection of genuine quantum characteristics of light

can be carried out by different methods where the proper-

ties of detectors themselves play a major role how we

describe the quantum light. Traditionally most of the

interest has been devoted to homodyne detection to study

multi-photon states. Otherwise APD measurements have

been used to analyse single photon states, where it is mostly

assumed that higher photon number contributions can be

neglected such that APD detection is adequate. Current

research now focuses on more advanced multi-photon

states with non-Gaussian Wigner functions and alternative

routes for characterizing light be detecting photon statis-

tics. This in turn stimulates the development of new

detector concepts and more elaborate theoretical treatment,

which include all characteristics of the considered fields.

These developments provide us with the distinct ap-

proaches for quantum state metrology which are likely to

prove fruitful for various applications in quantum en-

hanced technology.
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