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Supersolidity and superfluidity

SÉBASTIEN BALIBAR*

Laboratoire de Physique Statistique de l’Ecole Normale Supérieure, Associé aux Universités
Paris 6 et Paris 7 et au CNRS, 24 rue Lhomond, 75231 Paris Cedex 05, France

(Received 14 December 2006; in final form 15 March 2007)

Is it possible that a solid flows like a liquid, or even without friction like a superfluid? At

first sight, the crystalline order in real space looks contradictory with the coherent motion

which is responsible for superfluidity. However, several authors considered this

possibility in 1969 – 1970, and experiments done by Kim and Chan in 2004 suggest that

solid 4He is indeed a superfluid solid—a ‘supersolid’—below about 100 mK. This article

summarizes my present understanding of this paradoxical issue.

1. Why looking for mass flow through a solid?

Let us start with a little reminder of Italian science in the

17th century. Evangelista Torricelli was a friend of Galileo.

He is famous for having done the first experimental

measurement of the atmospheric pressure in 1643 – 1644.

For this he filled a glass tube with liquid mercury and

immersed it in a mercury bath (see figure 1). With vacuum

at the closed top of the tube—in reality a very small vapour

pressure—he observed an equilibrium between the atmo-

spheric pressure outside and the weight of a liquid mercury

column 760 mm high. This is because the liquid was able to

flow, consequently to reach a so-called ‘hydrostatic

equilibrium’ along its vertical column. Now, when he

evacuated the outside with a pump (see the right part of

figure 1), the level was the same in the two communicating

tubes, because the temperature was the same on both sides,

consequently the saturated vapour pressure as well. What

allows the equilibration of levels is of course the ability of

liquid mercury to flow. In the spring of 2006, we ran a

similar experiment with solid helium at 50 mK [1] instead

of liquid mercury at 300 K. I wish to explain why we tried

such a surprising thing.

By definition, a solid resists the application of a shear

stress. Imagine a solid between two horizontal plates and

push the top plate to the right while pushing the bottom

one to the left. The solid deforms elastically and if you

release the shear stress it comes back to its original shape.

In the same circumstances, a fluid would flow and never

flow back when the stress is released. As a consequence, it is

natural to find it to be contradictory that a solid could flow

as a liquid. But, in fact, we know that the solid or liquid

character of a piece of matter depends on time, also on the

strength of the applied force. If you blow gently on soap

foam, it reacts as an elastic medium. But, of course, if you

stir it with a spoon, it undergoes plastic deformation. A

foam is an elastic solid at low stress and a viscous liquid at

high stress. Similarly, a block of iron is obviously a solid in

usual conditions but iron wires are made by extrusion, that

is by pushing the metal through a hole without melting it.

Even at temperatures below the melting point of iron, but

under sufficiently high stress, iron behaves like a viscous

liquid. We could also think to the ice flowing down in

glaciers, or even to the Earth’s crust forming mountains.

Many materials are more or less ‘visco-elastic’ as one says.

The surprising thing with flowing a solid under the

application of just some hydrostatic pressure difference is

thus that this is a very small stress: usually solids do not

flow under their own weight, they keep their original shape

and they do not spread to form any kind of flat pancake or

film. But the question we are asking is even more striking.

Could a solid flow without any friction, like a superfluid?

For reasons due to its quantum character, liquid helium can

flow without dissipation. That is why it was called

‘superfluid’ by Piotr Kapitza, one of the scientists who

discovered it in 1937 [2,3]. As a consequence, superfluid
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helium can flow at a non-zero velocity even if no force is

applied to it. This behaviour is highly non-classical. It

happens only below a certain threshold called its ‘critical

velocity’ and, if one applies a force, for example a

hydrostatic pressure difference across a fine capillary, a

superfluid flows at a so-called ‘critical velocity’ which is

constant, independent of the pressure difference. Further-

more, the thinner the capillary through which superfluid

flow is observed, the faster it flows. In channels only a few

Angströms thick, where normal fluids would be completely

blocked by their viscosity, superfluid helium flows at meters

per second! This was progressively understood as a

consequence of the quantum properties of superfluids.

Their atoms or molecules are ‘condensed’ in the sense of

Bose and Einstein [4,5] so that they lose their individual

character and form a macroscopic wave of matter which

moves as a whole. Bose –Einstein condensation being also

understood as the appearance of order in momentum

space, one could say that all atoms move at the same

velocity but that their individual positions are unknown,

delocalized in the whole sample. From this point of view it

is doubly paradoxical to imagine that a solid is superfluid:

not only would it flow without dissipation under the

application of a small force, it would also be ordered both

in ordinary space (the atoms would be localized on some

sites) and in momentum space (the atoms would be

delocalized waves moving in a coherent way). The latter

looks like a violation of Heisenberg’s uncertainty principle.

2. The experiment by Kim and Chan

In 2004, Eunsong Kim and Moses Chan performed a very

surprising experiment [6,7]. They made a cylindrical box,

10 mm in diameter, which was suspended by a thin tube

and could oscillate around it. This is a so-called ‘torsional

oscillator’ whose period of oscillation could be measured

with great accuracy. The box could be filled with helium

through the tube. The period depends on the total

momentum of inertia, consequently on the helium mass

which is driven by the box walls. Kim and Chan filled their

box with liquid helium at high pressure and high

temperature and then cooled it down. At a few degrees,

the liquid solidified in the box and they cooled further

down. To their great surprise, they found that, below a

certain critical temperature—typically 100 mK—the oscil-

lation period suddenly decreased as if 1% of the helium

mass decoupled from the oscillating motion of the walls. A

superfluid would do that because its ground state is

immobile, and it would do it below a critical velocity of

the walls. Kim and Chan found that their phenomenon—

they called it ‘supersolidity’—occurred only if the walls

moved not faster than 10 mm s71. 4He atoms being Bose

particles, liquid 4He can be superfluid. Conversely, 3He

atoms being Fermi particles, liquid 3He needs its atoms to

form pairs for superfluidity to appear, something which

happens only at very low temperature [8]. Kim and Chan

repeated their experiment with solid 3He in the same box

and found no decoupling. Then they put a little additional

wall inside the box in order to interrupt the circulation of

mass around the rotation axis. They found again that the

decoupling vanished. In the rotating frame of the box walls,

one percent of the helium mass was really rotating through

the rest of the solid as a superfluid! Facing such a series of

observations, Kim and Chan proposed an interpretation

based on a series of papers published 35 years ago by

Andreev and Lifshitz, Chester and Leggett.

Figure 1. In 1643 – 1644, Evangelista Torricelli (left) measured the atmospheric pressure for the first time. For this he

immersed a glass tube in a mercury bath and observed an equilibrium between the atmospheric pressure outside and the

weight of a mercury column 760 mm high (centre image). When he evacuated the outside with a pump, he observed that the

ability of the liquid to flow forced the two levels to be the same (right). In 2006, Sasaki et al. [1] ran a similar experiment with

solid helium in order to test its supersolid properties.

32 S. Balibar
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3. Early theories of supersolidity

In 1969, Andreev and Lifshitz [9] proposed the following

scenario. Suppose that there are empty sites—so called

‘vacancies’—in helium crystals. A classical vacancy is a hole

which does not move much. It has a certain energy E0

which depends on the interatomic potential. But helium

crystals are quantum in the sense that the quantum

fluctuations of atoms on their sites is unusually large. A

vacancy has thus a non-zero probability to exchange its

position with a neighbouring atom by quantum tunnelling.

As a result vacancies are not localized objects but

delocalized waves in the crystal where they form an energy

band, from (E07D) to (E0þD) like electrons in a metal. If

the tunnelling frequency from site to site is large, the width

2D of the energy band is also large. Now suppose that D is

larger than E0, the energy of a localized vacancy. Then the

bottom of the energy band is below zero so that, even at

zero temperature, there should be a finite density of

vacancies in helium crystals. This is an astonishing

situation: the crystal is a mass density wave which is

periodic in three-dimensional space but the ground state is

such that the number of atoms is different from the number

of sites. Some authors call this an ‘incommensurate’ crystal.

Now, if there is a non-zero density of vacancies in 4He

crystals at arbitrarily low temperatures, these vacancies

should form a Bose –Einstein condensate and become

superfluid below some critical temperature Tc. Finally,

since a vacancy moving in one direction is equivalent to an

atom moving in the opposite direction, 4He crystals could

realize the surprising coexistence of a crystalline order in

real space and superfluid mass flow through the crystal

lattice due to the ordering of vacancies in momentum

space.

According to Andreev and Lifshitz, Penrose and Onsager

had thus incorrectly concluded in their famous 1956 article

[10] that superfluidity was impossible in a crystal. Bose –

Einstein condensation (BEC) had been introduced for ideal

gases with no interactions, and the 1956 article is a

development of Onsager’s generalization of BEC to dense

interacting systems like liquid helium where interactions are

strong. They describe the long-range quantum coherence

which characterizes a superfluid in a particular formalism

called the ‘one-body density matrix’. Long-range correla-

tions mean that atoms a long distance away from each

other do not move independently but as waves in phase.

Correlations show up in the behaviour of a particular off-

diagonal term of the density matrix, and that is why BEC

was generalized as ‘off-diagonal long-range order’ (ODL-

RO). Near the end of their article, Penrose and Onsager

had claimed that ODLRO was impossible in crystals and

everybody believed them.

However, Chester [11] noticed that the argument by

Penrose and Onsager was based on the use of particular

wave functions which were not symmetrized, although they

should for bosons. By using other wave functions (‘Jastrow’

wave functions), he explained that ODLRO was in fact

possible in crystals, something which had already been

noticed by Reatto [12]. Shortly afterwards, Tony Leggett

[13] improved on Chester’s work and predicted that a

crystal with ODLRO should rotate in an anomalous way

like ordinary superfluids. These strange rotation properties

are called ‘non-classical rotational inertia’ (NCRI). What

happens when one tries to rotate a superfluid in a bucket?

At first, that is if the rotation speed is small enough, the

superfluid is not driven by the bucket walls. It stays at rest.

This is because a superfluid cannot rotate at an arbitrary

velocity. Vortices are quantized. The circulation of the

velocity is necessarily equal to an integer multiple of a

particular quantum which is the ratio (h/m) of Planck’s

constant to the mass of He atoms. When rotating the

bucket faster, quantum vortices nucleate (usually on the

walls) and enter the fluid. There is some dissipation of

energy associated with the presence of vortices but below

the critical velocity at which vortices appear, the fluid

motion is dissipationless. When Kim and Chan observed

the strange properties of their solid 4He sample, they

proposed that it was related to Leggett’s NCRI.

4. Later and recent theoretical developments

In 1970 – 1975, Matsuda and Tsuneto [14] followed by Imry

and Schwartz [15] raised an important question: Is super-

solidity possible in the absence of vacancies or does it

require that the solid is ‘incommensurate’? I am not quite

sure that this issue is solved. When a liquid crystallizes,

there is a spontaneous symmetry breaking: the liquid is

invariant by translation while the crystal is periodic in

space. But it is not obvious that the atoms are individually

trapped in the periodic potential of the others. Could there

be a kind of collective motion of the atoms by quantum

tunnelling through their own lattice? Chester ruled this out

for Jastrow wave functions so that, for BEC to exist in a

crystal, it looked necessary to have vacancies. Imry and

Schwartz extended Chester’s proof to a wider class of wave

functions so that it looked more firmly established that a

crystal without free vacancies could not be a supersolid. At

this stage I write free vacancies because there could be

vacancy-interstitial pairs which are the result of one atom

being slightly displaced from its equilibrium position. Note

however that not everybody agrees that free vacancies are

required for supersolidity [16].

When the two papers by Kim and Chan appeared, the

same question was considered again. Prokof’ev and

Svistunov [17] claimed that it is a theorem: supersolidity

is impossible in the absence of free vacancies or interstitials

or both in the limit of zero temperature. However, a

numerical simulation by Galli and Reatto found a non-zero

Supersolidity and superfluidity 33
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superfluid fraction in a commensurate helium crystal [18].

They used particular wave functions named ‘shadow wave

functions’ for this and explained that, since the properties

of real helium crystals were very well reproduced by using

these wave functions, one should be confident that super-

solidity exists in the absence of free vacancies. A few

months later, Bryan Clark and David Ceperley [19]

published another simulation, this time performed with a

‘path integral Monte Carlo method’ (PIMC). They

explained that the calculation of ODLRO by variational

methods is biased by the choice of trial wave functions

while their method is not. They found that the ground state

of helium crystals is commensurate and shows no ODLRO,

that is no supersolidity. Both Prokof’ev and Svistunov on

the one hand, and Clark and Ceperley on the other hand

concluded that if supersolidity exists, it has to be somehow

related to defects in helium crystals, it cannot be a

fundamental property of perfect crystals.

From a theoretical point of view, one would have

considered the situation as clear if a very interesting paper

had not been published by Anderson et al. [20]. This paper

reanalyses old measurements by Fraass et al. [21] of the

temperature variation of the lattice spacing a in 4He

crystals. At that time, they had interpreted the variation as

a consequence of the thermal activation of vacancies. A fit

with an Arrhenius exponential of the observed increase of

a(T) had provided an activation energy for the vacancies of

order 10 K. This result is consistent with numerical

estimates and, if true, it means that, at a temperature of

0.1 K, the probability that a vacancy occupies a given

lattice site is proportional to exp 7100, which is totally

negligible. However, at 1 K, vacancies should exist and

manifest themselves as an exponential term in the specific

heat. But no such contribution has ever been measured.

Instead, a surprising T7 term was found as the first

correction of the usual T3 contribution from phonons.

This had been a long standing puzzle. Anderson et al.

explained that such a T7 term is precisely what is expected if

there is a finite density of vacancies at zero temperature, in

which case the lattice spacing should increase as T4, a

simple power law which fitted experimental data as well as

Simmons’ exponential. However, Anderson et al. explained

that the density of vacancies in 4He crystals is much too

small for a Bose –Einstein condensation at 100 mK.

Furthermore, a recent calculation by Maris and Balibar

[40] shows that the T7 term is more likely due to the

dispersion of phonons.

Many other articles have been published on this

confusing issue. For example Boninsegni et al. [22] showed

that a non-crystalline solid—a 4He glass—should be

supersolid. de Gennes proposed that the elastic properties

of 4He crystals could be anomalous, due to dislocations

being highly mobile at low temperature [23]. Given all these

contradictory articles, the least one could say is that the

theoretical understanding of supersolidity is far from clear.

This is probably what makes it so interesting. As we shall

now see, experimental results are also somewhat confusing.

5. Experiments

Torsional oscillators have been extensively used to study

superfluidity, especially in Reppy’s group at Cornell

University. Together with Anne Sophie Rittner [24] in

2006, John Reppy repeated the experiment by Kim and

Chan. They looked for possible effects of disorder and

observed a very important phenomenon. They found that

supersolid behaviour disappeared if the crystals were

annealed. They first grew their crystals by the same

‘blocked capillary method’ as Kim and Chan and observed

a similar change in oscillating period at low temperature.

After warming these crystals up to 1.5 K (this is hot for

helium crystals!) for 13 h, the effect disappeared. When

growing the crystal fast again, the effect reappeared. They

concluded that supersolidity was necessarily related to the

presence of defects in 4He crystals. However, Kim and

Chan [25] also tried annealing their crystals and found that

the supersolid behaviour was enhanced! As for Kondo et al.

[26], they found a supersolid fraction about 3 times smaller

than found by Kim and Chan and no effect of annealing.

What shall we conclude from these contradictory results? In

fact, there is a definite scatter in Kim and Chan’s data, even

though they explain [25] that, thanks to a better crystal

preparation method, this scatter has been considerably

reduced. In my opinion, the simple fact that various

experimental results are not quantitatively reproducible

indicates that supersolidity depends on the history and

preparation of crystals, consequently that it is related to

quenched disorder. However, there is not yet a universal

consensus on this statement.

In my opinion, the study by Kim and Chan of the effect

of 3He impurities is also consistent with the importance of

defects in the whole issue. They performed a series of

measurements as a function of impurity concentration [7].

They found that, even in the small concentration range

from 1077 to 1074, 3He impurities had a large effect on

both the supersolid fraction and the onset temperature Tc

for mass decoupling. Day and Beamish [27] noticed that

this was another indication that supersolidity is related to

the existence of defects (dislocations, grain boundaries)

where 3He impurities adsorb so that their local concentra-

tion is much higher than the average bulk concentration.

Two other observations contradict the simple model of

supersolidity in terms of Bose –Einstein condensation of

vacancies. If BEC took place in the crystal bulk, the specific

heat should show a large singularity similar to the famous

‘lambda’ singularity observed in bulk superfluid helium.

Kim and Chan found a very small anomaly in the specific

heat of solid helium but nothing like the expected lambda-

34 S. Balibar
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singularity [28]. A very precise measurement of the melting

curve was also done by Todoshchenko et al. [29] who found

no contribution to the solid entropy other than the usual

one due to phonons.

Finally, Kim and Chan observed a rather puzzling

variation of the supersolid density with pressure [25]. The

energy of a localized vacancy should increase strongly with

pressure. The tunnelling frequency of quantum vacancies

should decrease because the energy barrier separating

neighbouring sites should increase. As a result, one expects

the bottom of the energy band of vacancies to increase with

pressure and their density to decrease. Conversely, Kim and

Chan have observed that their supersolid density had a

non-monotonic variation with pressure: it increased from

26 to 55 bar before decreasing above.

At this stage, we tried to look for mass flow through 4He

crystals in a simpler experiment ‘a la Torricelli’, which

would provide more direct evidence of supersolid beha-

viour. In fact, at least two groups had already attempted to

observe a dc-mass flow through solid helium. Day and

Beamish filled a piece of porous glass with solid 4He and

increased the pressure outside in order to see if more mass

entered [30]. At low temperature, they observed no

additional mass flowing in. However, one could argue that,

in their setup, mass flow required some deformation of the

crystal lattice. It appeared interesting to test the possibility

of mass flow through a fixed lattice. In 1989, Bonfait et al.

[31] tried to fill a thin cylindrical capacitor with solid 4He at

the liquid – solid equilibrium pressure Pm and at low

temperature (T5 20 mK) (see figure 2). For the solid to

grow inside, mass had to flow out because the liquid density

is smaller by ten percent and the top of the capacitor was

closed. This time, no deformation of the crystal lattice was

necessary. But the solid never grew inside Bonfait et al.’s

capacitor. Although this strongly supported the absence of

dc-mass flow through their crystals, Bonfait et al.’s negative

result could have been due to facets blocking the growth at

the entrance of the capacitor. This is because crystals are

fully facetted during growth and facets easily anchor on

wall defects [32]. We thus designed a similar experiment

were mass flow would be due to the melting of a crystal [1],

in which case it is known that facets disappear and the

liquid – solid interface is much less pinned to walls [32].

6. The experiment by Sasaki et al.

As shown in figures 2 and 3, we have immersed a glass tube

in solid 4He at Pm, the solid – liquid equilibrium pressure of
4He. In such experiments, the temperature is sufficiently

homogeneous in the cell for the crystal shape to be

determined by gravity and surface tension only. As a

result, the crystal occupies the lower part of the cell as

would do water in a glass. Crystals were grown from the

superfluid liquid in the range 1.3 to 1.4 K by adding mass

through a fill line connecting the cell to a high pressure

cylinder outside. By growing them fast enough we could

solidify part of the inside of the glass tube (see [1] for more

details). After this, the whole cell was cooled down to

50 mK to look for mass superflow. For this we quickly

melted the crystal outside the tube by pumping some

helium through the fill line. This way, we could obtain a

situation with the level of the liquid – solid interface higher

by 1 cm inside the tube than outside. To reach the

hydrostatic equilibrium where the two levels are at the

same height, the solid inside had to melt and mass to flow

outside since the liquid density is 10% lower that that of the

solid. Note that any hydrostatic pressure difference is so

small (less than 26 1074 bar) that no plastic deformation

of the solid could occur. But we expected the two levels to

equilibrate if supersolidity took place.

In this experiment, we studied 13 crystals with various

qualities. The fast growth at 1.3 K usually creates grain

boundaries. Each grain boundary makes a groove, a kind

of inverted cusp where it meets the solid – liquid interface

(see figures 3 and 4). This is a consequence of mechanical

equilibrium because a grain boundary has a non-zero

Figure 2. Left: a schematic representation of the experiment by Bonfait et al. Right: the glass tube used by Sasaki et al. [1].

Supersolidity and superfluidity 35
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surface tension like the solid – liquid interface. Although we

could not see the grain boundaries inside the crystal, we

could know of their existence from the presence of these

cusps. Just after growth we could see many cusps but most

of them disappeared in a time in the order of 1 hour. It

seems that grain boundaries are pinned to defects at the

glass surface. There must be some stress gradients in these

crystals which slowly evolve in time so that, suddenly, some

grain boundaries unpin and quickly move to the side walls

where they vanish. Sometimes a few cusps remained for a

long time so that we could study crystals with some cusps,

some others with no cusps.

For good quality crystals showing no cusps inside the

tube we observed no mass flow. The solid – liquid interface

inside the tube remained fixed within 50 mm over 4 h. This

sets an upper bound for mass flow through the crystals: it is

at least 300 times less than expected if these crystals had a

1% concentration of vacancies moving at a critical velocity

of 10 mm s71, as first proposed by Kim and Chan. Our

observation shows that, if supersolidity exists in the bulk of
4He crystals, it cannot result from such a simple mechan-

ism. Furthermore, it also shows that, if there is a mass flow

at the interface between the glass wall and these crystals, as

proposed by Dash and Wettlaufer [33], it also has to be

very small.

With three crystals showing cusps inside the tube, we

observed some mass flow. Crystal 1 had one cusp and

relaxed by 1 mm until the cusp disappeared and the

relaxation stopped. This shows that grain boundaries are

necessary for mass flow. The grain boundaries have to

somehow connect the liquid inside the tube to the liquid

outside the tube. Crystal 2 had more cusps. It relaxed faster

and down to the equilibrium where the levels are the same

inside and outside the tube. As shown by figure 5, the

interface moved first at 6 mm s71; then it reached an even

more disordered region of the crystal after 500 s, where

more cusps were visible, and the velocity changed to 11 mm
s71. After about 20 min, the level height difference h(t)

reached 0 and stopped changing. Classical dissipative

motion would lead to an exponential relaxation because

the velocity would be proportional to the applied force (dh/

dt would be proportional to h). Conversely, here the

relaxation is linear. This is typical of superfluid flow at a

critical velocity. This second observation is consistent with

the work of Burovski et al. [34] who predicted that the

matter inside grain boundaries is superfluid within a very

general model of quantum solids. During the writing of this

article, Pollet et al. confirmed this with Monte Carlo

simulations of real helium crystals [35]. Clark and Ceperley

found the same three atomic layers thickness for grain

boundaries (see figure 6) but they have not yet published

results on their superfluidity.

Coming back now to the first crystal which had only one

cusp, we estimated the critical velocity along the grain

boundary from the velocity of the relaxation (0.6 mm s71).

There are some unknown parameters like the thickness e of

a grain boundary compared to the interatomic spacing a, its

Figure 4. A grain boundary makes a groove, a kind of

inverted cusp where it emerges at the solid – liquid interface.

This is because it has a certain surface tension which needs

to be equilibrated by the liquid – solid interfacial tension for

mechanical equilibrium.

Figure 3. Photograph of solid helium prepared at 1.3 K by

Sasaki et al. [1]. The interface between the liquid and the

solid shows cusps where grain boundaries emerge. Outside

the tube which appears black because of refraction effects,

the interface is lower than inside. It goes all around the tube

so that it can be seen on the right and on the left of the

tube, but also in front of it.
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width w compared to the tube diameter D, and the

magnitude of the superfluid density rs inside the grain

boundary compared to the crystal density rC. Assuming

that the product (a/e)(D/w)(rC/rs) is of order one, we found
that the critical velocity in a grain boundary is of order

1.5 m s71. This would be very large for a classical liquid

only about 1 nm thick but it is very close to what had been

measured for a few atomic layers of liquid helium adsorbed

on a wall [36].

However, during the writing of this article, we

discovered that the liquid wets partially the line where

the grain boundary meets the glass surface. This contact

line is in fact a channel with a triangular cross-section.

The order of magnitude of the channel width is 20 mm at

1 cm below the free liquid – solid level. We thus realized

that there was another possible interpretation of our first

experiment: the superflow could take place along the

contact line of the grain boundaries with the glass. If

right, this would mean that the critical velocity there is

about 1 cm s71, a reasonable value for a 20 mm size

channel. These channels should be superfluid at nearly

the same temperature as the bulk liquid, and this is

indeed what we observed. It is thus possible that the

superfluid transition temperature inside a grain boundary

is only a fraction of a Kelvin, as predicted by Pollet

et al. [35].

Figure 6. As shown by this numerical simulation by B. Clark and D. Ceperley [39], a grain boundary is a fluid layer a few

atomic layers thick.

Figure 5. The relaxation of the level difference h(t) for

‘crystal 2’ in the experiment by Sasaki et al. The level

relaxes at 6 mm s71 during the first 500 s and then at 11 mm
s71 until it reaches the equilibrium at h¼ 0 where it stops.

A viscous fluid would relax exponentially. Here the

relaxation is allowed by superfluid flow through grain

boundaries which are more numerous in the second half of

the relaxation.
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7. The end of the story?

Since the torsional oscillator measurements showed the

importance of disorder, and since we found that mass flow

is allowed by the presence of grain boundaries, we tried to

interpret the experiment by Kim and Chan in terms of grain

boundaries. However, as we shall see, it was not so easy. In

my opinion, the whole issue is not yet settled.

The main problem is the amplitude of the supersolid

density rs which has been measured by Kim and Chan.

They found values in the range from 0.3% to 1.5%. In

order to achieve 1% with grain boundaries, and if one

assumes that each grain boundary provides the equivalent

of one atomic layer of superfluid matter, one needs

typically one grain boundary every 100 atoms. With a

two-dimensional set of grain boundaries, it could be one

every 200 atoms. Since the interatomic spacing is 0.3 nm in
4He crystals, the typical grain size should thus be 60 nm in

the experiment by Kim and Chan. Obviously such a grain

size looks very small. Measuring the density of grain

boundaries in torsional experiments is not an easy task.

We thus tried to grow crystals in a way similar to what is

done in torsional oscillator experiments. Their crystals are

grown at constant volume by the ‘blocked capillary

method’.

When doing this, we obtained crystals with many grain

boundaries but whose typical spacing was visible (see

figure 7). The grain boundary density was not as high as

one every 60 nm. We had thus to find something else for

an interpretation of torsional oscillator measurements.

Part of the answer is suggested by new observations on

the effect of annealing. Both Grigorev et al. [37] and

Rittner and Reppy [38] have found that the pressure in

their cells seemed to decrease by several bars after

annealing. This is a large change which should be due

to the existence of large inhomogeneities in density before

annealing. It is possible that crystals grown at constant

volume contain small liquid regions which crystallize

during annealing. If this is true, then these liquid regions

could provide the 1% superfluid density. The observation

of a critical temperature Tc of order 100 mK would then

be due to the superfluid transition inside the grain

boundaries which would be the links between the liquid

regions. At present, this is the only possible scenario I can

imagine, but it is obviously rather speculative and needs

to be carefully checked.

In summary, it seems to me that supersolidity has to

do with quenched disorder and is not an intrinsic

property of 4He crystals, but before explaining everything

in terms of superfluid grain boundaries and stress

gradients, there are several experiments to do. They are

in progress. I hope that we soon learn more on

helium crystals, on their defects and on their quantum

properties.
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