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We review a recent approach to determine the minimal spatial length scales on which

local temperature exists. After mentioning an experiment where such considerations are

of relevance, we first discuss the precise definition of the existence of local temperature

and its physical relevance. The approach to calculate the length scales in question

considers homogenous chains of particles with nearest-neighbour interactions. The entire

chain is assumed to be in a thermal equilibrium state and it is analysed when such an

equilibrium state at the same time exists for a local part of it. The result yields estimates

for real materials, the liability of which is discussed in the sequel. We finally consider a

possibility to detect the existence or non-existence of a local thermal state in experiment.

1. Introduction

Large systems in an equilibrium state may, despite their

very large number of degrees of freedom, be characterized

by only very few quantities. For example, an ideal gas is

described by the simple ‘thermal equation of state’

pV¼ nkBT, where p is the pressure of the gas, V its volume,

n the number of particles it contains, T its temperature and

kB Boltzmann’s constant. In physics, one refers to this kind

of description as a thermodynamical description.

How can such an extremely reduced description be

justified? The reason why a thermodynamical description

works so well for equilibrium states is that, with increasing

number of particles in a system, a dominant part of

microstates have the same macroscopic properties. Micro-

state refers here to a description where all degrees of

freedom are specified. As a result, thermodynamical

behaviour becomes ‘typical’.

In a more mathematical language this fact is called the

existence of the Thermodynamic Limit, which merely

means that intensive quantities such as the energy per

particle approach a limiting value that no longer depends

on the detailed configuration of the system as its size

increases. For example, the energy per particle of a very

large piece of solid no longer depends on whether this piece

is lying on a table or is immersed in a bucket full of water,

provided it is in an equilibrium state, i.e. has the same

temperature as its surroundings.

Obviously, in the Thermodynamic Limit, the difference

between particles inside the solid and those on the surface,

which interact with the surroundings, becomes negligible.

That is why the size of the solid is important. Let us assume

the solid had the shape of a sphere and the density of the

particles was uniform within it. Since the surface of a

sphere with radius r is 4pr2 and its volume is (4p/3)r3, the
ratio of particles sitting on the surface over the total

number scales as 1/r and thus becomes negligible as r goes

to infinity. Such a type of scaling applies not only to

spheres but also to more general geometries.

To analyse the existence of local temperatures, small

parts of large systems are of interest. These parts do

inevitably interact with their surrounding. For short-range
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interactions between the constituent particles, again, only

those particles sitting on the boundary of the considered

part interact with the environment. Thus, the described

scaling properties immediately give rise to the following

question{: How large do parts of those systems have to be

to permit a local thermodynamical description, i.e. a

thermodynamical description of the part alone?

For a long time, the problem, besides being fundamental,

may have been of purely academic interest, since thermo-

dynamics was only used to describe macroscopic systems,

where deviations from the Thermodynamic Limit may

safely be neglected. However, with the advent of nano-

technology, the microscopic limit of the applicability of

thermodynamics became relevant for the interpretation of

experiments and may in the near future even have

technological importance.

In recent years, amazing progress in the synthesis and

processing of materials with structures on nanometer length

scales has been made [1 – 4]. Experimental techniques have

improved to such an extent that the measurement of

thermodynamic quantities like temperature with a spatial

resolution on the nanometer scale seems within reach

[5 – 7]. To provide a basis for the interpretation of present

day and future experiments in nanoscale physics and tech-

nology and to obtain a better understanding of the limits

of thermodynamics, it is thus indispensable to clarify the

applicability of thermodynamical concepts on small

length scales starting from the most fundamental theory at

hand, i.e. quantum mechanics. In this context, one question

appears to be particularly important and interesting: Can

temperature be meaningfully defined on nanometer length

scales?

Why should we care about the non-existence of local

temperature? There are at least three situations for which

this possibility needs special attention: one obvious

scenario refers to the limit of spatial resolution on which

a temperature profile could be defined. However, a spatially

varying temperature calls for non-equilibrium—a compli-

cation which we will exclude here. A second application

concerns partitions on the nanoscale: if a modular system

in thermal equilibrium is partitioned into two pieces, say,

the two pieces need no longer be in a canonical state, let

alone have the same local temperature. Finally, local

physical properties may show different behaviour depend-

ing on whether the local state is thermal or not.

The existence of thermodynamical quantities, i.e. the

existence of the Thermodynamic Limit, strongly depends

on the correlations between the considered parts of a

system. As mentioned above, with increasing diameter, the

volume of a region in space grows faster than its surface.

Thus effective interactions between two regions, provided

they are short ranged, become less relevant as the sizes of

the regions increase. This scaling behaviour is used to

show that correlations between a region and its environ-

ment become negligible in the limit of infinite region

size and that therefore the Thermodynamic Limit exists

[8 – 10].

To explore the minimal region size needed for the

application of thermodynamical concepts, situations far

away from the Thermodynamic Limit should be analysed.

On the other hand, effective correlations between the

considered parts need to be small enough [11,12].

The scaling of interactions between parts of a system com-

pared to the energy contained in the parts themselves thus

sets a minimal length scale on which correlations are still

small enough to permit the definition of local temperatures.

Here we review an approach to study this connection

quantitatively [13,14].

2. Motivation: a thermal nanoscale experiment

In recent years, there has been substantial progress in the

fabrication and operating of material with structure on

nanoscopic scales and nanoscale devices. In this context,

several experiments, that study thermal properties, have

been done. We describe here, as an example, one experi-

ment that nicely shows where the existence or non-existence

of local temperature becomes relevant [15].

The experiment studies heat conduction across a carbon

nanotube. A sketch of the setup is given in figure 1. Two,

otherwise thermally well isolated islands are connected

through a carbon nanotube of a few mm length. One island

is heated by an electric current that runs through a coil with

the resistance Rh. This island is thus at a ‘hot’ temperature

Th. Heat can flow across the nanotube to the other island,

which is at a lower temperature Ts. This temperature in

turn is measured by another coil, the resistance of which Rs,

depends on temperature. Figure 2 shows a picture of

this setup.

Figure 1. Setup of the experiment. Two, otherwise

thermally well isolated, islands are connected by a carbon

nanotube. The left island is heated by an electric current

running through the coil with resistance Rh and thus

maintained at the temperature Th. The temperature of the

right island is measured via the temperature-dependent

resistance Rs.

{Since the present treatment considers interactions of a small part of a large

system with its surroundings, its results are not mere finite size effects as for

small isolated systems.
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At what point is the existence or non-existence of local

temperatures of relevance for the interpretation of this

experiment? We know that there is an electric current in

the coil of the heated island. This current constantly

delivers thermal energy to the island. This energy is

transported across the nanotube to the other island,

where we observe that the temperature Ts rises. We thus

know that the nanotube connects a hot spot Th to a cold

spot Ts. This directly gives rise to the following

questions: How hot is the nanotube in between?

Can we meaningfully talk at all about the temperature

of any part of the nanotube? The answer to these two

questions would clarify whether and in what sense a

temperature profile (see figure 3) could exist for the

present setup.

While a temperature profile can obviously be defined and

measured in a macroscopic version of the present experi-

ment, say two buckets of water at different temperatures

and connected via an iron bar, its existence, possible

resolution and measurability are completely unclear for the

nanoscopic version.

To address this question, we first discuss how to define

the existence of local temperature in the next section.

3. What is temperature?

Temperature is one of the central quantities in thermo-

dynamics and Statistical Mechanics. Let us note here that it

is not a direct observable; it is not represented by an

operator in quantum mechanics (see section 8). There exist

two standard ways to define it.

3.1 Definition in thermodynamics

The thermodynamical definition is purely empirical.

Thermodynamics itself is an empirical theory on systems

whose macroscopic physics can be sufficiently characterized

by a set of a few variables like volume, energy and the

number of particles, for example. The values of these

variables are called a macro state [16]. A system is said to be

in equilibrium if its macro state is stationary for given

constraints. As a consequence of this definition, an equi-

librium state depends on the applied constraints, e.g.

whether the volume or the energy is kept constant, etc.

An important, special case of constraints is a bipartite

(or multipartite) system with a fixed total energy, where the

parts may exchange energy among themselves. The parts are

then said to be in thermal equilibrium. In thermodynamics,

temperature is defined by the following property.

3.1.1. Definition. Two systems that can exchange energy

and are in thermal equilibrium have the same temperature.

To fix a temperature scale, a reference system is needed.

The simplest choice for this reference system is the ideal gas

(see section 1), where temperature may be defined by

T � pV

nkB
: ð1Þ

Of course, the above definition is unambiguous only if

the states of thermal equilibrium form a one-dimensional

manifold [16]. Only then, a single parameter is suffi-

cient for their characterization. This parameter is the

temperature T.

3.2 Definition in statistical mechanics

In statistical mechanics, temperature is defined via the

derivative of the entropy S with respect to the internal

Figure 2. Picture of the setup. The heated island is in the

lower left corner and the island where the temperature is

measured in the upper right corner. Both are connected

by a single carbon nanotube. (With permission from

A. Majumdar, Nanoengineering Laboratory, University

of California, Berkeley.)

Figure 3. The question of whether a temperature profile

exists for the nanotube in the present setup is not clarified.
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energy �E. In quantum mechanics the entropy can be defined

according to von Neumann as

S � �kBTr r̂ ln r̂: ð2Þ

It is a measure of the amount of possible pure states the

system could be in. With this definition, entropy always

exists, but shows its standard properties, e.g. extensivity,

only in the Thermodynamic Limit [9].

In statistical mechanics, an equilibrium state is defined to

be the state with the maximal entropy, that is the state with

the maximal amount of accessible pure states.

For systems that interact with their surrounding, such

that they can exchange energy with it but have a fixed

expectation value for the energy, the equilibrium state is a

so-called canonical state, described by a density matrix of

the form

r̂ ¼ exp ð�bĤÞ
Z

; ð3Þ

where the partition sum Z normalizes r̂ such that Tr r̂ ¼ 1.

In quantum mechanics the internal energy is given by the

expectation value of the energy,

�E � Tr r̂Ĥ; ð4Þ

where the Hamiltonian is the energy operator of the

isolated system at hand. It does not contain any interac-

tions of the system with its environment. The internal

energy is therefore a property of the system itself, it only

depends on the state of the system and not on the state of

the environment.

Temperature is then defined by

1

T
� @S

@ �E
; ð5Þ

which in turn exists as long as the entropy S is a function of

the internal energy �E. However, the notion of temperature,

as defined in equation (5), just like entropy shows its

characteristic thermodynamical properties (see above) only

for equilibrium states [9,16,17].

3.3 Local temperature

Local temperature is, by definition, the temperature of a

part of a larger system. Hence, this subsystem is not

isolated but can exchange energy with its surrounding. On

the other hand, we limit our considerations to cases without

particle exchange. Hence, the following convention appears

to be reasonable.

3.3.1. Definition. Local temperature exists if the considered

part of the system is in a canonical state.

Note: while a local state can always uniquely be defined

by tracing out the rest of the system, this definition calls, in

addition, for the (approximate) existence of some local

spectrum.

Besides being based on statistical mechanics there are

further practical reasons for this definition: the canonical

distribution is an exponentially decaying function of

energy characterized by one single parameter, tempera-

ture. This implies that there is a one-to-one mapping

between temperature and the expectation values of

observables by which it is usually measured. Temperature

measurements via different observables thus yield the

same result, contrary to distributions with several

parameters.

This is a basic property of systems that can be

characterized by thermodynamic description. The temp-

erature, if it exists, describes a system in a sufficiently

complete way such that several properties of it can be

predicted if one only knows its temperature (see also

section 8).

Why does the distribution need to be exponentially

decaying? In large systems with a modular structure, the

density of states is a strongly growing function of energy

[17]. The product of the density of states times an

exponentially decaying distribution of occupation prob-

abilities will thus form a strongly pronounced peak at the

internal energy �E (see figure 4).

If the distribution was not exponentially decaying,

the product of the density of states times the distri-

bution would not have a pronounced peak and thus

physical quantities like energy could not have ‘sharp’

values.

Figure 4. The product of the density of states Z(E) times

the occupation probabilities hjjrjji forms a strongly

pronounced peak at E¼ �E.
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4. General theory for the existence of local temperature

After having introduced and discussed the conception,

when temperature is defined to exist locally, we now turn to

describe the approach to analyse its existence.

Since temperature is defined to exist locally, i.e. for a given

part of the system we consider, if the respective part is in a

thermal equilibrium state, it is defined to exist on a certain

length scale, if all possible partitions of the corresponding

size are simultaneously in an equilibrium state.

This requirement for the local equilibrium states in the parts

to exist at the same time needs some further discussion: for a

given temperature profile, it should not make a difference

whether the profile is scanned by one single thermometer,

which ismoved in small steps across the sample, orwhether the

profile is measured by several thermometers simultaneously,

which are located at small distances to each other.

For systems which are globally in a non-equilibrium state it

is very difficult to decide under what conditions equilibrium

states show up locally [18] and only very few exact results are

known [19]. Nonetheless, whenever local equilibrium exists,

the macroscopic temperature gradient is small (dT/T� 1).

Here, we restrict ourselves to systems which are in a global

equilibrium state (3){. In these situations, subunits of the total

system are in an equilibrium state whenever their effective

interaction is weak enough and correlations between them are

small so that the global thermal state approximately factorizes

into a product of local thermal states.

Whenever the macroscopic temperature gradient is small

(dT/T� 1), one would expect the results to be applicable

even for situations with only local equilibrium but non-

equilibrium on the global scale.

To explore how local temperature can exist, that is how

small the respective part may be, one needs to look at parts

of different sizes. The idea behind this approach is the

scaling behaviour which ensures the existence of the

Thermodynamic Limit (see section 1) [9,10].

We consider systems that are composed of elementary

subsystems with short-range interaction, for simplicity say

nearest-neighbour interaction. If then n adjoining subsys-

tems form a part, the energy of the part is n times the

average energy per subsystem and is thus expected to grow

as the size of the part, n. Since the subsystems only interact

with their nearest neighbours, two adjacent parts interact

via the two subsystems at the respective boundaries, only.

As a consequence, the effective coupling between two parts

is independent of the part size n and thus becomes less

relevant compared to the energy contained in the parts as

their size increases (figure 5).

4.1 The model

As models we consider here homogeneous (i.e. translation

invariant) systems with nearest-neighbour interactions

which we divide into identical parts. The Hamiltonian of

the system thus reads

H ¼
X
i

Hi þ Ii;iþ1; ð6Þ

where the index i labels the elementary subsystems. Hi is

the Hamiltonian of subsystem i, Ii,iþ 1 the interaction

between subsystem i and iþ 1 and periodic boundary

conditions are assumed.

Now NG groups of n subsystems each (index i! (m7 1)

nþ j, m¼ 1, . . . , NG, j¼ 1, . . . , n), are formed and the

Hamiltonian is split into two parts,

H ¼ H0 þ I; ð7Þ

where H0 is the sum of the Hamiltonians of the isolated

groups,

H0 ¼
XNG

m¼1
Hm; ð8Þ

with

Hm ¼
Xn
j¼1

Hnðm�1Þþ j þ
Xn�1
j¼1

Inðm�1Þþj;nðm�1Þþjþ1;

and I contains the interaction terms of each group with its

neighbour group,

I ¼
XNG

m¼1
Imn;mnþ1: ð9Þ

The eigenstates jai of the Hamiltonian H0, H0jai¼
Eajai, are products of group eigenstates of the individual

groups,

jai ¼
YNG

m¼1
� jami; with Hmjami ¼ Emjami; ð10Þ

where Em is the energy of one subgroup only and

Ea ¼
PNG

m¼1 Em.

{One can imagine that the system has been brought into thermal contact

with an even larger bath and has, in this way, relaxed into its thermal state.

However, the way the system has reached its state is not relevant for our

considerations.

Figure 5. Groups of n adjoining subsystems are formed.
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4.2 Thermal state in the product basis

To test whether a part Hm0 is in a thermal state, we have to

calculate its reduced density matrix by tracing out the rest

of the system. This trace can only be performed in the basis

formed by the states jai, (10). We thus have to write the

global equilibrium state (3) in this basis. Denoting the

eigenstates and eigenenergies of the global Hamiltonian

with Greek indices, jji, jci and Ej, Ec, the global equili-

brium state r̂ reads

hjjr̂jci ¼ e�bEj

Z
djc ð11Þ

in the global eigenbasis and the diagonal elements in the

product basis are

hajr̂jai ¼
Z E1

E0

waðEÞ
e�bE

Z
dE; ð12Þ

where the original sum Sj has been replaced by an integral

over the energy.

wa(E) is the probability to obtain an energy value bet-

ween E and EþDE if the total energy H is measured for a

system in the state jai, i.e.

waðEÞ ¼
1

DE

X
fjji:E�Ej<EþDEg

jhajjij2; ð13Þ

where the sum runs over all states jji with energy eigen-

values Ej in the respective energy range and DE is small.

E0 is the energy of the ground state and E1 the upper limit

of the spectrum, which should be taken to be infinite if the

spectrum does not have an upper bound.

We thus have to know the distributions wa(E) in order to

be able to compute the reduced density matrices of the

groups and to test whether they are of canonical form.

Fortunately, one can indeed show that there exists a quan-

tum central limit theorem for many particle systems with

nearest-neighbour interactions [20,21]. Therefore, in the limit

of infinitely many groups, wa takes on the following form:

lim
NG!1

waðEÞ ¼
1ffiffiffiffiffiffi
2p
p

Da

exp �ðE�
�EaÞ2

2D2
a

 !
; ð14Þ

where �Ea, the expectation value of H in the state jai, and
D2
a, its variance, read

�Ea � hajHjai; ð15Þ

and D2
a � hajH2jai � hajHjai2: ð16Þ

Note here that the limit of infinite number of groups is

taken while the size of each individual group remains finite.

For the theorem to hold, two further conditions have to

be met: the energy of each group including its interactions

with the neighbouring group has to be bounded and the

variance D2
a has to grow faster than NGC for some positive

constant C. In scenarios where the energy spectrum of each

elementary subsystem has an upper limit, such as spins, the

first condition is met a priori. For subsystems with an

infinite energy spectrum, such as harmonic oscillators, the

present analysis is restricted to states where the energy of

every group, including the interactions with its neighbour

groups, is bounded. Thus, the considerations do not apply

to product states jai, for which all the energy is located in

only one group or only a small number of groups. The

number of such states is vanishingly small compared to the

number of all product states.

The expectation value of the entire Hamiltonian H in

the state jai, �Ea, is the sum of the energy eigenvalue of

the isolated groups Ea and a term that contains the

interactions,

�Ea ¼ Ea þ ea: ð17Þ

Therefore, the two quantities ea and D2
a can also be exp-

ressed in terms of the interaction (see equation (7)) only,

ea ¼ hajIjai; ð18Þ

and D2
a ¼ hajI 2jai � hajIjai2; ð19Þ

meaning that ea is the expectation value and D2
a the

squared width of the interactions in the state jai.
Note that ea has a classical counterpart while D2

a is purely

quantum mechanical. It appears because the commutator

[H, H0] is non-zero, and the distribution wa(E) therefore

has non-zero width.

Applying equation (14) to calculate the integral in

equation (12) yields, for NG� 1,

hajr̂jai ¼ 1

Z
exp �bðEa þ eaÞ þ

b2D2
a

2

� �

� 1

2
erfc

E0 � Ea � ea þ bD2
affiffiffi

2
p

Da

� ��

�erfc E1 � Ea � ea þ bD2
affiffiffi

2
p

Da

� ��
; ð20Þ

where erfc(x) is the conjugate Gaussian error function [22].

The second error function appears only if the energy is

bounded and the integration extends from the energy of the

ground state E0 to the upper limit of the spectrum E1.

Note that the arguments of the conjugate error func-

tions grow proportional to
ffiffiffiffiffiffiffi
NG

p
or stronger, therefore the
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asymptotic expansion of the latter [22] may be used for

NG� 1.

The off-diagonal elements hajr̂jbi vanish for jEa7Ebj4
DaþDb because the overlap of the two Gaussian distribu-

tions becomes negligible. For jEa7Ebj5DaþDb, the

transformation involves an integral over frequencies

and thus these terms are significantly smaller than the

entries on the diagonal.

4.3 Conditions for local thermal states

We now test under what conditions the density matrix r̂
may be approximated by a product of canonical density

matrices with temperature bloc for each subgroup m¼
1, 2, . . . , NG. Since the trace of a matrix is invariant under

basis transformations, it is sufficient to verify the correct

energy dependence of the product density matrix. If we

assume periodic boundary conditions, all reduced density

matrices are equal and if they were canonical their product

would be of the form hajr̂jai / exp ð�blocEaÞWe thus have

to verify whether the logarithm of the r.h.s. of equation (20)

is a linear function of the energy Ea defined in equation (10)

and below,

lnðhajr̂jaiÞ � �blocEa þ c; ð21Þ

where bloc and c are constants.

Applying the asymptotic expansion of the conjugate

error function to (20) shows that equation (21) can only be

true for

Ea þ ea � E0ffiffiffiffiffiffiffi
NG

p
Da

> b
D2
affiffiffiffiffiffiffi

NG

p
Da

; ð22Þ

and � ea þ
b
2
D2
a � c1Ea þ c2; ð23Þ

where c1 and c2 are constants. These two conditions con-

stitute the general result of this section.

Note that ea and D2
a need not be functions of Ea and

therefore in general cannot be expanded in a Taylor series.

Temperature becomes intensive, if the constant c1
vanishes,

jc1j � 1) bloc ¼ b: ð24Þ

Even if this was not the case, temperature might still exist

locally.

For the existence of local temperature, one should only

require that the diagonal elements (12) are canonically dist-

ributed in an appropriate energy range, Emin�Ea�Emax.

As described in the previous section, the density of states

Z(E) is, for large modular systems, an exponentially growing

function of energy and its product with the exponentially

decaying canonical distribution hjjrjji forms a strongly

pronounced peak at the expectation value of the global

energy �E (see figure 4).

If the diagonal elements (12) are canonically distributed

in an energy range, that is centered at this peak and is large

enough to entirely cover it, all observables with non-

vanishing matrix elements in that range show the same

behaviour as for a true canonical distribution. Observables

which are not of that kind are in general not of interest.

If one considers for example 1 kg of iron at 300K with

an average energy of roughly 130 kJ, one is usually not

interested in the processes that take place at energies of

0.1 kJ or 105 kJ.

Therefore, a pertinent and ‘safe’ choice for the energy

range Emin�Ea�Emax should be

Emin ¼ max ð½Ea	min ; ð1=aÞ �Eþ E0Þ;
Emax ¼ min ð½Ea	max ; a �Eþ E0Þ; ð25Þ

where a� 1 and �E will in general depend on the global

temperature b. In equation (25), [Em]min and [Em]max denote

the minimal and maximal values Em can take.

Figure 6 shows the logarithm of equation (20) and the

logarithm of a canonical distribution with the same b for

the example of a harmonic chain. The actual density matrix

is more mixed than the canonical one. In the interval

between the two vertical lines, both criteria (22) and (23)

are satisfied. For E5Elow (22) is violated and (23) for

E4Ehigh. To allow for a description by means of canonical

density matrices, the group size needs to be chosen such

that Elow5Emin and Ehigh4Emax.

For a model of the class considered here, the two con-

ditions (22) and (23) must both be satisfied. In the following

sections, these fundamental criteria will be applied to a

concrete model.

Figure 6. In (hajrjai) for r as in equation (20) (solid line)

and a canonical density matrix r (dashed line) for a

harmonic chain.
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5. Harmonic chain

We consider a harmonic chain of NG 
 n particles of mass m

and spring constant
ffiffiffiffi
m
p

o0 [13,23]. In this case, the

respective terms in the Hamiltonian (6) read

Hi ¼
m

2
p2i þ

m

2
o2

0q
2
i ; ð26Þ

Ii;iþ1 ¼ �mo2
0qiqiþ1; ð27Þ

where pi is the momentum of the particle at site i and qi
the displacement from its equilibrium position i 
 a0 with a0
being the distance between neighbouring particles at equili-

brium. We divide the chain into NG groups of n particles

each and thus get a partition of the type considered in

section 4.

The Hamiltonian of each group is diagonalized by a

Fourier transform and the definition of creation and

annihilation operators a
y
k and ak for the Fourier modes

[14]. In this way we get

Ea ¼
XNG

m¼1
Em; with Em ¼

X
k

ok nakðmÞ þ
1

2

� �
; ð28Þ

where k¼pl/(a0(nþ 1)) (l¼ 1, 2, . . . , n) and the frequencies

ok are given by o2
k ¼ 4o2

0 sin 2ðka0=2Þ . nakðmÞ is the occupa-
tion number of mode k of group m in the state jai.
We choose units where h�¼ 1. Let us first verify that the

central limit theorem (14) applies to this model, i.e. that the

required assumptions (given below equation (16)) are met.

To see that D2
a grows faster than NGC (C4 0), one needs

to express the group interaction V(qmn, qmnþ 1) in terms of a
y
k

and ak; this yields D2
a ¼

PNG

m¼1 D
2
m, where D2

m > 0, implying

that the assumption is met.

Since the spectrum of every single oscillator is infinite, the

requirement that the energy per group should be bounded

can only be satisfied for states for which the energy of the

system is distributed among a relevant fraction of the

groups. As discussed in section 4, states where this is not

the case constitute only a negligible fraction of all product

states jai.
The expectation values of the group interactions

(equation (18)) vanish, ea¼ 0, while the widths D2
m accor-

ding to equation (16) depend on the occupation numbers

nk(m) and therefore on the energies Em. To analyse

conditions (22) and (23), one makes use of the continuum

or Debye approximation [24], requiring n� 1, a0� l, where

l¼ na0, and the length of the chain to be finite. As will

become clear below, the resulting minimal group sizes nmin

are larger than 103 for all temperatures and the application

of the Debye approximation is well justified.

Using this approximation we now have ok¼ vk with the

constant velocity of sound v¼o0a0 and the width of the

group interaction reads

D2
m ¼

4

n2
EmEmþ1; ð29Þ

where nþ 1� n has been used.

The relevant energy scale is introduced by the thermal

expectation value of the entire chain

�E ¼ E0 þNGnkB�
T

�

� �2Z �=T

0

x

ex � 1
dx; ð30Þ

and the ground state energy E0 is given by

E0 ¼ NGnkB�
T

�

� �2Z �=T

0

x

2
dx ¼ NGnkB�

4
; ð31Þ

where Y is the Debye temperature [24].

Inserting equations (30) and (31) into equations (22) and

(23), taking into account (25), one can now calculate the

minimal n for given a, Y and T. In doing so, one needs to

introduce another accuracy parameter d, which, for the

r.h.s. of equation (23), quantifies how much smaller terms

quadratic and higher order in Ea are compared to the zero

order and linear ones. More precisely, d is the ratio of the

higher order terms to the (at most) linear ones.

Figure 7 shows nmin for a¼ 10 and d¼ 0.01 as a function

of T/Y.

For high (low) temperatures nmin can be estimated by

nmin �
2a
d ; for T > �;

3a
2p2

�3

T3 ; for T < �:

8><
>: ð32Þ

Figure 7. nmin as a function of T/Y for a harmonic chain as

determined by equation (22) (solid line) and as determined

by equation (23) (dashed line) for a¼ 10 and d¼ 0.01.

Local temperature exists in the shaded region.
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In addition, local temperatures are equal to the global one

whenever they exist, bloc¼ b, implying that temperature is

intensive (see equation (24)).

In the following section the results obtained above will be

applied to real materials.

6. Estimates for real materials

Thermal properties of insulating solids can successfully be

described by harmonic lattice models. Probably the best

known example of such a successful modeling is the correct

prediction of the temperature dependence of the specific

heat based on the Debye theory [24]. Therefore, one would

expect the present approach to also give reasonable

estimates for real materials.

We thus take the results obtained in section 5 for the

harmonic chain and insert the corresponding parameters, in

particular the Debye temperature which can be found

tabulated [24]. One obtains a length scale by multiplying

nmin by the corresponding lattice constant. The minimal

length scale on which intensive temperatures exist in

insulating solids should thus be given by

lmin ¼ nmin a0; ð33Þ

where a0 is the lattice constant, the distance between

neighbouring atoms.

Since nmin has been calculated for a one-dimensional

model the results we obtain here should be valid for one-

dimensional or at least quasi-one-dimensional structures of

the respective materials. Let us consider two examples.

Silicon is used in many branches of technology. In its

crystalline form, it has a Debye temperature of Y� 645K

and its lattice constant is a0� 2.4 Å. Using these para-

meters, figure 8 shows the minimal length scale on which

temperature can exist in a one-dimensional silicon wire as

a function of global temperature. Here, the accuracy

parameters a (see equation (25)) and d (see below equation

(31)) are chosen to be a¼ 10 and d¼ 0.01. Local temp-

erature exists in the shaded area.

Recently, carbon has been investigated for the fabrica-

tion of nano-structured devices [25,26]. In particular, we

consider carbon nanotubes here, which are widely used in

nano-technological experiments. Carbon nanotubes have

diameters of only a few nanometers. Measurements of their

specific heat have shown that their thermal properties can

be accurately modeled with one-dimensional harmonic

chains [27]. The presented results can thus be expected to be

accurately applicable to them. Carbon nanotubes have a

Debye temperature of Y� 1100K and a lattice constant of

a0� 1.4 Å.

Figure 9 shows the minimal length scale on which tem-

perature can exist in a carbon nanotube as a function of

global temperature. It provides a good estimate of the

maximal accuracy with which temperature profiles in such

tubes can be meaningfully discussed [1]. Again, the

accuracy parameters a and d are chosen to be a¼ 10 and

d¼ 0.01. Local temperature exists in the shaded area.

Of course the validity of the harmonic lattice model will

eventually break down at high but finite temperatures. The

estimates drawn from the considered approach, in parti-

cular the results presented in figures 8 and 9, will then no

longer apply.

7. Discussion of the length scale results

The length scales one obtains here are, in particular for low

temperatures, surprisingly large. One might thus wonder

whether the approach really captures the relevant physics.

Let us therefore discuss some possible limitations.

Firstly, one may argue that taking the limit of an infinite

number of groups, as required for the central limit theorem,

will not correspond to physically relevant situations.

Fugure 8. lmin as a function of temperature T for crystalline

silicon. a0� 2.4 Å, Y� 645 k, accuracy parameters a¼ 10

and d¼ 0.01. Local temperature exists in the shaded area.

Figure 9. lmin as a function of temperature T for a carbon

nanotube. a0� 1.4 Å, Y� 1100K, accuracy parameters

a¼ 10 and d¼ 0.01. Local temperature exists in the

shaded area.
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However, having in mind that we intended to analyse when

a small part of a larger system can be in a thermal state,

taking this limit should be well justified.

Secondly, only one-dimensional models were consid-

ered. A real physical system, even if it is of a very prolate

shape, is always three dimensional. A generalization of

the approach to those models is thus of high interest.

However, let us stress here that the general conditions (22)

and (23) apply to systems of arbitrary dimension, it is

only the application to specific models which needs to be

generalized.

Furthermore, the harmonic chain is an exactly diagona-

lizable model, which means that no phonon scattering

occurs. The purely harmonic model, for example, does not

predict any expansion or shrinking of the material caused

by heating or cooling. It is therefore possible that the

harmonic model may fail to give reliable results for our

present investigation. In particular at low temperatures,

entanglement [28 – 30] plays an important role and this

effect can be highly nonlinear.

Finally, one might speculate whether the length scales

could significantly change if the assumption of a global

equilibrium state was relaxed. This possibility of course

exists, nonetheless one would expect the estimates to still

apply as long as temperature gradients are small. Imagine

there are two baths attached to the ends of the considered

harmonic chain of section 5. If both baths have the same

temperature, the chain is in a ‘global’ equilibrium state and

the present results are applicable. If one now continuously

increased the temperature of one bath, the density matrix of

the chain would also change continuously. Hence, the

minimal group sizes would also change continuously and

the present results should still be good estimates, at least for

small temperature gradients.

To clarify whether the above findings are in agreement or

in conflict with experiments, their measurability needs to

be considered in more detail. We proceed to do this in the

next section.

8. Consequences for measurements

In this section we give some examples of possible experi-

mental consequences of the local breakdown of the

temperature concept at small length scales, i.e. of the fact

that the respective individual subsystems or even subgroups

do not reach a canonical state.

8.1 Standard temperature measurements

Temperature is always measured indirectly via observables,

which, in quantummechanics, are represented by Hermitian

operators. Usually, one is interested in measuring the temp-

erature of a system in a stationary state. The chosen

observable should therefore be a conserved quantity, i.e. its

operator should commute with the Hamiltonian of the

system.

For example, a conventional technique is to bring the

piece of matter, the temperature T of which is to be

measured, in thermal contact with a box of an ideal gas and

to measure the pressure p of the gas, which is related to its

temperature by nkBT¼ pV (see section 1). Since the gas is in

thermal equilibrium with the considered piece of matter,

both substances have the same temperature. A measure-

ment of p for constant V allows us to infer the global

temperature T of the piece of matter.

One might wonder whether a small (possibly even

nanoscopic) thermometer [5], which is locally coupled to

one subsystem of the large chain considered in section 4, is

capable of measuring a local temperature or whether the

measurement would show any indications of a possible

local breakdown of temperature.

A prerequisite for the above gas thermometer to work

properly is that the thermometer does not significantly

perturb the system. For our class of models this means that

the thermometer system should only be weakly coupled to

the respective subsystem of the chain and that it should be

significantly smaller than the latter. These two requirements

ensure that the energy exchange between system and

thermometer would not significantly alter the energy con-

tained in the system. Therefore, this measurement scenario

can be accurately modeled as follows.

Let the thermometer be represented by a single spin,

which is locally coupled to a harmonic chain, say. Since the

coupling is assumed to be weak and the chain is assumed to

be very large and in a thermal state, the present scenario can

accurately be modeled with a master equation approach

[31]. However, it is a well-known result of such system bath

models that the reduced density matrix of the spin relaxes

into a canonical state with the temperature being equal to

the global temperature of the harmonic chain (i.e. the bath).

The spin (thermometer) thus measures the global tempera-

ture of the total chain, even for perfectly local coupling.

As long as the chain is in a global equilibrium state, a

temperature measurement of this type thus does not have

any spatial resolution at all. It is only capable of measuring

the global temperature of the chain. No local temperatures

can be measured or any signatures of their breakdown be

detected.

This conclusion obviously no longer holds for scenarios

with only local but no global equilibrium. Macroscopic

temperature profiles are routinely measured with the

standard technique described above.Whether suchmeasure-

ments of temperature profiles are still possible for much

smaller systems and what their maximally possible spatial

resolution is in that case should be subject to further

investigation.

According to the above considerations, one might think

that the question of local temperatures for systems in global
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equilibrium was an irrelevant issue since it has no

observable consequences. This, however, is not the case.

In the following we turn to discuss an example of such

measurable consequences of the local breakdown of the

concept of temperature.

8.2 Non-thermal local properties

We now turn to observables of the object (chain) itself,

which could be used to infer local temperatures Tloc, i.e.

temperatures of subsystems, provided the subsystems are in

a canonical state. On the other hand, if the respective

subsystems are not in a canonical state, this fact should

then modify the measurement results for those observables.

The minimal group sizes calculated in section 4 depend

on the global temperature and on the strength of the

interactions between neighbouring subsystems. Further-

more, local temperatures can even exist for single

subsystems if these are finite dimensional. In the limiting

case of infinite temperature, the density matrix of a chain of

finite-dimensional subsystems is proportional to the iden-

tity matrix and thus has the same form in every basis

including the product basis, which in turn implies that local

temperature would then exist for single subsystems [14].

For systems composed of finite-dimensional subsystems,

local temperatures thus exist for single subsystems at

relatively low global temperatures if the coupling is weak,

while they do not if the coupling is strong.

Pertinent systems for which such effects could easily by

studied are magnetic materials [32]. These can in many

cases be described by spin lattice or spin chain models.

Since, as we will see below, the properties of single spins

can be inferred from measurements of even macroscopic

magnetic observables, those materials thus allow the study

of the existence of temperature, as defined by the existence

of a canonical state, on the most local scale possible, i.e. for

single spins.

For a spin-1/2 system, it is always possible to assign a

Boltzmann factor and thus a local temperature to the ratio

of the occupation probability of the higher and lower level.

Here we consider a homogeneous chain of spin-1 particles

interacting with their nearest neighbours. For the interac-

tions, one assumes a Heisenberg model. The Hamiltonian

of this system reads [33]:

H ¼ B
Xn
j¼1

szj þ J
Xn
j¼1

sxj s
x
jþ1 þ syj s

y
jþ1 þ szj s

z
jþ1; ð34Þ

where sxj , s
y
j and szj are the spin-1 matrices, B is an applied

magnetic field, J the coupling and n the number of spins.

The coupling J is taken to be positive, J4 0. The spins thus

tend to align anti-parallelly and the material is anti-

ferromagnetic. The local Hamiltonian of subsystem j is

Hj ¼ Bszj . The system has periodic boundary conditions

and is thus translation invariant. As in the previous

sections, the entire system (34) is assumed to be in a

thermal state (see equation (3)).

As an example of an experiment, we will now consider

two different magnetic observables of a spin-1 system with

the Hamiltonian (34). The first observable is the magneti-

zation in the direction of the applied field{, mz, which is

here defined to be the total magnetic moment per particle:

mz �
1

n

Xn
j¼1

szj

* +
; ð35Þ

where hOi is the expectation value of the operator O, i.e.
hOi ¼ TrðrOÞ. In the translation invariant state r, the

reduced density matrices of all individual spins are equal,

and the magnetization (35) can be written as

mz ¼ hszki; ð36Þ

for any k¼ 1, 2, . . . , n. The magnetization, although defined

macroscopically, is thus actually a property of a single spin,

i.e. a strictly local property.

As a second observable one can choose the occupation

probability, p, of the sz¼ 0 level (averaged over all spins),

p ¼ 1

n

Xn
j¼1
j0jih0jj

* +
: ð37Þ

Similar to mz according to equation (36), p may be written

as

p ¼ hj0kih0kji; ð38Þ

for any k¼ 1, 2, . . . , n and is thus also strictly local.

Now, if each single spin was in a canonical state with

temperature Tloc, mz and p would both have to be

monotonic functions of Tloc. In this case, Tloc could, after

calibration, be inferred from measurements of mz or p,

respectively. Note that mz is proportional to the local

energy, the average energy of one subsystem.

Figure 10 shows mz and p as a function of the global

temperature T for a spin-1 chain of four particles with the

Hamiltonian (34) for weak interactions, J¼ 0.16B. Both

quantities are monotonic functions of each other.

The situation changes drastically when the spins are

strongly coupled. In this case the concept of temperature

breaks down locally due to correlations of each single spin

with its environment.

Figure 11 shows mz and p as a function of temperature T

for a spin-1 chain of four particles with the Hamiltonian

(34) for strong interactions J¼ 26B. Both quantities are

{The two other components of the magnetization vanish for symmetry

reasons.
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non-monotonic functions of T and therefore no mapping

between mz and p exists.

How could a local observer determine whether the

system he observes, a single spin, is in a thermal state and

can therefore be characterized by a temperature? The local

observer would need to compare two situations.

In the first situation, the spin is weakly coupled to a

larger system, the heat bath. In this situation, the local

observer could measure mz and p as functions of the

temperature of the heat bath and would get a result similar

to figure 10. This result would not be sensitive to the details

of the coupling to the heat bath. The local observer would

thus recognize this situation as a particular one and might

term it the ‘thermal’ situation.

The second situation is fundamentally different. The spin

is now strongly coupled to its surroundings. If the local

observer again measures mz and p as functions of the

temperature of the surroundings, he would get a result like

in figure 11.

The observer can tell the difference between both

situations, even if he has no access to the global (true)

temperature T of the surroundings. In the first case he

can construct a mapping from say mz to p, i.e. p(mz), or

vice versa, mz(p); in the second he cannot: there exist, for

example, two values of p corresponding to only one value

of mz. Here the concept of a local temperature breaks down

at least on the level of individual particles, since tempera-

ture measurements via different local observables would

contradict each other.

The question of whether and on what scale local

temperatures can exist in systems that are in a global

equilibrium state is thus indeed physically relevant. The

advantage of the concept of temperature is that it allows us

to predict various physical properties of the considered

system. This is only possible if different properties

(expectation values of observables) map one to one on

each other as in figure 10. The following example illustrates

the situation.

Consider a piece of metal, say a wire. Assume its

temperature is measured via its electrical resistance. Why

are we interested in this temperature? We are interested in it

because it also allows us to predict how the wire behaves

with respect to other physical processes. For example, if we

know its temperature, we can tell whether the wire is going

to melt or not. Effectively, we thus have a mapping of the

resistance onto the fact that the wire is going to melt or is

not going to melt. In a more mathematical language, we

can construct a function: melting as a function of the

resistance. Analogously, for the scenario of figure 10, a

local observer is able to construct a function mz(p).

What happens if such functions can no longer be

constructed? In this situation, the concept of temperature

becomes useless. Assume our wire had such properties. We

could still measure its resistance and, if we wished, could

assign a ‘temperature value’ to it. This ‘temperature value’,

however, would be of no further use, since it would not

allow us to predict whether the wire is going to melt or not.

A situation where such problems really occur is the scenario

of figure 11.

8.3 Potential experimental tests

Finally, we address the question of whether the effects

described here could be observed in real experiments.

Indeed, pertinent experiments are available and have partly

already been carried out.

A realization of a quasi-one-dimensional anti-ferromag-

netic spin-1 Heisenberg chain is the compound CsNiCl3
[34 – 36]. Here the coupling is J� 2.3meV. To achieve a

detectable modulation of mz and p, the spins should be

significantly polarized for T4 0. Therefore, a sufficiently

strong applied magnetic field is needed. For CsNiCl3, a field

of roughly 9.8 Tesla would correspond to J¼ 46B.

The magnetization in an applied field can be measured

with high precision by means of a SQUID [37]. The

occupation probability of the sz¼ 0 states, on the other

hand, is accessible via neutron scattering experiments

Figure 10. mz (solid line) and p (dashed line) as a function

of temperature T for a spin-1 chain of four particles. T is

given in units of B and J¼ 0.16B.

Figure 11. mz (solid line) and p (dashed line) as a function

of temperature T for a spin-1 chain of four particles. T is

given in units of B and J¼ 26B.
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[38,39]. The differential cross section for neutron scattering

of spin systems is a function of the Fourier transforms of

the spin correlation functions [40]. One can thus obtain

information about the quantity

1

n

X
r

hsxr ð0Þsxr ð0Þ þ syr ð0Þsyr ð0Þi ¼ 1þ p ð39Þ

from the measurement data. Therefore, p is measurable in

neutron scattering experiments.

Such experiments or a combination thereof could

thus be used to demonstrate the non-existence of local

temperature.

9. Conclusion and outlook

In the present work we have considered the minimal spatial

length scales on which local temperature can meaningfully

be defined. For large systems in a global equilibrium state,

we have reviewed the derivation of two criteria which are

valid for quantum many body systems with nearest-

neighbour interactions and have discussed the physical

relevance of the existence and non-existence of local

temperatures.

Some questions related to the microscopic limit of the

applicability of thermodynamics have thus been clarified.

Nevertheless, some open problems remain and even new

ones have appeared in the context of the present approach.

First of all, the generalization of the calculations to

scenarios with only local but no global equilibrium is an

issue of significant importance. One might expect that the

length scales no longer depend on the interactions and the

global temperature only, but that the temperature gradient

also becomes relevant.

For global non-equilibrium, local temperature measure-

ments of the standard type are very interesting and

important issues on their own. As we have discussed here,

these measurements have no spatial resolution if the sample

is in a global equilibrium state. On the other hand, local

temperature measurements with spatial resolution are being

done for macroscopic setups and nobody would dare to

question their validity. Therefore, the maximal spatial

resolution of this kind of measurement is an interesting

question and the present understanding of this topic is

quite poor.

Future research could also be concerned with new

physics that might appear for small entities that are in

contact with thermal surroundings, but show non-thermal

behaviour due to the breakdown of temperature on the

respective scale. One example of this is the observable

features discussed in section 8. However, one might think

about more surprising phenomena, such as, for example,

anomalous pressure fluctuations in very small gas bubbles

enclosed in a piece of solid. With respect to future

nanotechnologies, such phenomena could equally be

harmful or useful, depending on whether one is able to

design the devices in a pertinent way.

Finally, possible generalizations of thermodynamics that

could apply on even smaller scales are interesting. In the

present work, we have considered the microscopic limit of

the usual thermal behaviour in quantum systems, i.e.

Quantum Thermodynamics [41], where effective interac-

tions among the considered parts are small. One might thus

wonder whether only partitions with weak effective

couplings can be considered within such a ‘universal’

description, that does not depend on the details of the

microscopic constituents, or whether there exists again an

intermediate level of description, not as universal as

standard thermodynamics but applicable on smaller scales.

Since, in standard thermodynamics, equilibrium states are

fully characterized by one single parameter, temperature

(see equation (3)), one could, for example, imagine that

there exists a class of generalized equilibrium states that

require say two or three parameters for their characteriza-

tion. Some phenomenological attempts in this direction

have already been made [42,43]. Nonetheless, justification

of these attempts from an underlying theory, i.e. quantum

or classical mechanics, is still missing.
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