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Nanoelectromechanical systems (NEMS) are nano-to-micrometer scale mechanical

resonators coupled to electronic devices of similar dimensions. NEMS show promise

for fast, ultrasensitive force microscopy and for deepening our understanding of how

classical dynamics arises by approximation to quantum dynamics. This article begins

with a survey of NEMS and then describes certain aspects of their classical dynamics. In

particular, we show that for weak coupling the action of the electronic device on the

mechanical resonator can be effectively that of a thermal bath, this despite the device

being a driven, far-from-equilibrium system.

1. Introduction

A nanoelectromechanical system (NEMS) consists of a

nanometer-to-micrometer (micron) scale mechanical reso-

nator that is coupled to an electronic device of comparable

dimensions [1 – 6]. The mechanical resonator may have a

simple geometry, such as a cantilever (suspended beam

clamped at one end) or a bridge (suspended beam clamped

at both ends) and is fashioned out of materials such as

silicon using similar lithographic techniques to those

employed for fabricating integrated circuits. Because of

their (sub)micron size, the mechanical resonators can

vibrate at frequencies ranging from a few megahertz

(MHz) up to around a gigahertz (GHz) [7,8]; we are not

normally accustomed to the idea of mechanical systems

vibrating at such high radio-to-microwave frequencies.

The coupling to the electronic device can be achieved

electrostatically by applying a voltage to a metal film

deposited on the surface of the mechanical resonator. One

example of a coupled electronic device is a single electron

transistor (SET) shown in figure 1. Electrons quantum

tunnel one at a time across the transistor from drain

electrode to source electrode, driven by a drain-source

voltage Vds (we adopt the usual convention where positive

charges flow from source electrode to drain electrode and

hence negative charges flow the opposite way). The

magnitude of the resulting current depends on another

voltage applied to a third, gate electrode, called the gate

voltage Vg. With the metallized mechanical resonator

forming part of the gate electrode, motion of the former

will modulate the gate voltage and hence the drain-source

tunnelling current, which is subsequently amplified and

detected.

With the high frequencies and small inertial masses of the

nanomechanical resonators, together with the ultrasensitive

mechanical displacement detection capabilities of the

coupled electronic devices, NEMS show great promise for

metrology. One possible area of application is force

microscopy, where a cantilever tip is scanned over a surface

and the cantilever displacements measured as the tip

interacts with the surface used to build up a force

topography map. Of particular interest is the magnetic

resonance force microscope (MRFM) which employs a

ferromagnetic cantilever tip, enabling the mapping of

unpaired electron and nuclear spin densities at and below

the surface [10]. Recently, single electron spin detection

sensitivities were achieved [11,12]; the potential applica-

tions of being able to determine chemical identity at the

single molecule or atom level are numerous. And with the

use of smaller, suitably-engineered NEMS MRFM devices,

the higher mechanical frequencies might result in faster

read-out times at equivalent or better sensitivities.
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Another application is mass-sensing, where the mass of a

small particle attaching itself to a nanomechanical reso-

nator can be determined from the resulting vibrational

frequency-shift of the resonator. Recently, attogram (‘atto’

:107 18 ) detection sensitivities were achieved [13,14]. With

the use of suitably-engineered higher frequency NEMS, the

detection of individual molecules may be possible at single-

Dalton sensitivities (1 Dalton=1.666 107 27 kg, 1/12 the

mass of a C12 atom) [15].

NEMS can be interesting in their own right as nontrivial

dynamical systems. Because of the small inertial mass of the

nanomechanical resonator and the strong electrostatic

coupling to the closely integrated electronic device that

can be achieved, individual electrons travelling through the

latter can give significant displacement ‘kicks’ to the

mechanical resonator. In turn, the motion of the resonator

will influence the electron current and so on. At cryogenic

temperatures, certain electronic devices can behave in a

quantum coherent fashion, existing in a quantum super-

position of different charge states as electrons are

transmitted through the device. Interacting with such a

device, the mechanical resonator’s centre-of-mass may be

driven into a quantum state [6], such as a superposition of

separated position states. The quantum nature of the

coupled electromechanical system will manifest itself in

certain signatures of the measured current. Nanomechani-

cal resonators comprise up to about ten billion atoms, so

that by most standards such quantum effects would be

deemed macroscopic. It is important to appreciate that we

are here referring to quantum effects in ‘dirty real’ devices

that possess both many electronic and mechanical degrees

of freedom, and which interact strongly with the surround-

ing environment consisting of photons, phonons,

fluctuating (charged) defects in both the mechanical

resonator and electronic device etc. The experimental and

theoretical investigation of such systems will lead to a

deeper understanding of how classical dynamics emerges as

an approximation to quantum dynamics; NEMS straddle

the microscopic quantum and macroscopic classical worlds.

In the first generation of experiments to probe the

dynamics of NEMS (see, e.g. [9,16 – 21]), the mechanical

resonator component has been found to behave classically,

as might be expected; the experiments are not yet quite

refined enough to observe quantum interference effects that

are washed-out by the resonator’s environment. Despite

this, the (semi)classical dynamics of NEMS has been found

to be nontrivial and worthy of investigation. One line of

investigation is to identify common features in the classical

dynamics of the various NEM devices, so as to bring some

degree of coherence to the field. Remarkably, under certain

conditions of weak coupling and also wide separation of

mechanical and electronic dynamical time-scales, the

Figure 1. (a) Cartoon illustrating the operation of the SET displacement detector. The indicated charging energy levels

represent the energy cost arising from the change in stored electric field energy as one or more electrons tunnel onto the

island; the discreteness of the levels are not a quantum effect, but rather the incremental energy cost to put increasing

numbers of electrons on the island at the same time. (b) False-coloured scanning electron microscope (SEM) micrograph

showing the suspended, doubly-clamped beam and SET [9]. The substrate and beam are fashioned from GaAs (blue regions),

and the SET and beam gate electrodes are thin layers of aluminum (yellow regions), with aluminum oxide forming the tunnel

barriers. The beam is located 0.25 mm away from the island electrode. The measured fundamental flexural frequency for in-

plane motion is about 116 MHz.
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electronic device behaves effectively as a thermal bath: the

mechanical resonator undergoes thermal brownian motion,

characterized by a damping constant and effective tem-

perature which are determined by the electronic parameters

of the device [22,23]. The fact that the electronic device can

be effectively replaced by a thermal bath is at first sight

rather surprising, given that the voltage-driven electron

current flowing through the device is a far-from-equili-

brium, many electron state. The use of well-understood

equilibrium concepts in the construction of theoretical

models of less-well-understood non-equilibrium systems

goes back to the early days of statistical mechanics and

continues to find broad application. For a recent review,

see for example [24].

The outline of this article is as follows: section 2 gives

examples of various representative NEM devices that are

being investigated. Section 3 analyses the classical dynamics

of the SET-mechanical resonator system, focusing on the

effective equilibrium description in the weak-coupling

regime. Section 4 describes the effective equilibrium

dynamics of some of the other NEMS introduced in

section 2. Section 5 gives concluding remarks.

2. Survey of NEMS

In this section we describe several representative NEMS.

The explanations as to how they work will be qualitative

and brief in nature, centering on schematic diagrams or

electron microscope images of each device.

Figure 2 shows a schematic diagram of a mechanically

compliant tunnelling electrode taken from [25]. The

tunnelling electrode consists of a cantilever with metal tip

which is placed close to the surface of a bulk metal

counterelectrode. As is common in theoretical analyses of

NEMS, the cantilever is simply modelled as a harmonic

oscillator with some effective spring constant and mass.

Electrons tunnelling across the gap between the metal tip

and surface cause the cantilever to recoil, while in turn the

cantilever’s motion affects the electron tunnelling prob-

ability and hence the measured tunnelling current. Thus, we

have a coupled electromechanical system which should

display some interesting dynamical properties, depending

on the applied voltage across the gap, gap size, cantilever’s

mass, spring constant etc. There have been several

theoretical investigations of the mechanical tunnelling

electrode and related schemes [22,25 – 32]. In a sense, the

scanning tunnelling microscope [33] is an experimental

realisation, since a tunnelling electrode cannot be made

absolutely rigid. However, a device with a deliberately

compliant, low-mass tunnelling electrode, such that the

tunnelling electrons themselves cause significant recoil of

the electrode, has yet to be demonstrated.

Figure 3 shows a scanning electron microscope (SEM)

micrograph of a quantum point contact (QPC) displace-

ment detector developed by Andrew Cleland’s group at UC

Santa Barbara [34]. The detector comprises a suspended

beam etched from a single-crystal gallium arsenide (GaAs)

heterostructure with a fundamental resonance frequency

for out-of-plane flexural motion of about 1.5 MHz. Within

the beam is a thin layer of free electrons, called a two-

dimensional electron gas, (see, e.g. [35] for an elementary

review of 2DEG and other low-dimensional semiconductor

systems) which forms a current when a drain-source voltage

is applied across the ends of the beam. Applying also a

sufficiently negative voltage to the metal gate electrodes on

Figure 2. Scheme for a mechanically compliant tunnelling

electrode [25]. The cantilever electrode is modelled as a

harmonic oscillator with some spring constant kc and mass

mc. A voltage is applied across the gap 2a and the resulting

current measured.

Figure 3. SEM micrograph of QPC displacement detector,

showing the suspended beam with electrodes on the surface

[34]. The gate electrodes are labelled ‘1’ and ‘3’. The point

contacts forming the narrow constriction are located just

above label ‘1’. The drain and source electrodes are labelled

‘5’ and ‘2’. The indicated magnetic field is used to actuate

the beam; the Lorentz force on the electron current causes

flexing displacements in the indicated z direction.
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the surface of the beam expels the electrons from directly

beneath the elecrodes so that they can only flow through

the narrow, electrostatically defined constriction between

the point contacts. The constriction can be made narrow

enough such that it is comparable to the electrons’ Fermi

wavelength; hence the name ‘quantum point contact’.

Because GaAs is a piezoelectric material, mechanical strain

in the flexing beam will induce a polarization electric field in

the beam. This induced polarization field has the same

effect as applying a gate voltage, hence modulating the

current flowing through the QPC. In turn, the fluctuating

electric field due to the flowing current will induce a

mechanical strain. Thus, the QPC displacement detector is

another example of a coupled electromechanical system.

Figures 1, 4, and 5 show various realisations of the single

electron transistor (SET) displacement detector. The device

in figure 1 was developed by Cleland’s group [9,16], while

the device in figure 4 was developed by Keith Schwab’s

group at the Laboratory for Physical Sciences, U Maryland

[17,18]. Figure 5 shows a scheme being developed by Herre

van der Zant’s group at Delft [36]. The latter device differs

from the first two in that the SET island is mechanically-

compliant instead of the gate electrode. A closely-related

transistor device integrating a suspended carbon nanotube

was recently demonstrated by Paul McEuen’s group at

Cornell [20]. The basic operating principle of the SET

displacement detector is illustrated in figure 1(a). The

source and drain aluminum electrodes are electrically

insulated from the island electrode by an oxide layer.

However, because the oxide layer is very thin, electrons can

quantum tunnel across the oxide barriers, from drain-to-

island-to-source, constituting a current which is measured

after subsequent amplification stages. In order for an

electron to be able to tunnel from, e.g. the drain to the

island electrode, the total work done by the drain-source

Figure 4. (a) SEM micrograph showing the mechanical beam and SET drain-source wire leads and island [17]. Electrons

tunnel one at a time across the electrically-insulating junctions located at the corners (J). The beam and surrounding substrate

are fashioned from a silicon-nitride (SiN) membrane, a commonly-used material for NEMS because of its high strength-to-

mass density ratio. The beam is coated with a layer of gold, forming the gate electrode, while the SET island and leads are

made from aluminum. The mechanical resonator is located 0.6 mm away from the island. The large, fixed gate electrode at the

upper left is used for displacement actuation. (b) SET-detected noise power spectrum converted to displacements-squared.

The Lorentzian peak due to the mechanical beam’s thermal brownian motion is clearly seen above the amplifier noise

background. The measured fundamental frequency for in-plane motion is about 19.7 MHz.

Figure 5. Scheme for a SET with mechanically-compliant

island formed out of a suspended carbon nanotube [36]. As

a result of the electrostatic coupling between the voltage-

biased gate and island, the position of the latter fluctuates

as electrons tunnel on and off.
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and gate voltages must exceed the accompanying change in

the stored electric field energy due to the redistribution of

the charges on the various electrodes (called the ‘charging

energy’); the difference between the work done and the

charging energy gives the net energy gained by the

tunnelling electron, which must be positive. Because of

the small sizes of the electrodes, their mutual capacitances

are small and so the charging energy is large. Hence, a large

enough drain-source voltage must be applied in order to

meet this charging energy cost so that electrons can tunnel

through the device. If, however, the voltage is not large

enough to overcome the charging energy required to put

more than one electron simultaneously on the island, then

only one electron can tunnel on and off the island at a time

(hence the name ‘single electron transistor’).

The charging energy can be offset by the applied gate

voltage, so that varying the gate voltage modulates the

tunnelling current. Alternatively, by applying a fixed

voltage to the mechanically-compliant beam gate electrode,

motion of the latter will also modulate the tunnelling

current. Figure 4(b) shows an example from Schwab’s

group of the SET-detected signal of the mechanical beam

undergoing thermal brownian motion. The area under the

peak after subtracting off the white-noise background

(which mostly originates from the subsequent amplification

stages) gives a root-mean-squared displacement of about

26 107 13 m, with a position detection sensitivity set by

the white-noise floor of about 107 13 m. To put these

numbers into perspective, this SET is able to detect

displacements as small as one-thousandth the diameter of

a hydrogen atom. Furthermore, such sensitivities are within

an order of magnitude of the quantum zero-point

displacement uncertainty of the mechanical beam.

Using the classical equipartition of mechanical energy for

a harmonic oscillator, hEi ¼ mo2hx2i ¼ kBT, it is possible

to directly determine the temperature of the mechanical

beam from the measured mean-squared displacement,

resonant frequency and effective motional mass (which

can be estimated from the beam dimensions and mass

density). The data in figure 4(b) corresponds to a beam

temperature of about 60 mK. This value sets a record for

the lowest directly measured temperature of a nanomecha-

nical resonator. The actual, base temperature of the

refrigerator is about 35 mK, suggesting that there is some

local heating of the beam. Most likely, the energy released

by the tunnelling electrons in the SET is not dissipating

quickly enough.

In addition to heating the mechanical beam resonator,

the tunnelling electrons will directly influence the motion of

the resonator: the fluctuating island voltage due to

electrons tunnelling on and off the island will produce a

back reaction force on the electrostatically coupled

resonator. The magnitude of this force noise increases with

applied gate voltage. The displacement detection sensitivity

also increases, so that there is an optimum gate voltage bias

point which is neither too large nor too small. On the other

hand, if our interest is not in displacement detection, but

rather the investigation of the coupled dynamics of NEMS,

then the gate voltage should be increased beyond this

optimum bias point so that there is a large back reaction on

the resonator . Motion of the resonator then modulates the

tunnelling current and in turn the fluctuating current drives

the mechanical resonator. Experiments are underway in

Schwab’s group to explore the coupled dynamics in this

back reaction-dominated regime.

Figure 6 shows a nanomechanical charge shuttle devel-

oped by Dominik Scheible at Ludwig Maximilians

University, Munich, and Robert Blick at the University

of Wisconsin [19]. The mechanical shuttle element is a

nanopillar fashioned out of silicon with a conducting island

at the top made out of gold. An ac voltage is applied to the

source electrode at a frequency close to the fundamental

flexural frequency of the pillar. When there is an excess

charge on the island, the ac voltage exerts a force on the

pillar, driving it into mechanical oscillation at the ac

frequency. If the ac voltage amplitude is sufficiently large,

then the shuttle will deflect close enough to the source and

drain electrodes such that electrons can tunnel between the

island and the electrodes. The pillar then shuttles charge

between the two electrodes, producing a current that is

detected at the drain electrode. The number of electrons

that tunnel and the tunnel direction depend on the

magnitude and sign of the drive voltage at the instant of

closest approach to a given electrode, i.e. on the phase lag

Figure 6. SEM micrograph of the silicon nanopillar with

gold island (I) and source (S) and drain (D) electrodes [19].

The gate (G) electrode was not used in the experiment. The

current is detected from the drain electrode after amplifica-

tion. The nanopillar has a fundamental flexural frequency

of 367 MHz.
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between the oscillating mechanical motion and drive

voltage. The phase lag in turn depends on the drive

frequency relative to the fundamental frequency of the

shuttle. Thus, the magnitude and direction of the shuttle

current can be controlled by varying the drive frequency.

The charge shuttle bears some resemblance to the SET with

mechanically compliant island shown in figure 5. However,

as the name implies, in contrast to the above-described

NEM devices mechanical motion of the shuttle is essential

for an electron current to flow; the electronic and

mechanical degrees of freedom are inextricably linked in

their dynamics. Shekhter et al. [37] gives a review of charge

shuttle systems.

In this section, we have introduced several examples of

NEM devices. The following sections will explore certain

aspects of their coupled dynamics, with a central goal being

to identify commonalities in their dynamical behaviour. In

this respect, it will be useful to view a NEMdevice according

to the generic scheme of figure 7. The mechanical resonator,

which will be simply modelled in its lowest fundamental

vibrational mode as a harmonic oscillator, is an open system

that is coupled to two energy reservoirs. The electronic

device through which an electron current flows constitutes

one of the reservoirs where the current exchanges energy

with the oscillator via the electromagnetic interaction. All

degrees of freedom apart from those of the electronic device

and the oscillator constitute the second, ‘external’ reservoir.

These degrees of freedom consist, for example, of higher

vibrational modes, fluctuating defects etc. within the

mechanical resonator and air molecules, photons etc.

impinging the surface of the resonator. These external

degrees of freedom are simply modelled as one infinitely

large thermal equilibrium bath at some temperature Text. If

the oscillator is initially in an excited state, then in the

absence of the electronic device it will lose energy to this

bath at a rate which can be expressed as o/Qext, where o is

the oscillator frequency and Qext is the quality factor.

Nanomechanical resonators are typically found to have

quality factors between 1037 105 [3], so that a resonator

oscillates at least a few thousand cycles before its amplitude

has substantially decayed from the initial excited amplitude.

We shall pay particular attention to the dynamics of

the oscillator system as a result of its interactions with

these two reservoirs. In this respect, we shall envisage a

separate, idealized direct probe of the oscillator dynamics

allowing perfect measurement of its position and velocity

coordinates without affecting its dynamics. In actual

NEMS experiments, information about the mechanical

resonator dynamics is obtained by measuring the electron

current: the electronic device is after all usually intended

as a displacement detector. For some theoretical inves-

tigations about how the dynamics of the mechanical

resonator manifests itself in the current signal output,

see, e.g. [30,38 – 42].

3. The SET-nanomechanical resonator system

In this section we describe the coupled classical dynamics of

the SET-mechanical resonator system. The coupled dy-

namics of other NEMS will be considered in section 4.

Referring to the generic scheme of figure 7, we shall in the

first instance omit the coupling to the external thermal bath

(i.e. Qext??); we are interested in elucidating the ‘pure’,

coupled dynamics of the oscillator interacting with the SET

only. For example, is this system stable in the sense that the

tunnelling electron current removes energy from an initially

excited oscillator causing damping, or do the tunnelling

Figure 7. Scheme of a generic NEMS.
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electrons dump energy into the oscillator driving it to

progressively larger amplitudes? The answer is not obvious

a priori.

3.1 The master equation

We seek some form of manageable equation of motion

which describes the SET-mechanical resonator system. The

logical starting point is the time-dependent Schrödinger

equation with Hamiltonian involving the relevant micro-

scopic degrees of freedom, in particular the conduction

electrons in the various SET electrodes, and the funda-

mental oscillator mode (recall we are neglecting for the time

being the external environment of the oscillator mode). One

then proceeds through various stages of approximation to

arrive at simpler-to-handle classical statistical equations of

motion along with some conditions for their validity.

However, for NEMS at least, this procedure still needs to

be properly developed and is essential to the future goal to

achieve a deeper understanding of how classical dynamics

emerges from quantum dynamics by approximation in

these systems.

In the absence of such a properly-defined procedure, we

shall instead use physical intuition to guide us directly

towards writing down the classical statistical equations of

motion. There is a long tradition employing such an

approach going back to Boltzmann and his famous

equation. One advantage is that such equations often

accurately capture the statistical dynamics as verified by

experiment. Another particular advantage in our case is

that the dynamics in the regime of strong electromechanical

coupling is easier to analyze than in the full quantum

theory. The general disadvantage is that the precise

conditions for the validity of the classical equations of

motion are not available, with the consequence that

important terms can occasionally be overlooked. This is

believed not to be a problem for the SET-oscillator classical

equations which we shall shortly write down.

What minimal set of coordinates is required to describe

the mechanical resonator interacting with the SET?

Modelled as a single oscillator mode, the resonator’s state

is described by a position x and velocity u coordinate. With

respect to the oscillator, the relevant SET coordinate is the

total number N of excess electrons on its island; depending

on N, the electrostatic force will pull the oscillator towards

the island by different amounts. (If we were to also describe

the SET drain-source current, we would need an additional

counter coordinate which keeps track of the number of

electrons entering (or leaving) the SET). Because tunnelling

is a random process, the coordinates N, x and u will

fluctuate. Thus, the equations of motion can either take the

form of stochastic differential equations involving the

random, time-varying functions N(t), x(t) and u(t) (see

e.g. [43] for an introduction on how to describe stochastic

processes), or we can write down a deterministic equation

involving the probability density function PN(x,u,t). In the

latter formulation, PN(x,u,t)dxdu is interpreted as the

probability at time t of picking out from a large number

of identical SET-oscillator systems (an ensemble), one

system with island number N and with position and

velocity coordinates in the respective intervals [x,x+ dx]

and [u,u+ du]. We shall choose to express the dynamics in

terms of the probability density function, rather than in

terms of stochastic coordinates. Referring to the circuit

diagram for the coupled SET-resonator system (figure 8),

we have [23]

@PN

@t
¼ fHN;PNg � ��

L þ �þ
R

� �
PN þ �þ

L þ ��
R

� �
PNþ1; ð1Þ

@PNþ1

@t
¼ HNþ1;PNþ1f g � �þ

L þ ��
R

� �
PNþ1 þ ��

L þ �þ
R

� �
PN;

ð2Þ

where HN(N+1) is the oscillator Hamiltonian for the

resonator in the background electrostatic potential of the

Figure 8. Circuit diagram of the SET-mechanical resonator

system. The capacitances of the left (L) and right (R) tunnel

junctions are assumed identical, denoted as CJ. The gate

capacitance formed by the adjacent resonator and island

electrodes is denoted Cg. As the resonator flexes, the

distance between the two electrodes varies, hence changing

Cg. With the resonator electrode kept fixed at the gate

voltage Vg, the changing Cg gives rise to a varying island

potential, hence modulating the tunnelling current. For the

indicated drain-source voltage (Vds) polarity, the usual

direction for electron flow is from right to left, governed by

the tunnel rates �þ
R and �þ

L .

Nanoelectromechanical systems 255



SET with N(N+1) electrons on the island, {�,�} is the

Poisson bracket:

HN;PNf g ¼ @HN

@x

1

m

@PN

@u
� 1

m

@HN

@u
@PN

@x
;

and ��
LðRÞ are the electron tunnelling rates to the left (+ ) or

to the right (7 ) across the left (L) or right (R) tunnel

junctions. Here, we are assuming that the voltages are

chosen such that the number of excess electrons on the

island fluctuates between N and N+1 only.

Equations (1) and (2) describing the evolution of the

probability distribution PN(N+1)(x,u,t) are commonly

called ‘master equations’. They are coupled, first-order

partial differential equations in the variables x, u and t.

Once an initial probability distribution has been specified,

then these equations uniquely determine the subsequently

evolving probability distribution. For example, the dis-

tribution at some initial time t0 might take the form

PN(x,u,t0)= d(x)d(u) and PN+1(x,u,t0)=0, meaning that

at time t0 all SET-oscillator systems within the ensemble are

in the same state, with the oscillator’s position and velocity

being x=0 and u=0, respectively, and the SET island

number being N. If the tunnelling rate terms were absent in

equations (1) and (2) then the evolving probability

distribution would remain a delta function, describing

deterministic harmonic oscillator motion with the island

number remaining fixed at N. Choosing the origin of the

coordinate x to coincide with the equilibrium position of

the oscillator when there are N electrons on the island, the

oscillator Hamiltonians take the form

HN ¼ p2

2m
þ 1

2
mo2x2 ð3Þ

HNþ1 ¼
p2

2m
þ 1

2
mo2ðx� x0Þ2; ð4Þ

where x0 is the distance between equilibrium positions of

the oscillator with N and N+1 electrons on the island.

With the tunnelling rate terms present, however, the

evolving probability distribution begins to spread. The

fluctuating electron island number due to electrons tunnel-

ling on and off the island causes the deterministic evolution

of the oscillator to be interrupted at random times by a

sudden shift +x0 in the origin of the harmonic potential

experienced by the oscillator.

The placings and the signs in front of the various

tunnelling rate terms in the master equations (1) and (2) are

easily understood from figure 8. For example, in equation

(1), the first two rates ��
L and �þ

R correspond to tunnelling

onto the island and so decrease the likelihood that the

island number remains at N; hence the ‘minus’ sign. On the

other hand, the second two rates �þ
L and ��

R correspond to

tunnelling off the island and so increase the likelihood that

the island number becomes N; hence the ‘plus’ sign. The

tunnelling rates can be derived using Fermi’s Golden Rule

[44] and take the form

��
LðRÞ ¼

1

e2RJ

E�
LðRÞ

1� e
�E�

LðRÞ=kBTe
; ð5Þ

where RJ is the effective tunnel junction resistance (assumed

the same for each junction), Te is the temperature of the

source, drain and island electron reservoirs (assumed the

same) and E�
LðRÞ is the energy gained by a single electron

tunnelling to the left (+ ) or to the right (7 ) across the left

(L) or right (R) junction. When the electron temperature Te

is small compared to the single electron charging energy,

i.e. kBTe55 e2/2CS (where the total SET capacitance is

CS=2CJ + Cg), then equation (5) becomes approximately

��
LðRÞ ¼

1

e2RJ
E�
LðRÞ�ðE�

LðRÞÞ; ð6Þ

where Y(�) is the Heaviside step function. Thus, a given

tunnel rate is only non-negligible provided the associated E

is positive. For micron-scale SETs, CS*1fF(:107 15 F),

giving Te55 1K. In most experiments, this condition is

satisfied and so from now on we will use expression (6) for

the rates. For the indicated drain-source voltage polarity in

figure 8, rates �þ
R and �þ

L describing tunnelling to the left

are non-negligible, while the rates ��
R and ��

L for tunnelling

to the right are exponentially suppressed. Note, however,

that through the E’s, the tunnel rates also depend on the

oscillator’s position x; it is possible that, for large enough

amplitude displacements and applied gate voltages, a given

E changes sign hence switching on or off the corresponding

tunnel process and changing the tunnelling direction.

The above master equation pair (1) and (2) is clearly

classical. The probability distribution characterizes the

classical statistical uncertainty in ones knowledge of the

precise coordinates x, u of the oscillator and island electron

number. The equations do not entertain the possibility of

quantum superpositions between different island number

states, different oscillator position/velocity states, or

entangled oscillator-island states. Quantum mechanics only

enters in the determination of the effective tunnel junction

resistances RJ appearing in the rate expressions (5),

essentially providing the randomness of the transition

rates. Refering to the discussion at the beginning of this

section, the classical master equation can in principle be

derived from the Schrödinger equation describing the time-

evolution of the density matrix characterising the quantum

state of the harmonic oscillator and conduction electrons in

the SET electrodes. One step in the derivation is to ‘trace-

out’ the many electron state, leaving in the SET state

description just the total island number. This step
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introduces irreversibility into the equations, as manifested

by the tunnelling rate terms. The two key approximation

steps out of which a classical description emerges are (1)

assume a large enough SET island such that electron energy

level quantization can be neglected; (2) assume large

enough tunnel junction resistances such that the electron

tunnels incoherently between the drain/source and island

electrodes. Another approximation step that is made is to

assume that the timescale for polarization charges on the

electrode surfaces to re-equilibrate in response to a

tunnelling event is negligible as compared with the

characteristic time between tunnel events given by ttunnel=
eRJ/Vds. This is reflected in the fact that the rate of change

of the probability densities at time t in the master equation

are governed by transition rates that are weighted by

probability densities at the same time t and not at earlier

times. This is called the ‘Markovian’ approximation. With

the oscillator excluded, the above master equation arising

from the various just-described approximations often goes

by the name of the SET ‘orthodox model’ (see, e.g. chapter

4 of [45] for an accessible discussion).

3.2 The steady state solution

In solving the master equations (1) and (2), we will first

determine the steady state behaviour for t??. Assuming

sufficiently large Vds and sufficiently weak coupling between

the oscillator and SET such that the energy terms Eþ
R and

Eþ
L are always positive, then we need only consider the rates

�þ
R and �þ

L as defined in equations (6) with the step function

omitted. It is convenient to express the master equations in

terms of dimensionless coordinates, since in dimensionless

form the essential parameters governing the dynamics are

more clearly expressed. Expressing the time coordinate in

tunnelling time units ttunnel, the position coordinate in shift

units x0 and the velocity coordinate in units x0/ttunnel, the
master equations take the form

@PN

@t
¼ e2x

@PN

@u
� u

@PN

@x
þ ~E

þ
L PNþ1 � ~E

þ
R PN; ð7Þ

@PNþ1

@t
¼ e2ðx� 1Þ @PNþ1

@u
� u

@PNþ1

@x
� ~E

þ
L PNþ1 þ ~E

þ
R PN;

ð8Þ

where the dimensionless parameter e=ottunnel charac-

terizes the separation between the oscillator and SET

dynamics timescales. The dimensionless energy terms are

obtained by dividing E�
LðRÞ by eVds:

~E
þ
L ¼ � e

CSVds
ðNg �N� 1=2Þ � kNþ 1=2� kx ð9Þ

~E
þ
R ¼ þ e

CSVds
ðNg �N� 1=2Þ þ kNþ 1=2þ kx; ð10Þ

where Ng=CgVg/e is the polarization charge induced by

the gate voltage and the dimensionless parameter

k ¼ mo2x20=ðeVdsÞ characterizes the coupling strength

between the oscillator and the SET. The shift coordinate

has the explicit form x0=7eNg/(CSmo2d), where d is

resonator-island electrode gap, so that the coupling

strength can be controlled by varying the gate voltage Vg;

in particular, k depends quadratically on Vg. As we shall

see, parameters e and k are key to describing the coupled

SET-oscillator dynamics.

From (7) and (8), we can derive equations for the various

moments hxnumiNðNþ1Þ of the probability distribution, where

hxnumiNðNþ1Þ ¼
Z

dx

Z
duxnumPNðNþ1Þðx; u; tÞ:

Solving for the moments is a more manageable task than

trying to solve for the full probability distribution all at

once. The equations for the moments are

dhxnumiN
dt

¼�me2hxnþ1um�1iNþ nhxn�1umþ1iNþELhxnumiNþ1

� ERhxnumiN � k hxnþ1umiN þ hxnþ1umiNþ1

� �
ð11Þ

dhxnumiNþ1

dt
¼ �me2 hxnþ1um�1iNþ1 � hxnum�1iNþ1

� �
þ nhxn�1umþ1iNþ1

� ELhxnumiNþ1 þ ERhxnumiN
þ k hxnþ1umiN þ hxnþ1umiNþ1

� �
;

ð12Þ

where the k-dependent coupling terms have been pulled

outside the energy E terms and the ‘*’ and ‘+ ’ symbols

on the latter have been dropped for notational convenience.

If the SET damps the oscillator, then in the limit t??
the various moments approach constant values. Thus,

we seek a possible solution to (11) and (12) with

dhxnumiNðNþ1Þ=dt ¼ 0. Fortunately, these equations can be

solved exactly for the time-independent moments. For n +

m=0,1, we find [23]

hxiNþ1 ¼ hPiNþ1 ¼ 1� hPiN ¼ ER

1� k
ð13Þ

and hxiN ¼ huiN ¼ huiNþ1 ¼ 0. For n+m=2, we find for

the variances [23]

dx2 ¼ hx2i � hxi2 ¼ eVds

mo2
hPiNhPiNþ1 ð14Þ
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du2 ¼ hu2i ¼ ð1� kÞ eVds

m
hPiNhPiNþ1 ð15Þ

and hxuiN ¼ hxuiNþ1 ¼ 0, where the averaged probabilities

are defined as

hPiNðNþ1Þ ¼
Z

du

Z
duPNðNþ1Þðx; u; tÞ

and we have returned to the original, dimensionful

coordinates.

What can we learn from these solutions to the first few

moments? For k5 1, the very existence of the solutions

is evidence that the SET damps the oscillator, bringing it

to a steady state. For k4 1 on the other hand, the

solutions are ill-defined (note that du2, PN+15 0 if

k4 1) suggesting that the coupled SET-oscillator system

may be unstable in this regime. It is not possible to say

anything more definite than this about the behaviour in

the large k regime, however, since the approximations to

the master equation made above (in particular the

omission of the step functions and the tunnelling rates

to the right) break down when k is not small. Note from

(14) and (15) that the position and velocity variances are

related as

o2
Rdx

2 ¼ du2 ¼ eVds

m
hPiNhPiNþ1; ð16Þ

where the renormalized oscillator frequency is

oR ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
o. Now recall that for a classical damped

harmonic oscillator in contact with a thermal bath at

temperature T, we have equipartition of energy:
1
2mdu2 ¼ 1

2mo2
Rdx

2 ¼ 1
2kBT. Comparing with equation (16),

this suggests that we can assign an effective temperature

TSET to the SET given by

kBTSET ¼ eVdshPiNhPiNþ1: ð17Þ

Further evidence that the SET behaves effectively as a

thermal bath comes from examining the higher moments

with n + m=3,4. . .. For k55 1, it is found that the

higher moments can be approximately decomposed into

products of the lowest moments with n+m=1,2, i.e. hxi,
hx2i, and hu2i. This means that the steady state probability

distribution P(x,u) [=PN(x,u) + PN+1(x,u)] for the

oscillator is given by a Gaussian to a good approximation,

as is the Maxwell-Boltzmann distribution describing a

classical harmonic oscillator in contact with a thermal

bath:

Pðx; uÞ ¼ 2pkBT
mo

exp � m

2kBT
o2ðx� hxiÞ2 þ u2
h i� �

: ð18Þ

Figure 9 shows an example steady-state probability

distribution for P(x)[=
R
duP(x,u)] obtained by numerically

solving the full master equations (1) and (2) with parameter

choices e=0.3 and k=0.1. Also plotted is the Gaussian

distribution obtained after integrating (18) over the velocity

coordinate, with the steady state average position coordi-

nate given by hxi ¼ x0hPNþ1i [the dimensionful form of

equation (13)] and the temperature given by equation (17).

As can be clearly seen, the steady state distribution is

closely approximated by the Gaussian distribution fixed

using the analytically-derived effective temperature and

steady state average position coordinate.

3.3 Mechanical resonator dynamics in the weak coupling

regime

In the previous section, we found that for weak coupling

(k55 1) the SET appears to the oscillator in the steady

state as a thermal bath with effective temperature

kBTSET ¼ eVdshPiNhPiNþ1. Suppose now that the resonator

is not in a steady state, e.g. it is given some initial

displacement amplitude and released, undergoing subse-

quent non-steady state motion. Does the SET still appear

to the oscillator as a thermal bath? The following analysis

addresses this question and as we shall learn, the SET

indeed behaves as a bath, provided there is a wide

separation in the oscillator and SET dynamics timescales

(e55 1) in addition to weak coupling.

We seek some approximate way to solve the dimension-

less master equations (7) and (8) which takes advantage of

the weak coupling condition k55 1. The solution should

furthermore be a good approximation for times much

longer than the oscillator period 2p/o in order to establish

Figure 9. Steady state probability distribution P(x) for

e=0.3 and k=0.1 [23]. The horizontal coordinates are in

units of the shift x0 and with origin at the steady state

average position x0hPNþ1i. The numerical solution is given

by the solid line and the Gaussian fit is the dashed line.
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that the SET damps the oscillator. The obvious procedure

is to solve for the evolving probability distribution

perturbatively using k as the small expansion parameter.

Let us first put the master equations in the following

concise, matrix form:

@P
@t

¼ H0 þ Vð ÞP; ð19Þ

where

P ¼
PNðx; u; tÞ
PNþ1ðx; u; tÞ

� �
;

H0 ¼
e2x @

@u � u @
@x 0

0 e2x @
@u � u @

@x

 !

þ
�ER � khxi EL � khxi
ER þ khxi �EL þ khxi

� �
ð20Þ

and V ¼ V1 þ V2, with

V1 ¼ kx
�1 �1
1 1

� �
ð21Þ

and

V2 ¼ e2
@

@u
hxi 0
0 hxi � 1

� �
; ð22Þ

where we have redefined the position coordinate such that

its origin coincides with the steady-state value hxi � ER [see

equation (13)]. Equation (19) resembles the time-dependent

Schrödinger equation, but without the imaginary i since it

describes a classical and not a quantum system. The

‘Hamiltonian operator’ H0 gives the free, decoupled

evolution of the independent oscillator and SET systems,

while the operator V ¼ V1 þ V2 describes the interaction

between the two systems with V1 giving the dependence of

the SET tunnelling rates on the oscillator position and V2

giving the SET island number dependence of the electro-

static force acting on the oscillator.

Given the resemblance of equation (19) to the Schrö-

dinger equation, we can consider applying approximation

schemes that have been developed in quantum mechanics.

We shall use a method developed for open quantum

systems which is sometimes called the ‘self-consistent Born

approximation’ (SCBA). A system is open when it is

coupled to another system with an infinite number of

degrees of freedom. The latter, infinite system is commonly

termed the ‘environment’ or ‘reservoir’ and the approxima-

tion method seeks to derive simpler, effective equations of

motion for the finite system alone where the environment

degrees of freedom have been integrated out. In our case,

the finite system of interest is the mechanical resonator

modelled as a harmonic oscillator, while the environment

comprises the tunnelling electrons in the SET. Applying the

SCBA as described in section 3.1 of [46], we obtain the

following approximate effective equation of motion for the

probability distribution PHO(x,n,t) of the oscillator:

@Pðx; u; tÞHO

@t
¼ HHOPHOðx; u; tÞ

þ exp ðHHOtÞTrSET VðtÞPSETð0Þ½ � expð�HHOtÞPHOðx; u; tÞ

�
Z t

0

dt0 exp ðHHOtÞ

TrSET VðtÞPSETð0Þ½ �TrSET Vðt0ÞPSETð0Þ½ �
exp ð�HHOtÞPHOðx; u; tÞ

þ
Z t

0

dt0 exp ðHHOtÞTrSET VðtÞVðt0ÞPSETð0Þ½ �

expð�HHOtÞPHOðx; u; tÞ; ð23Þ

where HHO ¼ e2xð@=@uÞ � uð@=@xÞ is the Hamiltonian

operator for the free harmonic oscillator and VðtÞ ¼
expð�H0tÞV expðþH0tÞ is in the interaction picture. The

initial, t=0 probability distribution is assumed to be

a product state: Pð0Þ ¼ PHOðx; u; 0ÞPSETð0Þ, where

PSETð0Þ ¼ PNð0Þ
PNþ1ð0Þ

� 	
.

The influence of the SET on the oscillator is contained

in the ‘trace’ terms, such as TrSET VðtÞPSETð0Þ½ � ¼P2
a¼1

P2
b¼1 VabðtÞPSETbð0Þ. All such terms in (23) and

their integrals with respect to t’ can be evaluated

analytically. The resulting explicit expression for (23) is

rather complicated, involving t-independent terms, t-

dependent decaying terms of the form e7t, as well as

decaying oscillatory terms of the form e-t cos(et) and e7t

sin(et). The terms also depend on the initial state PSET(0) of

the SET. However, if e55 1, then we can neglect all

decaying terms involving e7t since, on timescales of order

the mechanical period and longer, t0e7 1, such terms have

a negligible effect on the oscillator dynamics. Furthermore,

the dependence on the initial state of the SET drops out.

Neglecting the time-dependent decaying terms is usually

called the ‘Markov’ approximation, while the combined

steps of the SCBA and Markov approximation are often

simply called the ‘Born-Markov’ approximation. As a

result, we obtain the following much simpler effective

equation of motion for the oscillator:

@P

@t
¼


e2x

@

@u
� u

@

@x
þ ke2

@

@u
ðu� xÞ

þ e4hPiNhPiNþ1

@

@u
@

@u
þ @

@x

� ��
P;

ð24Þ

where hPiN and hPiNþ1ð¼ 1� hPiN � ERÞ are the steady

state SET island electron number probabilities [see

equation (13)] and we have dropped the ‘HO’ subscript

on the oscillator probability distribution P(x,u,t) for
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notational convenience. Expressing (24) in terms of

dimensionful coordinates, we obtain

@P

@t
¼ o2

Rx
@

@u
� u

@

@x
þ gSET

@

@u
uþ gSETkBTSET

m

@2

@u2


 �
P;

ð25Þ

where recall the renormalized oscillator frequency is

oR ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
o, the damping rate is

gSET ¼ keo ð26Þ

and the effective SET temperature TSET is defined in (17).

Equation (25), which goes by the name ‘Klein-Kramers’

or ‘Fokker-Planck’ equation [47], describes the brownian

motion of a harmonic oscillator interacting with a thermal

bath; the oscillator experiences a damping force due to the

SET [the third term on the right-hand-side of equation (25)]

with quality factor QSET=o/gSET=1/(ke) (since k55 1,

the renormalized frequency can be replaced by the

unrenormalized frequency in the definition of the quality

factor) and an accompanying Gaussian distributed thermal

fluctuating force [the fourth term on the right-hand-side of

(25), called the ‘diffusion’ term]. The @2P/@x@u term in

equation (24) (called the ‘anomalous diffusion’ term in [45])

has been neglected because it is of order e smaller than the

diffusion term when time is expressed in units of the

oscillator period; it should have only a small effect on

timescales of order the mechanical period or longer. The

first moment of the fluctuating force which gives rise to the

diffusion term vanishes, hFðtÞi ¼ 0, while its second

moment is

hFðtÞFðt0Þi ¼ 2gSETkBTSET

m
dðt� t0Þ: ð27Þ

The delta function in equation (27) signifies that the kicks

inflicted on the oscillator by the SET are uncorrelated, no

matter how small is the distinct time interval separating the

kicks. This amounts to taking the limit ttunnel?0, which is

justified provided ttunnel55 2p/o (equivalently e55 1)

and we are interested only in the oscillator dynamics on

timescales t02p/o as discussed above. The condition

e55 1 appears necessary for the oscillator to perceive

the SET as a thermal bath; if the condition did not hold,

then it would be possible to infer from the oscillator

dynamics that it was coupled to a tunnelling electron device

and not to a many degree-of-freedom system in a state of

thermal equilibrium.

The second and third terms on the right-hand-side of

equation (23) involving traces of single interaction potential

operators V(t) vanish by virtue of the Markov approxima-

tion and also the fact that the position coordinate was

originally redefined such that the origin coincides with the

steady-state value. The damping and diffusion terms in

equation (24) arise from the fourth term on the right-hand-

side of equation (23) involving the trace of the interaction

potential operator product V(t)V(t’). More specifically, only

products of the form V2(t)V1(t’) and V2(t)V2(t’) [see

definitions (21) and (22)] give non-zero contributions, with

the damping and frequency renormalization terms arising

from the first product and the diffusion and anomalous

diffusion terms arising from the second product. Thus, the

effective thermal bath description for the SET crucially

requires one to take into account not only the influence of

the SET on the oscillator (V2), but also the influence of the

oscillator on the SET as well (V1).

In our analysis of the coupled SET-oscillator dynamics,

we have neglected the coupling between the oscillator and

its external thermal bath. Incorporating the external bath

into the equations of motion is straightforward: we just add

the term

gext
@ðuPÞ
@u

þ gextkBText

m

@2P

@u2
ð28Þ

to the above Fokker-Planck equation (25), where we

assume again for simplicity that the influence of the

external bath on the oscillator is uncorrelated and

memoryless. The damping and fluctuating force terms due

to the SET and external bath can be combined respectively

to yield a single damping term with effective quality factor

Q�1
eff ¼ Q�1

SET þQ�1
ext and a single fluctuating force term with

effective temperature

Teff ¼ Qeff
TSET

QSET
þ Text

Qext

� �
: ð29Þ

Summarizing so far, we have learned that provided the

mechanical oscillator and SET are weakly coupled

(k55 1) and, furthermore, provided the SET dynamics

occurs on much shorter timescales than the oscillator

dynamics (e55 1), then the oscillator behaves effectively

as if it is in contact with a thermal bath, with figure 7 being

replaced by the much simpler figure 10.

For typical SET device parameters and micron-scale

resonators with frequencies of the order of a few mega-

hertz, separated by a resonator-island electrode gap of

about 0.1 mm, one obtains effective SET temperatures of

around 1K and effective SET quality factors ranging from

around 104 down to 102 as the gate voltage increases from

1V up to 10V [23]. External temperatures and quality

factors for micron-scale resonators are of the order 100 mK

and 104 – 105, respectively, so that it should be possible to

measure the effects of the SET temperature and quality

factor on the mechanical resonator. Experiments are

underway in Keith Schwab’s group to probe the coupled

dynamics of the SET and mechanical resonator [48]. They
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have seen evidence in several devices that the SET behaves

as an effective bath, heating the resonator and causing

damping which increases with gate voltage. This is the first

time that the back action of electronic shot noise on a

nanomechanical resonator has been observed. Note, how-

ever, that they work with superconducting SETs (SSETs),

where tunnelling processes involve Cooper pairs as well, so

that the above formulae for TSET and QSET do not apply. It

is important then to also analyze the SSET-mechanical

resonator coupled dynamics [49,50].

4. Effective equilibrium dynamics of other NEMS

In this section, we consider the effective equilibrium

dynamics of some of the other NEM devices described in

section 2. One of the first theoretical investigations to

establish that a far-from-equilibrium electronic device can

behave like an effective thermal bath was conducted by

Dima Mozyrsky and Ivar Martin at Los Alamos [22]. They

considered a model device comprising a single, electrical

tunnel junction with tunnelling rates depending on the

position coordinate of a nearby mechanical oscillator, as

illustrated in figure 11.

Solving the quantum Schrödinger equation for the

coupled, tunnelling electrons-oscillator system, they found

under the conditions of weak coupling and Markovian

approximation that the oscillator behaves effectively as if it

is in contact with a thermal bath, with the tunnel junction

characterized by a damping rate and a temperature given by

kBTTJ ¼ eV=2; ð30Þ

where V is the voltage applied across the tunnel electrodes.

Thus, despite the differences between the tunnel junction

and SET (two tunnel junctions in series with gated central

island), both can behave effectively as a heat bath. In fact,

the similarity in their statistical properties goes further. It

turns out that their respective temperature expressions (17)

and (30) can be commonly equated to the ensemble-

averaged energy gained by an electron due to tunnelling

across a junction [23]. For the tunnel junction, the averaged

energy gained is eV/2, assuming zero electron temperature

and constant density of states in the electrodes, as well as

energy-independent tunnelling matrix [22,31]. For the SET,

with the same asumptions the average energy gained by

a tunnelling electron is ðER=2ÞhPiN þ ðEL=2ÞhPiNþ1 �
eVdshPiNhPiNþ1 for k55 1, where we have used equations

(9), (10) and (13).

While the mechanically compliant tunnel electrode

illustrated in figure 2 closely resembles the just-considered

model tunnel junction (figure 11), there is a difference in

that the tunnelling electrons will give a momentum recoil to

the mechanically compliant electrode, which is of course

absent for the fixed electrode. To our knowledge, there has

yet to be a comprehensive analysis of the coupled dynamics

of tunnelling electrons and mechanically compliant

electrode, including the effects of momentum recoil.

Nevertheless, one might expect that under the appropriate

conditions of weak coupling and wide separation of

dynamical timescales between the mechanical and electro-

nic degrees of freedom, the effective thermal bath

description again arises.

As mentioned in section 2, the electronic and mechanical

dynamics are strongly coupled in the classical charge

shuttle (figure 6); in order for a current to flow, the

nanomechanical island electrode must shuttle charge

between the drain and source electrodes, so that the

dynamical timescales of the mechanical and electronic

degrees of freedom are comparable. Because it is not

possible to have a wide separation of timescales, it is

unlikely that there is a regime in which the electron

tunnelling dynamics is effectively that of a thermal bath, as

perceived by the mechanical shuttle. The only possibility of

separating the timescales is to make the drain-source

electrode gap smaller than the electron tunnelling length

(so that a tunnelling current can flow without the

nanomechanical island electrode having to move from

drain to source electrode), likely an unrealisable regime for

nanoscale mechanical resonators that must fit in the gap.

Figure 10. Scheme of the SET-oscillator system under the

conditions of weak coupling and wide separation of

dynamic timescales between the SET and oscillator. The

oscillator undergoes thermal brownian motion, behaving as

if in contact with a thermal bath at temperature Teff=

Qeff(TSET/QSET + Text/Qext), where Q�1
eff ¼ Q�1

SET þQ�1
ext.
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Thus, provided the electron dynamics is stochastic, the

electromechanical coupling strength is weak and the

mechanical dynamics is much slower than the electron

dynamics, the above examples suggest that the electronic

device can be effectively replaced by a thermal bath for the

reduced dynamics of the coupled mechanical resonator, so

that figure 7 can be replaced by figure 10 (but now refering

to a generic NEMS). How might one go about providing a

proof of this conjecture for a general class of electro-

mechanical systems? A possible direction is suggested by

the Born-Markov approximation method applied to the

SET-resonator system in section 3.3. In fact, the derivation

of the Fokker-Planck equation (that ensures the effective

thermal bath description) does not depend on the detailed

form of the matrices appearing in the definitions (21) and

(22) of the interaction operators V1 and V2, respectively; the

derivation of the Fokker-Planck equation should carry

through for additional and different types of tunnelling

process, e.g. for a superconducting SET [50]. Of course, the

detailed expressions for the renormalized frequency,

damping constant and temperature will differ from one

device to another. The important necessary steps that lead

to the Fokker-Planck equation are the second order

expansion in the interaction operator V (Born approxima-

tion – requires weak coupling) and the neglect of time-

dependent decaying terms in the electron dynamics

(Markov approximation – requires fast electron dynamics

as compared with mechanical oscillator period). A suitable

starting point for a general proof would be to write down a

Boltzmann/master equation involving a probability density

function P{k}(x,u,t) where (x,u) are the oscillator’s classical

position/velocity coordinates and {k} denotes some appro-

priate choice of electronic coordinates. The general

interaction operator V should involve both position and

velocity (to account for momentum recoil) dependent

terms. The proof would then involve applying the Born-

Markov approximation to this master equation, recovering

the Fokker-Planck equation. An important proviso, how-

ever, is that there is no guarantee that the electronic device

can necessarily damp the oscillator. The tunnelling

dynamics may be such that it is more likely for an electron

to give rather than to take energy from an oscillator,

resulting in unstable coupled dynamics. This instability

manifests itself through ‘negative damping’ and ‘negative

temperature’ coefficients in the Fokker-Planck equation.

Such an instability occurs in the case of the superconduct-

ing SET for certain ranges of gate and drain-source voltage

[49,50].

A proof of the effective thermal bath description along

the above lines has recently been demonstrated by Aashish

Clerk at McGill University [41]. He gives a quantum

treatment, with the electronic device modelled as a generic

linear response detector of the quantum oscillator’s

position (essentially the quantum version of figure 7), to

which it is weakly coupled. The proof is in part a

generalization of Mozyrsky and Martin’s analysis of the

tunnel junction [22]. However, as described above, when

the coupled dynamics under consideration is classical it

should be possible to give a similar proof within the

framework of classical master equations. Indeed, in

Mozyrsky and Martin’s tunnel junction analysis, the

condition eV � �ho is assumed, which from equation (30)

amounts to taking the classical limit kBTTJ � �ho for the

oscillator. Certainly, a classical derivation of the effective

thermal bath description for NEMS avoids having to

simultaneously deal with the complicating (but fascinating)

issue of how classical dynamics arises by approximation

from quantum dynamics.

5. Conclusions

We have presented a brief overview of the field of NEMS

research, with an emphasis on the classical effective

dynamics of a nanomechanical resonator due to its

interaction with a tunnelling electron system. Under the

conditions of weak coupling and the characteristic mechan-

ical dynamics occuring on much longer timescales than the

tunnelling electron dynamics, the electron system can

behave effectively as a heat bath, causing the resonator to

undergo thermal brownian motion.

As they have been stated, the conditions for the

resonator to perceive the electronic system as a thermal

bath are rather general. It is natural therefore to wonder

Figure 11. Oscillator coupled to an electrical tunnel

junction [22]. As a result of an applied voltage V, electrons

will tunnel from the right (R) to left (L) electrode, with

tunnel rates depending on the position x of a nearby

mechanical oscillator. The electromechanical coupling can

be achieved by putting a net non-zero charge (or voltage)

on a metallized mechanical oscillator.
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whether there are other (semi)classical examples involving

(not necessarily nanoscale) mechanical oscillators coupled

to (not necessarily electronic) far from equilibrium systems

with many degrees of freedom, such that the oscillator

undergoes effective thermal brownian motion. Many such

examples have in fact been considered. One example is laser

Doppler cooling of a harmonically trapped ion [51,52]. The

laser is tuned below the atomic resonance, so that the

Doppler shift makes it more likely for the atom to absorb a

photon with momentum oppositely directed to that of the

atom than in the same direction, resulting in damping of

the atom’s motion. Despite the fact that the laser radiation

field is obviously not a thermal equilibrium state, never-

theless under certain weak coupling and wide timescale

separation conditions, the atom’s dynamics is described by

a Fokker-Planck equation [53], with effective temperature

much lower than the ambient temperature: the laser cools

the trapped ion. Another, recently considered macroscopic

oscillator example [54] involves placing a sphere (ping-pong

ball) in an upward gas-flow. It was found that the sphere

behaves effectively as a harmonic oscillator undergoing

thermal brownian motion, despite the far-from-equili-

brium, turbulent state of the gas molecules. A derivation

of this behaviour might start with a Boltzmann equation

for a single massive particle undergoing collisions with a

dilute gas of small mass particles, and then identifying the

relevant small dimensionless coupling and timescale para-

meters for a subsequent series expansion of the Boltzmann

equation. However, the recovery of a Fokker-Planck

equation is not straightforward, owing to the relevance of

the non-trivial turbulent gas dynamics for the effective

dynamics of the oscillator. Yet another, related macro-

scopic example involves immersing a torsion oscillator in a

far-from-equilibrium, vibration-fluidized granular medium

[55 – 57]. Again, the granular medium was found to behave

effectively as a thermal bath, with the oscillator undergoing

thermal brownian motion.

Returning to the subject of NEMS, there are many

aspects of their dynamical behaviour still to be understood.

In the strong coupling regime (e.g. k01 in the case of the

SET-oscillator system), little is known in general about the

effective dynamics of the oscillator and also how the

coupled dynamics manifests itself in the effective behaviour

of the electronic system (e.g. current, current noise, etc.).

Furthermore, little is known in general about the quantum

dynamics of NEMS and how (semi)classical dynamics

arises as a result of dephasing within the electronic system,

as well as due to the external environment of the

nanomechanical resonator.
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