
Electronic molecules in semiconductors and other novel materials
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Semiconductors are usually characterized by a concentration of impurities and defects. The

electronic properties of these defects have a strong influence on the quality of devices made

from these materials. Here it is demonstrated that under certain conditions there may arise

electronic molecules, which behave similarly to quantum defects. The electronic molecules or

e-molecules are formed through the formation of a confinement potential, which may trap

one or more electrons. The electronic confinement arises either due to a lattice deformation

or due to the formation of spontaneous magnetic topological defects or droplets. The shape

and size of these e-molecules are arbitrary and depend on physical situations. In many cases

they have linear form and one may therefore call them strings. The strings may also be

closed into loops as happens with e-molecules in anti-ferromagnetic insulators. Some

situations are reviewed in which e-molecules may arise and their properties are discussed.

Relevant experiments are also discussed briefly.

1. Introduction

It was Lev Landau who, exactly 70 years ago, first

suggested that electrons may be trapped by a lattice

polarization [1]. The self-trapping of the electron by a

polarization cloud created by this electron gave rise to a

new quasi-particle named the polaron. During the 70 years

after the first work by Landau [1] the polaron has been

investigated thoroughly both theoretically and experimen-

tally. The Landau idea has been generalized for all types of

materials, liquids and solids, including insulators, semi-

conductors and metals. It was established that the polaron

may have a small radius, of the order of the inter-atomic

spacing of the lattice, or may have a very large size, much

more than the single lattice spacing of a solid. The self-

trapping confinement may be created not only by a lattice

polarization but also by all types of lattice deformation.

The first theory of large and small polarons was developed

by a Russian school in the 1950s [2 – 4]. The large polarons

introduced through Pekar’s important contributions are

often called Pekar polarons. Fröhlich developed Pekar’s

ideas to include weak and strong coupling with phonons.

To unite the description of these two cases he derived a

Hamiltonian now termed the Frölich Hamiltonian [5]. The

proper theory of small polarons was developed by Holstein

and his collaborators in the 1960s [6]. Sir Nevill Mott

proposed a bubble model of a polaron in a liquid metal-

ammonia solution [7]. In this model an electron is self-

trapped by a vacuum cavity, created by itself. Similar self-

trapping of an electron in a vacuum cavity is observed also

in liquid helium (see, more detail in review [8]) and is

referred to as an electron bubble. Negative ions in helium

also form similar bubbles [9]. They have been studied

experimentally in detail [10,11]. In an electric field these

(electron and ion) negatively charged bubbles are moving

and their mobility can be measured. In particular it was

found that the mobility of negative ions is substantially

higher than normal electron bubbles [10,11].

In liquids of rare gases a free exciton is also self-trapped

in a similar ‘vacuum cavity’ and it is referred to as an

exciton bubble (see, more detail in the review [12]). The

exciton is a neutral quasi-particle consisting of an electron

and a hole in the bound state. In all such cases the electron

or the exciton is self-trapped by the vacuum cavity due to

the negative work function of the electron relative to the

vacuum. Such self-trapped excitons may also arise in rare

gas solids. If they arise in solids, then the local lattice

deformation around the exciton will be so strong that there

will be created lattice defects (interstitials or vacancies) and

therefore, the creation of the self-trapped excitons may lead

to the defect creation. Such an exciton mechanism for the

defect creation in solids has been proposed in [13] (see, also,
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for details, [14]) and later observed in many experiments

(see, for example, [15 – 23]). In these experiments the

position of excitonic luminescence lines has been investi-

gated. The creation of crystal defects is indicated by the red

shift in the luminescence line, which is related to formation

of the vacancy on which the exciton is localized. Such

defects may be formed at the different stages of the exciton

formation: either at the thermalization-relaxation stage or

at the later stages of the self-trapping process.

It was De Gennes who first assumed that a single hole

may change the orientation of magnetic moments, creating

a canted state in an anti-ferromagnetic solid [24]. Nagaev

then introduced the concept of a magnetic polaron, where

an electron is self-trapped by a ferro-magnetic droplet [25].

This work was closely followed by similar papers from

Kosuya [26] and Krivoglaz [27].

The single particle polaron states arise usually in ionic

solids and they have been investigated in detail, mostly with

the use of transport measurements [28,29]. The polarons

having typically large effective mass are less effective in

supporting electric current than free electrons. Therefore,

the electric resistivity in materials with polarons is very

large and the mobility of current carriers is very small,

similar to the small measured mobility of electrons trapped

in vacuum bubbles in liquid helium. Another important

consequence of polarons is that the optical conductivity has

no Drude peak [29].

The physical picture of the self-trapping with two

particles or, in general, with many particles is far from

complete. The idea of forming a two-particle polaron state,

named the bi-polaron has attracted the attention of many

people (see, [30] and references therein). This was especially

stimulated by the possibility of the bipolarons, being

bosons, to form a Bose –Einstein condensate with a

consequence to form a superfluid or superconducting state.

The formation of electronic clusters consisting of many

electrons due to a deformation of the media has been

known for a long time. For example, vacuum bubbles, like

in the Mott polaron, but trapping of many electrons also

arises in liquid helium and metal ammonia solutions

[31,32]. In liquid helium these multi-electron bubbles have

typically a radius of about 0.1 – 100 mm and trap about

103 – 108 electrons [31,32]. The bubble’s diameter is

determined by the balance between the surface tension of

liquid helium and the Coulomb repulsion of electrons [33].

It is interesting that the electrons are not distributed

throughout the volume of the bubble but form a nanometre

thin and effectively 2D layer near the bubble surface [34].

Similar phenomena of multi-particle self-trapping may

also arise in solids. However, their origination in solids is

less transparent and the form of such clusters is very

different. It is related to a new notion of electronic

molecules (e-molecules) [35 – 40], which may arise in solids

or fluids with strong or intermediate electron – phonon

interactions. The e-molecule consists of a few electrons

bound by electron – phonon or by electron – electron

interaction. The e-molecule is a generalization of the notion

of a polaron or a self-trapping [1 – 14] to the many-body

case, adapted originally to solids with narrow bands. It was

shown that nearly all types of electron phonon interaction

will lead to the creation of e-molecules, which may be

created either in the ground state or in a metastable state

and which have in many cases a linear, anisotropic shape.

Due to their linear shape they have been named as strings

[35 – 37]. The existence of the analogous multi-polaron

instability and the consequential formation of electron

strings in liquid polymers was originally discussed by

Grigorov et al. [38 – 40] and named superpolarons. In this

case the polymer molecules must have strong dipole

moments. The superpolaron string is created due to a

change of the orientation of the dipole-like polymer

molecules around the electron string embedded in the

polymer liquid. This reorientation of molecules creates a

confinement potential in which many electrons are trapped.

The first formation of many-particle self-trapped states

in magnetic semiconductors was also suggested by Nagaev

and Krivoglaz [25,27]. They assumed that inside an anti-

ferromagnetic solid a few electrons may polarize atomic

magnetic moments and create a ferro-magnetic droplet,

called a ‘ferron’ by Nagaev or a ‘fluctuon’ by Krivoglaz,

which, in turn, will trap these electrons. These seminal

works gave rise to the new fundamental concept of an

electronic phase separation.

The studies of magnetic polarons, ferrons and fluctuons

are related to a longstanding issue in the physics of doped

antiferromagnetic solids, which still remains one of the

most challenging issues of condensed matter physics. In

some cases even a single hole added to the anti-

ferromagnetic state may dramatically change the ground

state from anti-ferromagnetic to ferromagnetic, creating a

so-called Nagaoka state. More often, however, the hole

changes the orientation of surrounding spins slightly,

creating the canted state (DeGennes [24]). The hole may

also completely polarize the surrounding spins only,

creating a trapping potential in which the hole is self-

trapped. Such a self-trapped hole is exactly the magnetic

polaron or ‘ferron’, originally introduced by Nagaev et al.

in magnetic semiconductors [25]. Condensation of many

such magnetic polarons into droplets leads to the phenom-

enon electronic phase separation which, may arise in doped

anti-ferromagnetic solids as well.

The discovery of novel oxide materials such as cuprates

[41] and manganites (see [42 – 44] and references therein)

has confirmed the existence of microscopic electronic phase

separation in anti-ferromagnetic solids. Also these anti-

ferromagnetic solids, well doped by holes, have displayed

novel phenomena; high temperature superconductivity (in

cuprates) [41,45] and colossal magneto-resistance (in
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manganates) [42 – 44]. However, the origin of the super-

conductivity and the colossal magneto-resistance arising in

these materials remains unclear [44,45].

In the present paper we will show that in anti-

ferromagnetic solids besides magnetic polarons and fer-

rons, there may arise a new topological quantum defect,

which consists of a domain wall forming a loop with a few

self-trapped holes. The domain loop creates effectively a

linear potential well, which may trap many particles. Each

hole trapped by the domain loop may perform a free

motion along the loop. In a transverse direction this linear

potential may be smeared by spin fluctuations, allowing a

limited transverse hole motion, too.

At present there is a growing body of experimental

evidence [46 – 49] indicating the existence of complex

inhomogeneous micro- and mesoscopic structures created

in oxide materials. Such structures are typically con-

nected to static or dynamic stripe phases, which were

independently studied by many researchers [46 – 54].

These structures have a natural explanation in the

framework of the general notion of e-molecules consider-

ing the stripes made of the e-molecules. Recent experi-

ments have also discovered the huge influence of isotope

effect on the critical temperature of the stripe ordering

[55] and strong lattice fluctuations in YBCO [56] which

may be associated with the dynamics of the strings or e-

molecules. With the isotope changes [55] the structure of

individual strings is also changed (for example, the

strings may become shorter due to a change in phonon

frequency) and, therefore, the critical temperature of the

stripe ordering must change. This indicates that the e-

molecules and, in particular strings, are a pertinent

notion for oxides and, possibly, also for other solids.

Here we estimate the size and the shape of the e-

molecules for a few simple situations that may arise in

semi-conducting and insulating materials. We show that

under certain conditions ordinary electrons may form

these special e-molecules, i.e. bound configurations within

solids. These e-molecules arise due to a competition

between an effective electron – electron attraction

mediated by phonons and the usual Coulomb repulsion

between electrons.

The remaining sections of the paper are organized as

follows. In the section 2 we discuss the simplest model of

the polaron, which is the electron or the exciton bubble. In

section 3 we introduce magnetic polarons. In section 4 we

introduce a simple example of many particle self-trapping,

a string or an e-molecule, which arises due to local lattice

distortions associated with the Jahn –Teller effect. Forma-

tion of the string due to other types of lattice distortion is

discussed in section 5. Formation of e-molecules in doped

antiferromagnetic solids is discussed in section 6. Finally in

section 7 we discuss the possible implication of the novel

ideas of e-molecules described in previous sections to the

physics different materials such as cuprates, manganites

and others oxides.

2. Electron or exciton bubbles: e-molecules in metal –

ammonia solutions, helium and in rare gas liquids and solids

An electron ejected into the liquid helium creates a special

state, so-called an electron bubble. A similar electron

bubble arises in metal-ammonia solutions, where it is called

a Mott polaron.

The point is that the work function of this electron from

bulk helium into the vacuum is negative, and approxi-

mately equal to 1 eV. To gain this energy the electron,

therefore, expels the helium atoms around and creates a

vacuum bubble of radius R in which this electron is self-

trapped.

As a first approximation the energy of this self-trapped

electron may be estimated as the following sum:

E ¼ Ee1 þ Esurface þW ð1Þ
where Eel is the work function of the electron into the

vacuum plus the kinetic energy of the trapped electron,

Esurface is the surface energy of the bubble, and W is the

work performed to create a bubble against the external

pressure dW= p dV.

If we measure the electron energy compared to the

vacuum and assume that the bubble is inside an infinitely

high potential well then the value Eel is equal to

Eel ¼ h2

8 m R2
ð2Þ

where m is the electron mass and h is Planck’s constant. For

a spherical bubble the surface energy has the standard form

as Esurface= s S where S is the surface area of the bubble

and s is its surface tension, i.e. Esurface= s 4 p R2.

Finally the work against the external pressure p needed

to create the bubble is W=p V, i.e. W= p 4 p R3/3. If we

neglect the external pressure and put p=0, then the bubble

radius can be found by the minimization of total energy,

and is determined from the equation

@Etotal

@R
¼ 0 ¼ �h2

4 m R3
þ s8pR ð3Þ

The solution of this equation gives the radius R0 of the

spherical bubble containing an electron in the ground state

as

R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

32psm
4

r
ð4Þ

At this time there is an issue which is intensively discussed

in the literature, namely, what is the structure of the excited

state within such an electron bubble? The issue is related to

the possible change of symmetry or to the question of the
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existence and stability of a possibly dumbbell shaped

electron bubble [57 – 59].

The considered model is equally applicable to a

description of exciton self-trapping, i.e. the exciton bubble

that is usually formed in helium and in rare gas liquids

and solids irradiated by synchrotron radiation or by fast

electrons. Of course for the estimate of the radius of the

exciton bubble we have to substitute into equation (4) not

the electron mass, but the mass of the exciton, equal to

the sum of the electron and hole masses. It is obvious that

due to large exciton mass (here the hole mass is very

heavy) the radius of the exciton bubble will be much

smaller than the radius of the electron bubble. It is

typically of the order of the interatomic distance (see, for

detail, [13,14]). In solids the formation of such exciton

bubble will lead to defect creation, or, in general, to the

aging of materials.

3. Magnetic polarons

A free electron on an anti-ferromagnetic lattice may create

a special state, called a magnetic polaron [25]. Similar to the

electron bubble discussed in the previous section, the

magnetic polaron may be viewed as a magnetic bubble. The

point is that a free electron on an anti-ferromagnetic lattice

with a large exchange interaction J between magnetic

moments has a very low mobility or, practically, is

localized. However, when the electron polarization spins

around on the magnetic lattice, it creates a ferro-magnetic

region or a ferron bubble of radius R (figure 1). This

electron is very mobile inside the bubble but is prevented

from going outside and is therefore self-trapped. The

energy of the magnetic polaron consists of the kinetic

electron energy Eel (see, equation (2)), and the loss of

exchange energy due to the created ferromagnetic bubble

Eex= J 4 pR3/3. The total energy is then Em =Eel + Eex.

The polaron radius is found from the equation obtained by

minimization of the total energy Em using

dEm

dR
¼ 0 ¼ �h2

4 m R3
þ J4pR2 ð5Þ

The solution of this equation gives the radius of the

magnetic polaron R0:

R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

16pJm
5

r
ð6Þ

One sees a striking similarity between magnetic polarons

and electron bubbles in helium or in metal – ammonia

solutions. The exchange constant in magnetic semiconduc-

tors plays the role of an external pressure in liquid helium.

The bubbles discussed here (sections 2 and 3) are

spherically symmetric because we have neglected the

discrete details of the lattice and band structures of the

materials. But most semiconductors have degenerate

valence bands. For the self-trapping of holes, this band

degeneracy leads to the phenomenon of spontaneous

symmetry breaking. For example, if we take into account

the effect of this band degeneracy on the formation of

magnetic or other polarons, we will find that the shapes of

these polarons will be dramatically changed. The polarons

will then have cigar or disc shapes (see, for example,

[60,61]). From this consideration, we also see that when the

values of m or J increase, the polaron radius decreases. But

the polaron size cannot be smaller than atomic size. This is

exactly when the polaron of small radius arises.

We continue to discuss polarons having small radius.

4. Strings arising due to Jahn –Teller deformations

There are some crystal lattices, which consist of Jahn –

Teller ions. Jahn –Teller ions are usually ions originally

associated with degenerated electronic spectra. However,

this degeneracy is broken due to the Jahn –Teller effect [62].

The essence of the Jahn –Teller effect is to remove

degeneracy in the electronic spectrum as a result of a

decrease in local symmetry arising due to distortions of the

crystal lattice. Before symmetry breaking the Jahn –Teller

ions are typically in the centre of some high symmetry

object, as in cuprates where each copper atom is the Jahn –

Teller ion located at the centre of a oxygen octahedron

configuration CuO6. For the Jahn –Teller ions the electron

energy levels that lead to the formation of the band in the

crystal are degenerate. Therefore, due to the Jahn –Teller

effect the symmetry must decrease, i.e. associated Jahn –

Teller lattice distortions arise which decrease the symmetry

of the oxygen octahedron. The two types of lattice

distortion may cause these octahedra to become prolate

(elongated) or oblate leading to a chessboard lattice

configuration [63,64]. These distortions also lead to the

formation of Jahn –Teller polarons and to an effective

polaron – polaron attraction. In such Jahn –Teller solids a

Figure 1. Single electron bubble (green) in liquid helium and

also a ferron (green) arising in antiferromagnetic (chessboard)

background of magnetic semiconductors.
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large variety of different types of electronic molecules may

arise. Here, we consider a simple model of Jahn –Teller

distortions, which allows us to perform exact analytic

estimations of the binding energy of different electronic

molecules. The realistic Hamiltonian consists of

Hel ¼ �t
X
<ij>

aþi aj þ
X
<ij>

oðqÞbþq bq þ hcþHel�ph þHel�el

ð7Þ

where the electron – phonon Hamiltonian is defined as:

Hel�ph ¼
X
iq

nigq½expðiqRiÞbq þ hc�; ð8Þ

where ai and bq are fermionic and bosonic annihilation

operators associated with electrons and phonons, with the

following commutation relations, aþi aj þ aja
þ
i ¼ dij and

bþq bp � bpb
þ
q ¼ dpq for electrons and phonons, respectively.

The electron – electron interaction is defined as

Hel�el ¼
X
i<j

ninj
e1 j Ri � Rj j ð9Þ

with ni ¼ aþi ai a fermionic occupation number operator.

Using a standard procedure to shift the phonon variables as

bq ) bq �
X
iq

nigqexpðiqRiÞ=oðqÞ ð10Þ

we obtain, instead of a plain Coulomb potential (*1/(eR)),
an effective electron – electron interaction in the form:

VðRi � RjÞ¼ 1

eo j Ri � Rj j �
1

N

X
q

g2qcosðq jRi � Rj jÞ=oðqÞ

ð11Þ

The same expression may be obtained using the Lang –

Firsov transformation [65] or by use of a coherent states

method [66]. The essence of Lang –Firsov transformation is

the change in the vacuum or a canonical shift of the qth

harmonic of the field made with the use of the unitary

transformation:

Uðpk; qkÞ ¼ expðbþk dk � bkd
�
kÞ

where the value dk characterizes the shift in the vacuum or

change in the average value of lattice distortions as well as

in the amplitude of lattice vibrations. Depending on the

type of electron – phonon interaction the form of this

effective potential V(Ri –Rj) may be different. For an

electron interacting with Jahn –Teller phonons, or with

quantized Jahn –Teller lattice distortions [63,64], using the

formula for the effective potential V(Ri –Rj), (equation

(11)) we obtain the potential for the inter-polaron interac-

tion U(R)= V(R), presented in figure 2. It consists of a

short-range (inter-site) effective attraction (producing the

deep minimum in figure 2) and a long-range electron –

electron Coulomb repulsion:

UðR 

ffiffiffi
2

p
Þ ¼ h

ffiffiffi
2

p

R

where the distance R is measured in units of the lattice

spacing a. The strength of the Coulomb repulsion depends

on the screening due to lattice polarization, and is

characterized by the height of the Coulomb peak,

h ¼ e2

e� a ffiffiffi
2

p

(figure 2), where e is a static dielectric constant of the solid.

The depth of the minimum, d, depends on the strength of

the Jahn –Teller lattice distortions or on the value of

vacuum shift in Lang –Firsov transformations [65]. The

stronger the distortion, and the larger the CuO6 octahedral

elongation, the deeper the minimum. For strong coupling

of electrons with Jahn –Teller lattice distortions, the

polarons are small (the size of a single atom) but have

very large masses. In the limit of very narrow electron

bandwidth t)0, the polaron band collapses [12,65] and,

therefore, the kinetic energy of polarons may be neglected.

Electronic molecules are then formed due to the effect of

the inter-polaron interaction. The heavy polarons then fall

into the deep minimum of the potential U(R) (figure 2)

forming an electronic molecule or e-molecule.

�

Figure 2. Potential of the interpolaron interaction in oxide

materials, which consists of a short-range attraction (producing

the sharp deep minimum) associated with the Jahn –Teller

lattice distortions, and a long-range Coulomb repulsion (produ-

cing the peak and the shallow slope from the right side of the

peak). The depth of the minimum is given by d*K Q2
, where Q

is a local strain. The minimum is located at R= 1. The height of

the Coulomb peak is given by h ¼ e2

e�a ffiffi
2

p . The peak is located at

R=H2. All distances are measured in units of one lattice

spacing a.
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To illustrate the main principals involved in the

formation of e-molecules, let us consider for simplicity a

square crystal lattice with polarons located on these lattice

sites. We neglect the change of lattice symmetry and a

formation of the checkerboard pattern due to two types of

Jahn –Teller lattice distortions. This will not change the

main principles of e-molecules formation. Conditions for

the formation of these molecules are completely defined by

the parameters of the potential of the inter-polaron

interaction U(R): d and h. Any multi-electron molecule

can be considered in terms of the interaction of all possible

pairs of electrons, which make up the molecule. Each pair

interacts via a potential U(R). Due to the very non-

monotonic behaviour of the function U(R) (compare with

interatomic potentials, such as one formed due to the Van

der Waals interaction) the energy contribution to the

binding energy from each pair may be positive or negative.

This contribution depends on the distance between the

particles in a given pair. If the pair of particles is localized

on neighbouring sites, i.e. located in the minimum of U(R),

they gain energy equal to the value d. If the distance

between two given particles in the electronic complex is

larger than the lattice spacing a, then these two particles

repel each other, and the contribution from this pair of the

e-molecule to the binding energy is negative. That is, due to

such repulsion the binding energy of the chosen e-molecule

decreases by an amount *c h, where the constant c is

associated with the sum of inverse distances of all pairs in

the molecule where the electrons are not located on

neighbouring sites. In this simplest model there is a very

general expression for the binding energy per particle of

any multi-electron molecule. For an e-molecule consisting

of n particles this expression has the following form:

Eb ¼ ðkd� c h
p
2Þ=n ð12Þ

Here k is the number of pairs of adjacent electrons, where

the two electrons in the pair are located on neighbouring

sites in this n-electron molecule, and c= 1/x1+ 1/x2 +. . .

is the sum of inverse distances xi 4 1 (measured in units of

a ) for all pairs for which the electrons in each pair are

farther away from each other than a single lattice spacing a.

Let us consider examples of simplest e-molecules on the

square lattice. If there are only two particles located on

neighbouring sites, then they are localized in the deep

minimum of U(R) and, therefore, are bound into a two-

electron molecule (a bi-polaron) with binding energy per

particle Eb= d/2 : –U(1)/2 (figure 3). Here the parameter

values are m= 1, c=0 and n= 2. A three-electron

molecule may also exist. The three-particle molecule may

be considered as three pairs. Two of these pairs can be

located on neighbouring sites. The size of the third pair is

always larger than the lattice spacing a. Therefore, due to

Coulomb repulsion U(R4H2), the contribution to the

binding energy of this three-electron molecule arising from

this third pair is always negative. The binding energy per

particle is maximal if the distance between these two

particles is the largest value possible (provided that the

inter-particle distance in other pairs of the three electron

molecule is equal to the lattice spacing a). There is only one

such configuration and this is the linear molecule (the string

configuration [29 – 31], see figure 3). The binding energy per

particle of such a string is equal to Eb= (2d – h/H2)/3. This

is consistent with equation (12) when the parameter values

are k= 2, c= 1/2 and n= 3. From a comparison of this

binding energy with the binding energy of the bi-polaron

one may find that the bi-polaron has a lower binding energy

per particle than the three-electron string if d5 hH2.

Four polarons may create a four-electron molecule

whose optimal shape depends on the relation between the

height of the Coulomb peak h and the depth of the phonon

minimum d. Using equation (12) one may readily estimate

the binding energy for the square electronic molecule

(figure 3) as Esquare= (4d – 2h)/4; for the ‘zig-zag’ molecules

as Ezig-zag= (3d – (2+H2/H5)h)/4; and finally for the

string molecule as Estring= (3d – 4H2 h/3)/4. From these

estimates it is clear that the ‘zig-zag’ molecule always has a

binding energy smaller than either the square molecule or

the string molecule. The string and the square molecules are

associated with local minima, which are separated by a

barrier associated with other shapes of the molecule, which

is the ‘zig-zag’ and ‘corner’ shapes. Therefore these

electronic molecules, the string and the square, may coexist

with each other. In a ground state the molecule has a

square shape if d4 (2 – 4H2/3)h. A comparison of the

binding energy of the square electronic molecule with the

binding energy of a bi-polaron shows that the square

molecule has a lower binding energy than a bi-polaron if

d4 h.

When the screening is strong, the Coulomb repulsion is

weak, d44 h, and the optimal shape is a square. With

increase of the Coulomb repulsion or a decrease in the

dielectric constant, the electronic molecule may form a

string or it may decay directly into bi-polarons. In the

framework of the simple model chosen we may estimate the

optimal shape of e-molecules on a square lattice. Depend-

ing on the strength of the electron – phonon interaction and

the Coulomb screening (or the ratio d/h), the optimal

molecules (i.e. having the lowest energy) are the two-

particle ones, or dumbell bi-polarons (see the green

dumbbell in figure 3) and four-particle molecules having

the shape of the square lattice plaquette (see the green

square in figure 3). The optimal shape for a many electron

molecule is a droplet having the form a dense lattice of

squares (see, for example, figure 4).

In general, the form and the number of electrons in

electronic molecules may be arbitrary and is largely

determined by the overall interaction consisting of the
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effective (phonon mediated) electron – electron attraction at

short distances, and the form of Coulomb repulsion at long

distances. The electron screening effects may fundamentally

change the shape and size of these molecules. If there is

Debye screening, then the long-range Coulomb repulsion

takes the form UðR >
ffiffiffi
2

p Þ ¼ h
ffiffi
2

p
R expð�R=RDÞ, where RD is

the Debye radius. In this case the optimal shape may have

the form of a string. Moreover at any finite value of the

Debye radius RD there exists instability resulting in the

formation of stripes. If the electron – phonon coupling (or

the ratio d/h) increases to some critical value, there arise

strings which are then ordered into stripes. For example, if

the Debye radius RD= 2, then this instability arises if

d4 hH2. In order for stripes to be formed, the electron –

phonon interaction must be strong, the dielectric constant e
must be large, and the Debye radius must be small. The

larger the Debye radius RD, the stronger the electron –

phonon coupling has to be for the formation of electronic

stripes.

5. Strings arising due to other lattice deformations

It has been shown above that, in the presence of a strong

Jahn –Teller electron lattice interaction, the electrons have

a tendency to create e-molecules and strings. Each string

consists of M charged particles that are self-trapped by

local lattice deformation and polarization in a linear array

of N lattice sites. In the range of physical parameters

relevant to the doped perovskites such as cuprates and

maganites these strings may be formed due to other (non-

Jahn –Teller) lattice distortions, for example, just like plain

stress and strain and these strings may have lower energy

than isolated polarons [4 – 31]. It was recently demonstrated

that due to interaction induced by the lattice distortions (by

a plain strain) arising around point-like impurities, they

may be self-organized into a stripe-like pattern [67].

Now let us estimate the characteristic size of the strings

which may be created by a local strain. In fact, a non-

uniform nanoworld of sign-varying textures in strain and

charge has been revealed in many complex electronic

materials [68]. Charge doping acts as a local stress that

deforms the lattice without generating defects and produ-

cing polaronic elasto-magnetic textures or nanoscale phase

separation associated with the formation of strings.

In the very low density limit we can consider a system of

non-interacting strings where in each string the elastic

deformation Q is proportional to the number of trapped

charges M. The elastic energy of the lattice is proportional

to KQ2 * KM2; here K is an elastic modulus. The electron

energy of the self-trapped particles, and therefore the lattice

adiabatic potential of the string state, decreases as

Ee ¼ �EpM
2

where Ep is the energy for trapping a single charged

particle. This localization energy is opposed by the

Figure 3. Possible shapes of e-molecules on a square lattice. The bi-polaron has the dumbbell shape. The lowest energy state of the three

electron molecule is the string. The bold solid lines indicate interpolaron attraction. The dashed lines indicate Coulomb repulsion, which

gives a negative contribution to the binding energy of electronic molecules.

Figure 4. Typical optimal form of the multi-electron complex

consisting of nine electrons on the square lattice. The green

square may also represent a magnetic polaron or ferron, where

the green atoms are polarized magnetic moments; only one or

two electrons are trapped in the green magnetic droplet area.
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Coulomb repulsion between particles trapped by the string

potential well for which the electrostatic energy has an

additional factor log M (in a model of linear charged

string). So the Coulomb energy is approximately equal to

EC ¼ VM2logM

where V is a constant of the inter-site inter-electron

Coulomb repulsion. A balance between these energies

which is determined by a minimization of the total energy

gives a stationary many particle self-trapped string state

where the string length is equal to [35,53]:

N 	 M 	 expðEp=VÞ ð13Þ

Let us estimate the length of these strings in the perovskite

materials. If we take the elastic modules of the order of

c11=116 1010 erg cm–3, the inter-atomic distance is a=4

Å, and we get K*4.1 eV. If the deformation potential is

approximated as D*e2/a=3.4 eV, then for the electron –

phonon coupling we obtain Ep ¼ D2=K ¼ 2:5eV. Taking a

dielectric constant of e=5 for a doped system, we get

V ¼ e2=ea ¼ 0:68 eV. This gives an estimate for the length

of the string of the order of 10 inter-atomic distances.

6. Loops of e-molecules in anti-ferromagnetic insulators

Let us consider a 2D anti-ferromagnetic (AF) state on a

square lattice. In the ground state, all spins are anti-

ferromagnetically ordered creating a chessboard plane, as

in figure 1. The low energy excitations of AF are spin

waves. Besides spin waves there are topological excitations

like spin-vortices and domain walls. In the 2D AF the

domain walls are linear defects. They may originate from

the boundary, for example, due to a twist in the boundary

conditions. The microscopic domain forming a loop (figure

5) may be nucleated inside of the AF by thermal

fluctuations. Such an event is very rare due to the small

probability / exp � JL
kT

� �
associated with large loop energy.

The energy of this loop depends on its perimeter and it

is equal to Edl=J�L, where L is the loop perimeter

measured in units of the lattice spacing a and J is an

exchange constant of the AF. The loop energy decreases

when the loop size decreases, therefore such a loop is

unstable and its size should decrease until the loop

eventually vanishes. The situation may be drastically

changed when we will dope the AF by holes. The motion

of a single hole is usually limited and accompanied by the

breaking of AF bonds. Therefore the hole is attracted to

an initial position where there are no extra broken bonds

except for the initial four bonds missing due to the

presence of the hole (therefore, the energy lost due to a

single hole is *4 J). However, the hole located near the

domain wall will have a lower energy (* 2J) than a hole

inside the well-ordered AF state (*4 J). This hole is

mobile along the domain wall. In the direction transverse

to the domain wall line, the hole is localized (figure 6).

The transverse localization length is of the order of a few

inter-atomic spacings. The hole performs a relatively free

motion along the whole loop perimeter. With such motion

at the start of each lap, one kink and one anti-kink must be

created (see the schematic structure of the kink anti-kink

pair on figure 6). These kinks and anti-kinks will disappear

at the end of each lap, and then be created at the start of the

Figure 5. Domain wall forming a square loop sketched as the

blue line.

Figure 6. Domain wall loop with a single hole self-trapped by the

loop.
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next lap and, for the hole in motion, the process of kink –

anti-kink creation and annihilation will be repeated.

The domain loop with the trapped hole located on the

kink may correspond to the ground state energy of the

doped AF. It may also exist in a metastable state if it is

locally stable. Indeed, if the kinetic energy of the single hole

with the kink is

Ek ¼ h2

2mL2a2

then the total energy of the loop with the single hole will be

E ¼ h2

2mL2a2
þ JL� J

This expression has a minimum when

L ¼
ffiffiffiffiffiffiffiffiffiffiffi
h2

ma2J

3

r

The loop energy is then given by

Egr ¼ 3

2

ffiffiffiffiffiffiffiffiffi
h2J2

ma2
3

r
� J

Estimating on the basis of a model similar to that discussed

in section 2, but for the AF on the square lattice, we found

that the energy of the Nagaev ferron with square shape (see

the green droplet shape on figure 4) is

Ep ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
h2J

2ma2

r

Depending on the value J or m this energy may be higher or

lower than the energy of the domain loop with trapped hole

on the square lattice. This balance also depends strongly on

the contribution from the hole motion transverse to the

domain wall. Therefore, although the domain loop with the

trapped hole is a locally stable state, the ground state of a

single hole will be either this loop or the Nagaev magnetic

polaron (see section 3). The energy of the transverse motion

decreases even more when more than one hole is trapped by

the loop.

The evolution of the domain wall is completely

determined by the creation of kink and anti-kink pairs as

well as by the number of holes trapped by the loop. The

loop size may decrease or increase depending mostly on

kink – anti-kink generation and on the motion of the next

doped hole and on the number of trapped holes. To create

a single such loop requires a lot of energy. It is the self-

trapping of holes that makes this generation possible. A

loop created without holes usually decays via step-by-step

generation of kink – anti-kink pairs and their subsequent

motion. On the other hand when a hole is attached to a

domain wall, the size of the domain wall is stabilized. The

collapse of the domain wall will increase the kinetic energy

of the trapped holes. In fact, the most optimal energy

situation is when the loop traps many holes. Then each hole

may be a constant source of kink – anti-kink pairs arising at

the start of each even or odd lap when the particular hole

moves around the loop. The scattering of the holes on the

kinks decreases the life time of the hole quasi-particles.

Considering those holes sitting on the kinks as free

spinless fermions we may estimate the kinetic energy of

these M holes trapped by the loop as

EK ¼ h2kF
2

2m

For motion of the hole along the domain wall we may

consider a one-dimensional band with Fermi momentum

kF ¼ 2p
M

aL

To be precise, we have to consider the motion of the hole

along the sides and around the corners, scattering on the

kinks, and any transverse motion. However to a first

approximation, to make some simple energy estimates at

the conceptual level, let us neglect these contributions,

assuming that all motion of the trapped hole is coherent

and one-dimensional.

The exchange energy needed to create a domain loop

with M trapped holes is equal to J�(L–M). The energy

associated with Coulomb repulsion between holes we

estimate in electrostatic approximation assuming that the

holes are equidistantly distributed along the domain loop

(see figure 7). Then the Coulomb energy for M=4 holes is

given by

El ¼ 2el
L

;where el ¼ ð2þ 4
ffiffiffi
2

p
Þe2=ðe0aÞ:

and the total energy per single hole is

E ¼ h242

2ma2L2
þ JL

4
þ 2el

L
� J ð14Þ

One sees that this expression has an absolute minimum

with respect to L. Minimization with respect to L gives the

optimal size of this domain wall loop. If the parameter e0 is
large, as in the case of metallic oxides, the last term may be

neglected. Then the size of the loop is

L ¼ 4

ffiffiffiffiffiffiffiffiffiffiffi
h2

ma2J

3

r

From this equation we see that for many-particle self-

trapping (here, the value is M=4) the size of the loop

increases by M=4 times, while the loop energy per single

245Electronic molecules in semiconductors and novel materials



hole remains the same: E(M=4) : E(M=1). This

indicates the strong degeneracy of the loop states, a

degeneracy which we have already noticed in our con-

sideration of different string states. Thus, with the

Coulomb energy taken into account, the energies of e-

molecules associated with different numbers of particles are

very close to each other. Therefore all types of such clusters

with 2, 3, and, in general, any number of particles, may co-

exist with each other (see figure 7).

With increasing doping, the number of loops in the anti-

ferromagnetic insulator increases and a percolation may

occur. The loops will coalesce and intersect each other,

creating a net. With further increase of the doping the net

may be ordered into a stripe phase. Our finding of these

new elementary excitations (a loop of the domain wall with

trapped holes) may explain many puzzles existing in the

physics of under-doped cuprates, such as a metallic

conductivity, enormously strong Hall effect of the under-

doped cuprates at high temperatures, photo-emission data,

origin of the pseudo-gap as a localization of holes in these

loops, time reversal symmetry breaking as a persistent

current in these loops and many others, which have been

observed in numerous experiments and which are primarily

based on investigation of spin textures with the use of

Nuclear Magnetic Resonance (NMR) and muon Spin

Rotation (mSR) measurements (see, for example, [69] and

references therein). The NMR and mSR studies of spin and

hole texture in La2-xSrxCuO4 in the doping range

05 x5 0.12 have shown that the static and dynamic

properties of this compound are intimately related to the

generation of domain walls associated with the micro-

segregation of holes. In addition, the electron – phonon

interaction helps to stabilize these loops.

Note that in this section we have discussed the formation

of e-molecules (or hole segregation) due to a magnetic

interaction only, while in real systems in most cases there is

a strong electron – phonon interaction present.

7. Summary, visible consequences and speculations

Thus, for metallic and magnetic oxides (cuprates, nickelates

and manganites) with high values of dielectric constant,

screening and electron – phonon coupling are strong.

Consequently, e-molecules (strings, loops and others) arise

in these materials and are very important in explaining

many exotic properties, such as microscopic electronic

phase separation and the formation of stripes [35 – 57].

Indeed, the concept of e-molecules yields fundamentally

new insights into a wide range of materials. The creation of

such molecules in perovskite manganites would account for

the microscopic phase separation observed recently in La5/

8-yPryCa3/8MnO3 [43] and many other materials (for details,

see, the review [70]). In these experimental works it was

clearly concluded that there was percolative transport

through submicrometre-scale two-phase mixtures. This

could be associated with the types of electronic molecules

responsible for the colossal magnetoresistance behaviour

observed in these materials, where the e-molecules may be

distributed in a disordered way or ordered into the static

charged stripes observed, for example, in [42 – 44]. Thus the

phenomenon of the formation of these static charged

stripes can be related to the ordering of e-molecules or,

more precisely, to the stripe instability associated with the

formation of e-molecules.

Detailed comparisons of the theories for multi-electron

self-trapping with experimental data obtained for a broad

range of manganite materials have been made in [71].

There, measurements of the temperature dependence of

resistivity at different values of magnetic field have been

analysed. It was concluded that the theory of multi-electron

self-trapping or the formation of magnetic droplets is

consistent with existing experimental data. The magnetic

droplets are similar to the single polaron bubble discussed

in section 3 and have a diameter of about 7 – 8 times the

lattice constant, taken as d=3.9 Å for all types of material.

Figure 7. Domain wall loops with four holes self-trapped by the loop.
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Each magnetic droplet must contain from 50 to 100

particles, which can be electrons or holes depending on

the type of material under consideration.

Due to the fact that electronic masses are smaller than

atomic masses the electronic molecules have much smaller

masses than atomic molecules and in solids they may

therefore be very mobile. Also due to their small masses

they are very much quantum objects. Therefore, the shape

of these e-molecules fluctuates and changes over time. The

existence of these quantum molecules in cuprate oxides, like

YBCO, LaCuO and others, results in the formation of

dynamical stripes or string glass formations as discussed

extensively in [46 – 57]. It is probable that the quantum

fluctuational dynamics associated with the quantum nature

of electronic molecules gives rise to the mysterious

dynamics of the stripes observed in these materials.

Reference [72] gives an extensive analysis of experimental

data for high-temperature superconducting cuprates. In

[72], experimental results from X-ray absorption fine

structure (XAFS), inelastic neutron scattering (INS), Ra-

man spectra, infrared absorption spectra and time-resolved

femtosecond spectra were analysed. Their analysis supports

the scenario in which the pseudogap-associated tempera-

ture T* is related to the formation of ‘polaronic filamen-

taries’ (strings), which were described in this paper, and

were originally predicted in [35 – 37]. At temperatures

T5T* there is a visible change in the optical spectra

(*1.5 eV), which is very close to the estimate made in

section 5 for the value of the confining potential well

Ep*2.5 eV (the polaron shift).

This result also supports the suggestion that the origin of

high-temperature superconductivity in doped cuprates may

also be related to the strings, namely, to the vibronic modes

associated with these strings [73]. The polaronic tunnelling

frequency deduced in [72] associated with the tunnelling

transition in a double well potential is nothing but the

frequency of electronic vibrons introduced in [73] (the

longitudinal stretching vibrational mode of the strings,

which may naturally lead to tunnelling in a double well

potential discussed in [72]). This frequency has anomalous

behaviour in the vicinity of the critical temperature of the

superconducting phase transition (see, figure 2 in [72]),

indicative of an intimate relationship between polaronic

strings and the origin of superconductivity in these

compounds. Due to the small electronic masses the vibronic

modes of these e-molecules have higher frequencies

(electrons move faster than atoms) than in normal

molecules and therefore they may play an important role

in the Cooper pairing mechanism. Due to the high

frequencies of such modes, Cooper pairing may be more

efficient and therefore the resulting superconducting critical

temperature could be very high.

Recently, it was shown [74] that the stability of e-

molecules in the sea of free fermions increases provided that

the fermion density decreases and becomes smaller than

some critical value, which is smaller than in conventional

metals. Indeed, in the underdoped cuprates the holes

density is lower than in conventional metals and the

polaronic strings will be stable there. They will also remain

stable with decreasing temperature when the compound

becomes superconducting. The coexistence of charge

carriers and associated polaronic distortions with super-

conductivity are implied in several recent experiments [75].

On the other hand, at such transitions into the super-

conducting state, strings will also have an opposite,

parasitic influence on high-temperature superconductivity.

Strings are charged objects and, therefore, they create an

inhomogeneous potential in which the superconducting

order parameter is embedded. This will obviously lead to a

modulation of the order parameter, and the superconduct-

ing gap will form a mesoscopic and nanoscopic structure

that will be associated with the shape, size and distribution

of these e-molecules, which are probably polaronic strings.

For example, in the local area of the string the gap will be

smaller, i.e. partially suppressed, while in the area between

the strings the gap will remain nearly the same or it will be

even larger. Indeed such modulations of the superconduct-

ing gap have recently been observed in superconducting

Bi2Sr2CaCu2O8+ d compound (Bi-2212) [76,77] using high

resolution scanning tunnelling microscopy (STM) measure-

ments. Moreover, by applying the Fourier transform to the

atomic-scale spatial modulations in Bi-2212 density of

states they obtained elements of the Fermi-surface and

energy gap in agreement with photoemission experiments

[78 – 80]. They found consistency between numerous sets of

dispersing modulations and the quasiparticle interference

model and that the momentum-space structure of the

unoccupied states is similar to that of the occupied states.

This shows that no additional order parameter besides the

superconducting one is required and that the copper oxide

quasiparticles are similar to Landau particle – hole quasi-

particles, which exist in conventional superconductors. This

is completely consistent with the co-existence of e-

molecules and free fermions. Again in complete agreement

with theoretical results presented in this and previous

papers, they found that near the energy gap maximum, the

modulations become strong and commensurate with the

crystal, and that they are bounded by nanometre-scale

domains, which, presumably, are associated with the

strings. All these results support the scenario of a nearly

conventional superconductor arising due to the existence of

strings dissolved in Fermi liquid [73]. Thus, the e-molecules

may play an important role in the origin of the high-

temperature superconductivity observed in cuprates [73].

It is also important to note that the existence of strings

is more favourable for low-dimensional systems, such as

quasi-two-dimensional or quasi-one-dimensional solids.

The point is that in this case, suppression of the kinetic
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energy of electron and holes in the transverse direction

with respect to the orientation of the string, needed for

string confinement, is more easily reached. Therefore,

strings must occur in materials having, for example, a

chain structure. Indeed such types of compound exist

among cuprates and are known as YBCO (or, more

precisely, YBa2Cu3O6+x). Its crystal structure consists of

alternating planes having quasi-two-dimensional and

quasi-one-dimensional character. Each quasi-one-dimen-

sional plane consists of parallel Cu –O chains. Thus, if

strings exist in this material they will first arise on the

Cu –O chains, because there the kinetic energy loss

arising at the formation of strings is minimal. Indeed,

such strings have been seen in recent scanning tunnelling

spectroscopy measurements of the Cu –O chain plane in

YBCO, which show a 25 meV gap in the local density of

states (LDOS) filled by numerous intragap peaks

(resonances) [81].

The LDOS gives information about the energy spectrum

and about the spatial distribution of the localized states.

The intense peaks in LDOS spectra could be associated

with strings formed on these chains. The strings here can be

considered as localized objects, which are formed from

‘small’ polarons. To be consistent with the experiment we

must assume that these polarons have small or intermediate

radius. The experiment [81,82] indicates that the effective

size of such polarons is equal to the wavelength of the

string modulation, l=1.4 nm. The number of particles of

which the string consists or the length of the strings varies.

In previous papers [35 – 37] we have indicated that the

strings are associated with a very complicated energy

landscape, which consists of many very closely (in energy

space) located energy minima. These minima correspond to

strings having different sizes or consisting of different

numbers of lowest energy states corresponding to the most

popular string, of size equal to the observed correlation

length l0=4 nm. This string consists of l0/l% 3 particles.

Because the energy minima are very close to each other

there will exist also strings having different sizes. In the

experiment [81] the conductance associated with tunnelling

of a single electron to and from the string was measured.

According to the Franck –Condon principle during such a

tunnelling event the electronic structure of the string will

not be changed and all relaxation processes will start after

the tunnelling event. Therefore the string, if it exists, will be

completely visualized in the measurements of the LDOS

presented in [81,82].

However, in this experiment string-like resonances were

seen not only in the low energy region of the gap but all

around the gap. The primary reason for this is the existence

of vibronic modes or quantized vibration of the strings. We

also have to stress that the observed resonances may be

associated not only with the strings in the ground state but

also with vibronic satellites. On each string there are

vibronic excitations: these vibrons may accompany each

tunnelling event; i.e. at the electron or hole tunneling from

the STM tip to the sample there will be one or two vibrons

emitted or absorbed. Therefore, besides the main reso-

nances associated with the string in the ground state, the

measurements [81] should show single vibron or, slightly

less probable, two vibron satellites. Of course the intensity

of the satellite peaks will be significantly lower than the

intensity of the main peaks. A similar phenomenon of

satellite resonances is well known in exciton physics. Many

exciton absorption spectra have optical phonon satellites

similar to the vibron satellites that can arise during

measurement of the LDOS. Optical phonon satellites could

have arisen during the measurements of LDOS made in

[81,82].

There is another reason for displacement of the

resonance energy position. Due to the fact that oxygen

vacancies are mostly localized in the Cu –O chains they are

very inhomogeneous. Therefore, in addition to the self-

organized potential, strings are located in the random

potential associated with these vacancies. Due to such extra

potential the position of the ground state energy of the

string as well as the string-vibron satellites may be shifted

both up and down the energy scale.

Now let us estimate the energy of the vibron arising on a

string following [73]. Knowing the polaron diameter

2R=1.4 nm one may estimate the polaron shift as Ep=

Ry/R2*70 meV. Then with the use of the polaron shift the

energy of the longitudinal stretching vibron will be given by

o= Ep/N0, where N0 is the number of particle in the string.

With the use of this estimate we find that the most optimal

strings, consisting of three particles in the vibron satellite

peak, should arise at the energy 23 meV higher than the

position of the main resonance. For four-particle strings,

satellites will be separated by vibron energy equal to 17

meV; for five-particle strings the satellites arise at an energy

equal to 14 meV, and so on. It is important also to note that

we have made the estimation only for one type of vibron,

and that there are other types of vibron that are able to

make a contribution to LDOS. However, to make more

precise estimates of the vibronic energies we have to use

more sophisticated models. Thus we may conclude that the

multiple set of resonances observed in [81,82] may be

ascribed to the tunnelling conductance through the strings

arising on Cu –O chains and their vibronic and optical

phonon satellites.

The intensity of the peaks of these resonances enables

separation of the main and satellite resonances. The

differential conductance associated with the satellite peaks

should be significantly weaker. The strings and their

satellites may be visualized in animations [82] derived from

the experimental measurements of LDOS. A complete set

of spectroscopic maps obtained at high spatial resolution

for different window sizes has been presented. Each frame
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is the conductance at a fixed energy (written in green in the

upper corner of the movie frame). The field of view is

25 nm, 50 nm and 100 nm in size for the three animations,

respectively. All three animations were taken at the same

location on the surface of YBa2Cu3O6+x. The data show

the same phenomena arising inside the gap (from about –

25 mV to +25 mV): there are localized regions with large

conductance and with sharply defined energies. There is

space – energy correlation of these regions, which is

apparent as the animation progresses. The participation

of strings together with their vibronic excitations and

optical phonons in the differential tunnelling conductance

is very natural and therefore strings are primary candidates

for an explanation of these amazing experimental observa-

tions of different resonances in LDOS [81,82].

There is another type of string, which was directly

observed in luminescence spectra in different quasi-one-

dimensional materials [83 – 85]. These strings are created by

the illumination of light and are called exciton strings.

There can be just a few or many excitons self-trapped along

the chains of different organic materials. The exciton is a

neutral object and, therefore, Coulomb repulsion plays a

less important role in the structure of such strings. The

exciton strings may play a very important role in structural

photoinduced phase transitions, creating, effectively, nu-

cleons of a new phase [83 – 85]. The nucleation of excitonic

strings has also been seen in cryocrystals, in particular in

solid Xe [86,87]. There the excitons are self-trapped on

three atomic complexes.

Finally, the finding of domain loop excitation with self-

trapped holes is fundamentally important, because this

completes the picture of elementary excitations in doped

anti-ferromagnetic solids. With the use of these e-molecule

loops one can describe how the anti-ferromagnetic state

may disappear with increasing doping, and how a metal-

insulator transition may arise.
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