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Autor: Michal Grochol
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obecném magnetickém a elektrickém poli metodou těsné vazby a rozvojem vlnové
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the double quantum well in the magnetic and electric field by the tight-binding
method and by the expansion of the wave function into eigenfunctions of the
angular momentum. Using calculated dispersion relations and wave functions
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Chapter 1

Introduction

1.1 Overview

The two-dimensional semiconductor heterostructures like modulation doped heterostruc-
tures, quantum wells and superlattices have attracted the attention for a long time
and have found many application e.g. in the semiconductor lasers, HEMTs, LEDs etc.
The development of the growth technologies for theses structures like molecular beam
epitaxy (MBE) and metal oxide chemical vapour deposition (MOCVD) enabled a sig-
nificant improvement of the sample quality and thus stimulated further experimental
and theoretical research.
Quantum wells have attracted attention since their first fabrication in 1973. Due to
their unique properties, especially strong dependence of transport and optical prop-
erties on the applied magnetic and electric field, double quantum wells (DQW) are
investigated in an intensive way nowadays. The mostly used material for fabricating
these structures is GaAs/GaAlAs thanks to its properties, e.g. practically the same
lattice constant of GaAs and AlAs. Typical parameters of AlGaAs based semiconduc-
tors are listed in Table 2.1.
Perpendicular magnetic field is studied the most, since Landau levels appear (if we ne-
glect electron-hole interaction). Landau levels are on the origin of Quantum Hall effect,
which was discovered in low dimensional quantum structures and has already found
many applications, in the first place in metrology as a resistance standard. Parallel
magnetic field is also of interest since a singularity in the electron density of states in
this field was discovered [1] and then experimentally measured [2], [3].
Excitons play a significant role in DQW and they have been treated so far predomi-
nantly by variational approach [4], [2] in the electric field. Recently described theoret-
ical treatment of the magnetoexcitons [5] is the basis of our approach. The influence
of parallel and perpendicular magnetic field on the exciton dispersion relation is signif-
icant and various interesting effects can be observed as a shift of the minimum of the
dispersion relation away off the origin, or the appearance of a new kind of van Hove
logarithmic singularity in the exciton density of states or the increase of the effective
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CHAPTER 1. INTRODUCTION 4

mass of the exciton [6]. The possible applications of the exciton dispersion relation
like the saser development [7] or the conditions for Bose condensation of the excitons,
which has already been measured [8], are mentioned. All these new effects together
with our results are in detail discussed in chapter 7.

1.2 Objectives

The aim of this work is to develop an efficient way for solving a Schrödinger equation
of the exciton in DQW and thus calculate the density of states and mainly the the-
oretical luminescence spectra which could be then compared to experimental results.
Since Institute of Physics of Charles University has samples grown by MBE from the
Academy of Sciences of the Czech Republic and from the University of Erlangen the
developed method should be used for efficient designing of new samples with optimized
parameters to make the best of the capacity of the optical laboratory of Institute of
Physics to measure and verify as much predictions as possible.



Chapter 2

Band structure of bulk III-V
compounds

The theory of next three chapters is taken mainly from [9].

2.1 Crystalline and electronic properties

The III-V compounds crystallize in the sphalerite structure. The first Brillouin zone of
the reciprocal lattice is a truncated octahedron (see Fig. 2.1). Several high symmetry
points or lines of the first Brillouin zone have received specific notations, e.g. X, L and
Γ points. In a III-V binary material like GaAs, there are 8 electrons per unit cell (3
from Ga and 5 from As) which contribute to the chemical bounds. We can say that
the orbital of every atom hybridize (due to interaction with his neighbours) to form
bonding and antibonding state which broaden into bands because of a great number
of unit cells interacting. Two electrons fill the s band and remaining six electrons
occupy the p bands. Antibonding bands are empty and the lowest lying one forms the
conduction band. All III-V compounds have the top of the valence band in the center
of Brillouin zone (in point Γ). The spin-orbit coupling lowers the sixfold degeneracy in
the point Γ, and gives rise to a quadruplet with J = 3/2 (symmetry Γ8) and a doublet
J = 1/2 (symmetry Γ7). The conduction band edge of the III-V materials is situated
near one of the points Γ, L or X. The heavier the cation the more likely it is to find
band edge at the point Γ.

2.2 ~k.~p analysis

In a bulk crystal the one-electron Schrödinger equation takes form of:

[
p2

2m0

+ V (r) +
h̄2

4m2
0c

2
(σ ×∇V ) .p + Hr

]
Ψ(r) = EΨ(r). (2.1)

5



CHAPTER 2. BAND STRUCTURE OF BULK III-V COMPOUNDS 6

Figure 2.1: First Brillouin zone of face-centred cubic lattice, taken from [9].

V (r) is the crystalline potential which includes an average of the electron-electron
interaction and is periodic with the period of the Bravais lattice. The third term is
the spin-orbit coupling and the fourth term is the relativistic correction (mass-velocity
and Darwin term). The solution of eq. (2.1) can be written in the Bloch form:

Ψnk(r) = Nunk(r) exp(ik.r), (2.2)

where N is a normalization coefficient and unk(r) is a periodic function of r with the
period of the lattice. The periodic parts of the Bloch functions unk(r) are the solutions
of (dropping the relativistic corrections)

[
p2

2m0

+ V (r) +
h̄2

4m2
0c

2
(σ ×∇V ) .p+

+
h̄2k2

2m0

+
h̄k

2m0

(
p +

h̄2

4m2
0c

2
(σ ×∇V )

)]
unk(r) = εnkunk(r). (2.3)

The k-dependent terms in (2.3) vanish at k=0 and commute with the translation
operator. It means that we can write

unk(r) =
∑
m

cm(k)um0(r). (2.4)

By inserting (2.4) into (2.3), multiplying by u∗n0(r) and integrating over a unit cell we
obtain:

∑
m

{(
εn0 − εnk +

h̄2k2

2m0

)
δnm +

h̄k

m0

.〈n0|p +
h̄2

4m2
0c

2
(σ ×∇V )|m0〉

}
cm(k) = 0,

(2.5)
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Table 2.1: Parameters of AlGaAs based semiconductors according to [10], [9], [11].

GaAs AlxGa1−xAs AlAs

ε0 [eV] 1.5192 1.5192 + 1.247x (x < 0.45) 3.13

a [nm] 5.6533 5.6533 + 0.0078x 5.6611
mΓ6

m0
0.0665 0.0665 + 0.0835x 0.15

mlh

m0
0.094 0.094 + 0.043x 0.137

mhh

m0
0.34∗ 0.34 + 0.42x 0.76

mSO

m0
0.15 0.15 + 0.09x 0.24

∆ [eV] 0.341 0.275

Bandgap Direct Direct pro x < 0.45 Indirect

∗
Mean value - Heavy hole band of GaAs is not rotationally parabolic.

where

〈n0|A|m0〉 =

∫

unit cell
u∗n0(r)Aum0(r)d

3r. (2.6)

Eq. (2.5) is well suited for the perturbation approach. Supposing that the nth band
edge is non degenerate, we can then assume for small k:

cn(k) ∼ 1; cm(k) = α.k, (2.7)

which inserted in eq. (2.5), results in:

cm(k) =
h̄k

m0

.Πnm
1

εn0 − εm0

(2.8)

and gives the second order correction to εn0:

εnk = εn0 +
h̄2k2

2m0

+
h̄2

m0

∑

m6=n

|Πnm.k|2
εn0 − εm0

. (2.9)

The vector Π is defined as:

Π = p +
h̄2

4m2
0c

2
(σ ×∇V ). (2.10)

As long as k is small (εnk−εn0 remains much smaller than all band edge gaps εn0−εm0)
the dispersion relations of the non degenerate bands are parabolic in k in the vicinity
of the Γ point.

εnk = εn0 +
h̄2

m0

∑

α,β

kα
1

µαβ
n

kβ, (2.11)
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where
1

µαβ
n

=
1

m0

δαβ +
2

m2
0

∑

m6=n

Πα
mnΠβ

nm

εn0 − εm0

, (2.12)

µαβ
n is the effective mass tensor which describes the carrier kinematics in the vicinity

of the zone centre and for the energy close to the nth band edge. Assuming the validity
of eq. (2.12) the overall effects of the band structure are embodied in the use of an
effective mass instead of the free electron mass. The notion of the effective mass is at
the heart of the semiclassical description of the carrier motion in a semiconductor.

2.3 Electrons and holes

It can be shown that if an external force F is applied on the carrier, the equation of
motion takes form of:

h̄
dk

dt
= F (2.13)

and the carrier velocity in the Bloch state is equal to

v =
1

h̄

∂εn

∂k
. (2.14)

Assuming the external force weak enough to preclude any interband transitions and
using eq. (2.12) we can write:

vα =
1

h̄

∑

β

(
1

µαβ
n

+
1

µβα
n

)
kβ. (2.15)

µαβ
n is the simplest for the antibonding s orbital since it is a positive scalar:

1

µαβ
Γ6

=
1

mΓ6

δαβ; α, β = x, y, z (2.16)

1

mΓ6

=
1

m0

+
2

m2
0

∑

m6=Γ6

|πz
Γ6m|2

εΓ6 − εm0

. (2.17)

The effective mass of the topmost occupied valence band is negative (due to coupling
with higher band edges) and if an electromagnetic force is applied we can analyze the
motion as the motion of fictitious particles characterized by a positive effective mass
and a positive charge.
Let us calculate the electric current density. If the carrier velocity in the Bloch state
is vk then

Jk = − e

Ω
vk. (2.18)
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The total current is the sum over all occupied states. Using the distribution function
fe(k) of the electrons (which would be Fermi-Dirac distribution function at thermal
equilibrium) we can write for a single populated band:

J = − e

Ω

∑

k

vkfe(k), (2.19)

where Ω is the crystal volume. If the band is partially occupied, we can write:

J = − e

Ω

∑

k

vk +
e

Ω

∑

k

vk(1− fe(k)). (2.20)

The first term is zero because the band is filled. The second term can be interpreted as
the current of fictitious particles called holes with a positive charge and a distribution
function fh(k) = 1−fe(k). We can write the distribution function explicitly in isotropic
parabolic bands at thermal equilibrium:

fh(k) =
1

1 + exp[ 1
kBT

( h̄2k2

2mν
− ξ)]

ξ = εν − µ. (2.21)

The chemical potential of the holes measured from the valence edge is equal to the
electron chemical potential measured from the same edge with the opposite sign.

2.4 Kane model

We restrict our effort to diagonalize the terms with k 6= 0 in eq. (2.3). Due to a non zero
spin-orbit coupling in III-V compounds we form linear combinations of the 8 band edge
Bloch functions such as to diagonalize eq. (2.3) at k = 0. Such a linear combination is
the eigenfunction of the total angular momentum J = L+σ and its projection Jz. For
the S edge J = 1/2 (Γ6 symmetry) and for the P edges we have either J = 3/2 or 1/2.
The quadruplet J = 3/2 is always higher in energy than the doublet J = 1/2 in III-V
compound. The quadruplet has the Γ8 symmetry and the doublet the Γ7 symmetry.
Each edge is twice degenerate due to mJ which are eigenvalues of Jz. The energy
separation of the edges can be seen in Fig. 2.2. We project the terms with k 6= 0 in
eq. (2.3) on our basis and get a matrix 8× 8. The equation for eigenvalues ε(k) of this
matrix can be written as:

ε0 = εΓ6 − εΓ8 ; ∆ = εΓ8 − εΓ7 (2.22)

P =
−i

m0

〈S|px|X〉 =
−i

m0

〈S|py|Y 〉 =
−i

m0

〈S|pz|Z〉 (2.23)

λ(k) = ε(k)− h̄2k2

2m0

. (2.24)
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Figure 2.2: Band structure of a direct gap III-V in the vicinity of the zone centre, taken
from [9].

S represents s function and X,Y,Z are p functions and finally:

λ(k) = −ε0 (2.25)

or

λ(k)[λ(k) + ε0][λ(k) + ε0 + ∆] = h̄2k2P 2

[
λ(k) + ε0 +

2

3
∆

]
. (2.26)

We see that ε(k) depends only on |k|.
If we take k‖J‖z, then for m = ±3

2
we obtain a state associated with heavy particles

with effective mass equal to the bare electron mass. The m = ±1
2

states are associated
with light particles. In the vicinity of the band edges (ε = 0, ε = −ε0, ε = −ε0 −∆)
we can expand eq. (2.26) in k and we find for the effective masses:

1

mΓ6

=
1

m0

+
4P 2

3ε0

+
2P 2

3(ε0 + ∆)
(2.27)

1

ml
Γ8

=
1

m0

− 4P 2

3ε0

(2.28)

1

mΓ7

=
1

m0

− 2P 2

3(ε0 + ∆)
, (2.29)

mΓ6 > 0 and ml
Γ8

,mΓ7 < 0.
Eq. (2.26) is an implicit equation for λ(k) versus k but is explicit for k versus λ(k).
We notice that parabolic dispersion law is valid only for small k, when increasing k
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Table 2.2: Values of Ep = 2m0P
2 in eV in some III-V materials, taken from [9].

material Ep

InP 17.00

InAs 21.11

InSb 22.49

GaAs 22.71

GaSb 22.88

the conduction band effective mass increases. This is called the band non-parabolicity.
The fact that the heavy particle states are dispersionless is one of the main drawbacks
of restricting of the k.p interaction to the Γ6, Γ7, Γ8 bands. This shortcoming can be
solved by taking into account interaction between Γ6, Γ7, Γ8 and remote bands only
for the heavy particle states. The accuracy of the Kane model can be compared, for
example, with the empirical tight-binding method, whose calculations are valid over
whole Brillouin zone. The Kane model and global band structure descriptions coincide
well for energies of the whole GaAs and AlAs bandgaps.
The knowledge of the value of P in III-V materials listed in Table 2.2 is instructive
for the usage of Kane model. We notice that P is merely material independent. This
result means that the rapidly varying function unk(r) of Bloch functions of the host
band edges are quite similar in different materials.



Chapter 3

Band structure of heterostructures

3.1 Envelope function model

Advanced epitaxial techniques, such as molecular beam epitaxy or metal -organic
chemical vapour deposition, have made it possible to grow interfaces between two
semiconductors which are flat up to one atomic monolayer (2.83 Å in GaAs). The
interface is usually represented as a continuously varying position-dependent band
edge, assuming perfect bi-dimensional growth. Typical band edges for GaAs(material
A)/GaAlAs(material B) profiles are shown in Fig. 3.1
We assume that the materials constituting the heterostructure are perfectly lattice-
matched and have the same crystallographic structure. These assumptions are well
justified for GaAs/GaAlAs. We make two assumptions:

• The wave function is expanded inside each layer to the periodic parts of the Bloch
functions:

Ψ(r) =
∑

l

f
(A)
l (r)u

(A)
l,k0

(r), (3.1)

if r corresponds to an A layer and

Ψ(r) =
∑

l

f
(B)
l (r)u

(B)
l,k0

(r), (3.2)

if r corresponds to a B layer. k0 is the point in the Brillouin zone which the het-
erostructure states are built around. The summation runs over all edges included
in the analysis.

• The periodic parts of the Bloch functions are assumed to be the same in each
kind of layer which constitutes the heterostructure:

u
(A)
l,k0

(r) ≡ u
(B)
l,k0

(r) ≡ ul,k0(r) (3.3)

12
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εA

εB

Ev(z)

Ec(z)

AB B

Figure 3.1: Conduction and valence band profiles.

Our truncation of the summation over l to a finite number of the band edges means
that the actual dispersion relation of the host is well described by approximate energies
ε
(A)
l (kA), ε

(B)
l (kB). According to the previous chapter we know that the conduction

band states are well reproduced by the Kane model in both GaAs and AlAs.
Since the lattice constants of the host layers are assumed to be the same, the het-
erostructure becomes translationally invariant in the layer plane and fl can thus be
factorized into:

fA,B
l (r⊥, z) =

1√
S

exp(ik⊥.r⊥)χA,B
l (z), (3.4)

where S is a sample area and k⊥ = (kx, ky) is a bi-dimensional wave vector, which is
the same in both materials. Thus the heterostructure wave function is a sum of the
product of rapidly varying functions ul,k0 by slowly varying envelope function fl.
Hamiltonian takes form of:

H =
p2

2m0

+ VA(r)θA + VB(r)θB, (3.5)

where θA (θB) is a step function, unity in A (B) and zero in B (A).

Let H act upon Ψ(r). Multiplying by u∗m0(r) exp(ik⊥.r⊥)χ
∗(A,B)
m (z) and integrating over

space we find after some computation that χ
(A,B)
l (z) fulfil a set of eigenvalue equations:

D0(z,−ih̄
∂

∂z
)χ = εχ. (3.6)

D0 is a matrix N × N , where N is the number of band edges retained in eq. (3.1),
(3.2):

D0
lm(z,−ih̄

∂

∂z
) =

[
εA

l,0θA + εB
l,0θB +

h̄2k2
⊥

2m0

− h̄2

2m0

∂2

∂z2

]
δl,m +

+
h̄k⊥
m0

.〈l|p⊥|m〉 − ih̄

m0

〈l|pz|m〉 · ∂

∂z
, (3.7)
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where:

〈l|p|m〉 =

∫

Ω0

u∗l0pum0d
3r (3.8)

and Ω0 is the unit cell of the host layer. In eq. (3.7) the larger N the more accurate the
results will be. In practice we restrict N to 8, which means we study the heterostructure
states attached to the Γ6, Γ7, Γ8 bands of the host material. The effect of the remote
bands can be taken into account only up to the second order in p:

(
D0 − h̄2

2

∑

α,β

∂

∂rα

1

Mαβ

∂

∂rβ

)
χ = εχ, (3.9)

where:
m0

Mαβ
lm

=
2

m0

∑
ν

〈l|pα|ν〉 1

ε− ε
(A)
ν0 − ε

(B)
ν + ε

(A)
ν

〈l|pβ|ν〉. (3.10)

As can be seen from eq. (3.7), (3.9), (3.10) the microscopic details of the heterostructure
have explicitly disappeared being substituted by effective parameters: interband matrix
elements, effective masses and band offset. To obtain boundary conditions we must
integrate eq. (3.9) across the interface and as asymptotic behaviour we take that χ
tends to zero at large z.

3.2 Ben Daniel-Duke model

The Ben Daniel-Duke model, which is the simplest one, works qualitatively for the
lowest conduction states of GaAs/GaAlAs heterostructures with GaAs layer thickness
larger than ∼ 100 Å and for the heavy hole levels at k⊥ = 0 in any heterostructure.
We consider now a parabolic isotropic conduction band and effective masses mA, mB.
Afterwards eq. (3.9) can be simplified to:

[
εs + Vs(z)− ∂

∂z

1

µ(z)

∂

∂z
+

h̄2k2
⊥

2µ(z)

]
χ(z) = εχ(z) (3.11)

1

µ(z)
=

1

m0

+
1

M zz
ss

(3.12)

µ(z) =

{
mA in A layer
mB in B layer

(3.13)

Vs(z) =

{
0 in A layer
Vs in B layer

(3.14)

where Vs is the energy shift of the S band edge when going from the A to the B material.
The boundary conditions simplify to the fact that χ(z), 1

µ(z)
d
dz

are both continuous. If
we study a quantum well schematized in Fig. 3.2 assuming mA,mB > 0 and taking



CHAPTER 3. BAND STRUCTURE OF HETEROSTRUCTURES 15

B A B

Figure 3.2: Quantum well.

into account that the potential is an even function we can write even solution:

χeven(z) = A cos(kAz) |z| ≤ LA

2
(3.15)

χeven(z) = B exp

[
−κB(z − LA

2
)

]
|z| ≥ LA

2
(3.16)

and odd solution:

χodd(z) = A sin(kAz) |z| ≤ LA

2
(3.17)

χodd(z) = B exp

[
−κB(z − LA

2
)

]
|z| ≥ LA

2
(3.18)

with:

ε− εs =
h̄2k2

A

2mA

+
h̄2k2

⊥
2mA

= Vs − h̄2κ2
B

2mB

− h̄2κ2
⊥

2mB

. (3.19)

By matching boundary conditions we get:

cos(ϕA)− mA

mB

kA

κB

sin(ϕA) = 0 for even states (3.20)

cos(ϕA) +
mA

mB

κB

kA

sin(ϕA) = 0 for odd states (3.21)

ϕA =
1

2
kALA. (3.22)

Two interesting cases are shown in Fig. 3.3. When mA −mB is small enough we can
rewrite eq. (3.11) using:

h̄2k2
⊥

2µ(z)
=

h̄2k2
⊥

2mn

+
h̄2k2

⊥
2

[
1

µ(z)
− 1

mn

]
(3.23)

and taking the second term as a perturbation to H′

H′
= εs + Vs(z)− ∂

∂z

1

µ(z)

∂

∂z
+

h̄2k2
⊥

2mn

. (3.24)
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Figure 3.3: Ground state envelope functions for a quantum well with infinite Vs (dashed
line) or with finite Vs but infinite mB

mA
(solid line), taken from [9].

The first order corrections to the unperturbated eigenstates are then given by:

∆En =
h̄2k2

⊥
2

[
1

mA

[1− Pb(En)] +
1

mb

Pb(En)− 1

mn

]
, (3.25)

where:

Pb(En) = 2

∫ ∞

LA
2

χ2
n(z)dz (3.26)

is the integrated probability of finding the electron in the barriers while in the nth state.
The dispersion relation takes form of:

En(k⊥) ' εs + En(0) +
h̄2k2

⊥
2mn

. (3.27)

With this equation we can easily compute the density of states defined as:

ρ(ε) =
∑

ν

δ(ε− εν), (3.28)

where εν is the energy associated with the state |ν〉. The density of states gives us
information about how many states |ν〉 per unit energy are available around a given
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Figure 3.4: Properties of the solution of eq. (3.24), taken from [9].

energy ε. We obtain after some manipulation:

ρ(ε) =
∑

n

ρn(ε) (3.29)

ρn(ε) =
mn

πh̄2 θ(ε− En), (3.30)

where θ(x) is a step function. The properties of the solution are summarized in Fig. 3.4.



Chapter 4

Excitons

4.1 Excitons in idealized bulk materials

We consider a bulk material with a single spherical conduction band with a dispersion
relation:

εc(k) = εg +
h̄2k2

2m∗
c

, (4.1)

which is separated by energy εg from the valence band with a dispersion relation:

εv(k) =
−h̄2k2

2m∗
v

. (4.2)

The ground state of a semiconductor is a state with valence band filled by electrons
and empty conduction band. When promoting an electron with kc from the valence
band to the conduction band the hole with kh = −kv and m∗

v appears. Neglecting the
Coulomb interaction the energy of the first excited state is εg. Taking into account
the Coulomb interaction the energy of the excited state can be lowered as can be seen
from the solution of the following equation:

[
p2

e

2m∗
c

+
p2

h

2m∗
v

− e2

κ|re − rh|
]

Ψ(re, rh) = (ε− εg)Ψ(re, rh). (4.3)

This Hamiltonian has the same structure as the Hamiltonian of the hydrogen atom
and it can be solved in the same way. We define new coordinates, centre-of-mass and
relative distance of the electron-hole pair:

r = re − rh (4.4)

R =
m∗

cre + m∗
vrh

m∗
c + m∗

v

. (4.5)

18
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We can thus rewrite eq. (4.3) in the following form

[
P 2

e

2m∗
c + 2m∗

v

+
p2

2µ
− e2

κr

]
Ψ(r,R) = (ε− εg)Ψ(r,R), (4.6)

where:

P = −ih̄
∂

∂R
(4.7)

p = −ih̄
∂

∂r
(4.8)

µ =
m∗

cm
∗
v

m∗
c + m∗

v

. (4.9)

Solution of eq. (4.6) can be written as:

Ψ(r,R) =
1√
Ω

exp(iKR)ϕ(r), (4.10)

Ω being the crystal volume and ϕ(r) satisfying the equation:

[
p2

2µ
− e2

κr

]
ϕ(r) = ξϕ(r). (4.11)

The total energy can be expressed as:

ε = εg + ξ +
h̄2K2

2(m∗
c + m∗

v)
. (4.12)

For the ground state the energy and wave function are equal to:

ξ = − µe4

2κ2h̄2 (4.13)

ϕ(r) =
1√
πa3

0

exp(−r/a0), (4.14)

where

a0 =
h̄2κ

µe2
(4.15)

is the effective radius. We can interpret this solution as the motion of a fictitious
particle with mass M = m∗

c + m∗
v and with kinetic energy h̄2K2

2M
. This particle is called

exciton and consists of an electron and a hole which orbit around each other and whose
centre-of-mass moves.
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4.2 Excitons in idealized well structures

Let us consider a slab of material A between two layers of material B. Assuming the
same dielectric constants κ, the same effective masses m∗

c ,m
∗
v of the conduction and

valence band respectively in both materials and supposing that material A confines
both electrons and holes, we write the Hamiltonian:

H =
p2

e

2m∗
c

+
p2

h

2m∗
v

− e2

κ|re − rh| + Ve + Vh, (4.16)

where Ve, Vh are step like potentials for the electron (hole) in the z direction. We can
use the same procedure as in the previous section to separate the relative and centre-
of-mass motion, but in this case it is only possible to do so in the x and y direction.
We introduce the vectors R⊥, ρ:

ρ = ρe − ρh (4.17)

R⊥ =
meρe + mhρh

me + mh

, (4.18)

where we have changed the notation m∗
c(v) = me(h). And finally we obtain:

H =
P 2

e

2me + 2mh

+
p2

2µ
− e2

κ
√

ρ2 + (ze − zh)2
+

p2
ze

2me

+
p2

zh

2mh

+ Ve + Vh + εg, (4.19)

which leads to the factorization of the wave function:

Ψ(re, re) =
1√
S

exp(iK⊥R⊥)ϕ(ze, zh, ρ). (4.20)

In comparison with eq. (4.6) we have introduced a two-dimensional exciton in the xy
plane. Since eq. (4.20) is quite similar to eq. (4.6) the common technique to solve this
equation is using Gaussian sets or non linear variational parameters [12]. The latter
technique was used to write the solution:

ϕ(ze, zh, ρ) = Nχe(ze)χh(zh) exp

(−1

λ

√
ρ2 + (ze − zh)2

)
, (4.21)

where N is a normalization constant and λ is a variational parameter. The electrons
in the lowest conduction band and the holes in the lowest hole band were considered.
We should note that there are two kinds of excitons: those with heavy holes called
heavy hole excitons and those with light holes called light hole excitons. The light hole
excitons are always less bound than the heavy hole excitons.
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Figure 4.1: Double quantum well in electric and magnetic field.

4.3 Excitons in idealized double quantum well

4.3.1 Introduction

In this section we will deal with excitons in the double quantum well (DQW) in electric
and magnetic field. The situation is shown in Fig. 4.1. The problem of the exciton in
DQW in the electric field is solved in [2] by variational method. We will use a different
approach but some result of [2] will also be useful to us. The theory is taken from the
major part from [5]. We define a direct (indirect) exciton as an exciton composed of
an electron and a hole found in a same (different) well.

4.3.2 Tight-binding basis

The electron (hole) in the magnetic B and electric field F is described by the Hamil-
tonian:

He(h) =
1

me(h)

[
pe(h) ± eAe(h)

]2
+ Ve(h)(ze(h))± ere(h)F, (4.22)

where Ve(h)(ze(h)) are step like functions of the double well potential for the electron
(hole). In our approach the electric field will be non zero only in the z direction and
will thus model the asymmetry of the symmetrical DQW:

F = ezF, (4.23)

where ez is a unity vector in the z direction. First we discuss the magnetic field in the
x direction (parallel to the xy plane). Our choice of the gauge for the vector potential
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A is:
A(r) = −B‖zey. (4.24)

The next step is the introduction of the magnetic field dependent tight-binding basis
function |e(h), j〉 (j=1,2 is quantum well number)

|e(h), j〉 = ϕj
e(h)(ze(h)) exp

(
∓izjye(h)

eB‖
h̄

)
, (4.25)

where ϕj
e(h)(ze(h)) is the tight-binding basis function describing an electron (hole) in the

jth well in the absence of external field. Such a choice of the basis functions assumes
that the size quantization energy is the largest energy scale and the relation

∆En À h̄ω0, (4.26)

is satisfied. ∆En represents the energy separation between size-quantized levels in each
well and ω0 = eB/m is the cyclotron frequency. The zj is the coordinate of the jth

QW centre. We introduce the energy in z direction and tunnelling elements:

εe(h)(B) = 〈ϕ1(2)
e(h)(ze(h))|Ve(h) +

p2
z

2me(h)

+
e2B2

‖
2me(h)

(ze(h) − z1(2)e(h))
2|ϕ1(2)

e(h)(ze(h))〉 (4.27)

te(h) = 〈ϕ1(2)
e(h)(ze(h))|Ve(h) +

p2
z

2me(h)

+
e2B2

‖
2me(h)

(z − z2(1))
2|ϕ2(1)

e(h)(ze(h))〉. (4.28)

The last term in eq. (4.27) is a usual diamagnetic shift. We neglect the same term in
eq. (4.28) (as basis function are almost orthogonal) and shall consider the tunnelling
element te(h) being field independent in our approximation. We also neglect the in-
trawell Stark effect which does not change the qualitative results. The Hamiltonian in
this basis then takes form of a 2× 2 matrix with elements:

H
11(22)
e(h) = 〈e, 1(2)|H|e, 1(2)〉 = εe(h)(B) +

p2
‖

2me(h)

± (∓)edF (4.29)

H
12(21)
e(h) = 〈e, 1(2)|H|e, 2(1)〉 = te(h) exp

(
±(∓)

dye(h)eB‖
h̄

)
, (4.30)

where d is the interwell distance.

4.3.3 Electron-hole interaction

After introducing the tight-binding basis we write the initial electron-hole two-particle
Hamiltonian in the effective mass approximation

H =
1

me

(pe + eAe)
2 + Ve(ze) +

1

mh

(ph − eAh)2 + Vh(zh) + C(re − rh), (4.31)
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where C(re − rh) is a potential describing the electron-hole interaction. We use either
Coulomb potential for the numerical calculations or quadratic potential for the analyt-
ical calculations. We also use two different gauges, symmetric for the analytical and
numerical calculations:

A = (−1

2
B⊥y,

1

2
B⊥x−B‖z, 0) (4.32)

and asymmetric only for the numerical calculation to test the numerical precision and
stability:

A = (0, B⊥x−B‖z, 0). (4.33)

We introduce the ”two-particle” tight-binding basis with the following four basis func-
tions

|i, j〉 = |e, i〉|h, j〉 (4.34)

to describe excitonic effects. Using eq. (4.25) we can write this basis explicitly

|1, 1〉 = ϕ1
e(ze)ϕ

1
h(zh) exp

[
−iz1(ye − yh)

eB‖
h̄

]

|1, 2〉 = ϕ1
e(ze)ϕ

2
h(zh) exp

[
−i(z1ye − z2yh)

eB‖
h̄

]

|2, 1〉 = ϕ2
e(ze)ϕ

1
h(zh) exp

[
−i(z2ye − z1yh)

eB‖
h̄

]

|2, 2〉 = ϕ2
e(ze)ϕ

2
h(zh) exp

[
−iz2(ye − yh)

eB‖
h̄

]
.

(4.35)

The introduction of the basis in eq. (4.34) enables us to separate z and parallel (with
respect to the xy plane) motion and to derive the matrix Schrödinger equation for the
wave functions depending only on the transverse coordinates re(h). Thus projecting
Hamiltonian from eq. (4.31) on the basis eq. (4.34) we obtain the following system of
equations

(
Ĥ − C11 + ∆

)
χ11 − th exp(−i

dyheB‖
h̄

)χ12 − te exp(i
dyeeB‖

h̄
)χ21 = εχ11

(
Ĥ − C12 + ∆

)
χ12 − th exp(i

dyheB‖
h̄

)χ11 − te exp(i
dyeeB‖

h̄
)χ22 = εχ12

(
Ĥ − C21 + ∆

)
χ21 − te exp(−i

dyeeB‖
h̄

)χ11 − th exp(−i
dyheB‖

h̄
)χ22 = εχ21

(
Ĥ − C22 + ∆

)
χ22 − th exp(i

dyheB‖
h̄

)χ21 − te exp(−i
dyeeB‖

h̄
)χ12 = εχ22, (4.36)

where
∆ = εe(B) + εh(B) (4.37)
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and we assume that the electrons and holes are in the ground state in z direction. The
elements of C are expressed by:

Cij =

∫
dzedzhϕ

2
i (ze)C(re − rh)ϕ

2
j(zh). (4.38)

The operator Ĥ is defined as:

Ĥ =
P̂2

e

me

+
P̂2

h

mh

(4.39)

P̂e(h) = pe(h),‖ ± 1

2
(ez × re(h))eB⊥. (4.40)

4.3.4 Excitonic centre-of-mass separation

In the next step, which is the centre-of-mass separation, we use a procedure similar
to the one proposed in [13] and generalize it to the case of a multicomponent wave
function. We look for the solution of the system of equations (4.36) in the following
form:




χ11

χ12

χ21

χ22


 = exp

[
(Kx − eB⊥

2h̄
y)X + (Ky +

eB⊥
2h̄

x)Y

]



u11(r)

u12(r) exp
(
i
dY eB‖

h̄

)

u21(r) exp
(
−i

dY eB‖
h̄

)

u22(r)




,

(4.41)
where the centre-of-mass coordinate is equal to

R =
mere + mhrh

me + mh

(4.42)

and the coordinate of the relative motion is expressed by

r = re − rh. (4.43)

Introducing eq. (4.41) in eq. (4.36) we get the following Hamiltonian for the basis
(4.41):

H =




ĥ11(k̂,K, r) Th(y) Te(y) 0

T ∗
h (y) ĥ12(k̂,K− ey

deB‖
h̄

, r) 0 T ∗
e (y)

T ∗
e (y) 0 ĥ21(k̂,K + ey

deB‖
h̄

, r) T ∗
h (y)

0 Te(y) Th(y) ĥ22(k̂,K, r)


 ,

(4.44)
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where

ĥij(k̂,K, r) = ĥ(k̂,K, r)− Cij (4.45)

ĥ(k̂,K, r) =
h̄2

2

K2
x + K2

y

M
+

k̂2

2m
+

eB⊥h̄

M
(Kyx−Kxy) + (4.46)

+
e2B2

⊥
8m

(x2 + y2)− γeB⊥h̄

2m
(xk̂y − yk̂x),

which can be rewritten:

ĥ(k̂,K, r) =
k̂2

2m
− γeB⊥h̄

2m
(ez × r)k̂ +

e2B2
⊥

8m
(ez × r)2 +

eB⊥h̄

M
(ez × r)K +

K2

2M
, (4.47)

where K is the centre-of-mass momentum, k̂ = −ih̄ ∂
∂r

is the relative motion momen-
tum, M is the total mass of the exciton, m = memh/M is the reduced mass and
γ = (me − mh)/M . If B‖ is non zero then the tunnelling matrix elements acquire a
phase factor and become functions of the coordinate y:

Te(h)(y) = te(h) exp(i
dyeB‖

h̄

mh(e)

M
). (4.48)

We can make an important conclusion from the structure of the Hamiltonian in eq. (4.44).
Under the condition B‖ 6= 0 the excitons indirect in r-space become also indirect in

k-space, thus their energy minimum shifts by δK = ey
deB‖

h̄
from zero. This momentum

shift results from the correspondence between the centre of the orbit of the charged
particle in the magnetic field B‖ and the y-component of the momentum. Thus electron

and hole separated in real space by the distance d are separated by the vector ey
deB‖

h̄

in the momentum space.

4.3.5 Parabolic potential

To pursue the analytical solution of the Hamiltonian (4.44) as far as possible, we
introduce a parabolic potential into eq. (4.45) and phenomenological constants in order
to describe the energy separation of the direct (d) and indirect (ind) exciton levels:

C11,22 = Cdr
2 − Sd (4.49)

C12,21 = Cindr
2 − Sind. (4.50)

First we find eigenvalues and wave functions of the diagonal elements of the matrix
(4.44), that is to say we solve the Hamiltonian:

H(in)d =
k̂2

2m
− γeB⊥h̄

2m
(ez × r)k̂ +

e2B2
⊥

8m
(ez × r)2+

+
eB⊥h̄

M
(ez × r)K +

K2

2M
+ C(in)dr

2 − S(in)d. (4.51)
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If B⊥ = 0 the solution are Hermit polynomials, we write the first wave function (N(in)d

is a normalization constant)

Φ(in)d(r) = N(in)d exp

(
−r2

√
C(in)dm

2h̄2

)
(4.52)

and energy levels

ε(in)d
nx,my

=

√
2C(in)dh̄

2

m
(nx + my + 1)− S(in)d, (4.53)

where nx,my are quantum numbers of the energy levels in the x, y direction. When
B⊥ 6= 0 we can solve eq. (4.51) if we interpret the components with (ez × r)K as the
shift of the centre of the potential and if we shift the magnetic field in the same way, in
other words if we change the gauge, we get the wave function of the first energy level:

Φ(in)d(r,K) = N(in)d exp
[−((x−G(in)d(K)B⊥)2 + (y + F(in)d(K)B⊥)2)D(in)d

]

exp

(
i
B2
⊥

2h̄
(F(in)d(K)x + G(in)d(K)y)eγ

)
, (4.54)

where

D(in)d =

√
1
16

e2B2
⊥ + 1

2
C(in)dm

h̄
(4.55)

F(in)d(K) =
−4eh̄Kxm

M(e2B2
⊥ + 8C(in)dm− e2γ2B2

⊥)
(4.56)

G(in)d(K) =
−4eh̄Kym

M(e2B2
⊥ + 8C(in)dm− e2γ2B2

⊥)
(4.57)

and the energy of the first level is equal to:

E(in)d(K) = −S(in)d +
1

8m

(
4
√

e2B2 + 8C(in)dmB2
⊥h̄−

− (G(in)d(K)2 + F(in)d(K)2)(1− γ2)e2B2
⊥ − 8(G(in)d(K)2 + F(in)d(K)2)C(in)d

)
m.

(4.58)

We project the Hamiltonian (4.44) on the basis Φd(r), Φind(r) and we switch the electric
field on, which models the asymmetry of the DQW. And afterwards we get:

H =




Ed(K) Th Te 0

T ∗
h Eind(K− ey

deB‖
h̄

) + edF 0 T ∗
e

T ∗
e 0 Eind(K + ey

deB‖
h̄

)− edF T ∗
h

0 Te Th Ed(K)


 ,

(4.59)
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where

Te(h) = te(h)

∫
exp(i

dyeB‖
h̄

mh(e)

M
)Φ∗

d(r,K)Φind(r,K). (4.60)

The Hamiltonian (4.59) can be easily solved numerically in reasonable time. The
question of setting the phenomenological parameters S(in)d, C(in)d will be discussed
later and we will show that this approach can give good agreement with the precise
numerical calculations.

4.3.6 Expansion of the wave function

In this section we expand the wave function into a basis of eigenfunctions of the angular
momentum in order to obtain the Hamiltonian in a convenient form for the numerical
solution. We expand the coefficients of the tight-binding basis (i, j = m) in this way:

Υm(r,K) =
+∞∑

k=−∞
fm

k (r,K) exp(ikφ). (4.61)

If we act with the general Hamiltonian on this basis we get:

4∑
m=1

Ĥnm(r, φ,K)Υm(r, φ,K) = E(K)Υn(r, φ,K) (4.62)

4∑
m=1

Ĥnm(r, φ,K)
+∞∑

k=−∞
fm

k (r,K) exp(ikφ) = E(K)
+∞∑

k=−∞
fn

k (r,K) exp(ikφ) (4.63)

4∑
m=1

+∞∑

k=−∞
exp(i(k − k0)φ)Ĥk

nm(r, φ,K)fm
k (r,K) = E(K)

+∞∑

k=−∞
fn

k (r,K) exp(i(k − k0)φ),

(4.64)

where
Ĥk

nm(r, φ,K) = exp(−ikφ)Ĥnm(r, φ,K) exp(ikφ). (4.65)

Afterwards we integrate eq. (4.64) to obtain an equation for each term of the expansion
(4.61) which will be solved numerically:

1

2π

4∑
m=1

+∞∑

k=−∞

∫ 2π

0

Ĥk
nm(r, φ,K) exp(i(k − k0)φ)dφfm

k (r,K) = E(K)fn
k0

(r,K) (4.66)

and we shall denote

1

2π

+∞∑

k=−∞

∫ 2π

0

Ĥk
nm(r, φ,K) exp(i(k − k0)φ)dφfm

k (r,K) ≡ Ĥk0
nm(r,K)fm

k (r,K). (4.67)
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We compute the matrix elements Hk
nm(r,K) for the Hamiltonian (4.44) and we start

with the diagonal elements described in eq. (4.45). First we write polar coordinates
and their derivatives:

x = r cos φ (4.68)

y = r sin φ (4.69)

∂

∂x
= cos φ

∂

∂r
− 1

r
sin φ

∂

∂φ
(4.70)

∂

∂y
= sin φ

∂

∂r
+

1

r
cos φ

∂

∂φ
(4.71)

∆⊥ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂φ2
. (4.72)

Substituting these derivatives into eq. (4.47) we get:

Ĥii(K) =
1

2m
∆⊥+ i

γeB⊥h̄

2m

∂

∂φ
+

e2B2
⊥

8m
r2 +

eB⊥h̄

M
(Kyr cos φ−Kxr sin φ)+

K2

2M
(4.73)

and following the procedure for getting Hk
nm(r,K) we can write

Ĥk0
ii (K) =

1

2m
(

∂2

∂r2
+

1

r

∂

∂r
− k2

r2
)δk,k0 −

γeB⊥h̄

2m
kδk,k0 +

+
e2B2

⊥
8m

r2δk,k0 +
eB⊥h̄

2M
(Kyr(δk,k0+1 + δk,k0−1)− iKx(δk,k0+1 − δk,k0−1)) +

K2

2M
δk,k0 .(4.74)

By the same way we obtain the off-diagonal matrix elements

Ĥk0
ij = te(h)

1

2π

+∞∑

k=−∞

∫ 2π

0

exp

(
ir sin φ

edB⊥
h̄

mh(e)

M
+ i(k − k0)φ

)
dφ. (4.75)

Using the identities for the Bessel functions [14]:

Jn(x) =
1

2π

∫ 2π

0

exp[i(xsinφ− nφ)]dφ (4.76)

Jn(x) = J−n(x) n even (4.77)

Jn(x) = −J−n(x) n odd (4.78)

we can write

Ĥk0
ij =

+∞∑

k=−∞
te(h)Jn

(
r
edB⊥

h̄

mh(e)

M

)
δk−n,k0 . (4.79)

Now we can proceed to numerical calculations, which is the topic of the chapter 5.
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4.3.7 Dependence of the energy on Kx

In this section we show why a dependence of the energy on Kx will not be of our
main interest. We shall write an equation for an exciton in simple quantum well (using
eq. (4.45) (

ĥ(k̂,K, r)− Cij(r)
)

Φij(r) = Eij(K)Φij(r). (4.80)

Introducing the transformation

Φij(r) = exp

(
−1

2
iγrK

)
Ψij(r− r0) (4.81)

r0 =
h̄

eB⊥
(−Ky, Kx) (4.82)

we rewrite (4.80)

(
ĥ(k̂,0, r)− Cij(r + r0)

)
Ψij(r) = Eij(K)Ψij(r). (4.83)

We know from the symmetry of the problem that Eij(K) is an even function of K.
We also know from the structure of eq. (4.83) that the dependence of the energy on
Kx is monotone since Kx only shifts the centre of the potential from the origin and
there is no reason for any local extremum. This can be understood if we realize the
analogy with harmonic oscillator where the shift of the potential doesn’t change the
energy. Thus minimum of the dispersion relation (4.44) can only be found in Kx = 0
for arbitrary Ky.

4.3.8 Probability of recombination and luminescence spectra

We calculate the probability of recombination of the exciton in this section. We start
with Fermi Golden Rule [15] which takes form of:

Pi−>f ∝ |〈i|Hint|f〉|2δ(E − h̄ω), (4.84)

where |i〉 is an initial state and |f〉 is a final state. Hint is an interaction Hamiltonian
and h̄ω is the energy of emitted photon. In our case the initial state is an exciton in
DQW and the final state is a state without electron in the conduction band and without
hole in the valence band |vac〉. Hint has a standard form in the dipole approximation:

Hint ∝ Fp, (4.85)

where p is a momentum operator. Further manipulation can be made using envelope
function framework and Slater determinants giving:

Pi−>f ∝ |〈uh|Hint|uc〉|2|〈χh|χe〉|2δK,0F (0)δ(Eν − h̄ω), (4.86)
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where uh, ue are the hole and electron periodic parts of the Bloch function at the zone
centre of the host layer. χh, χe are tight-binding functions and F (0), which is equal to:

F (0) =

∫ +∞

−∞
Ψ(ze = z, zh = z, r⊥ = 0)dz, (4.87)

is the overlap integral of the envelope functions of the electron and hole, Ψ(ze, zh, r⊥)
is the wave function of the exciton. We note that recombination is possible only for
exciton with nearly zero momentum.
Since we are not interested in the absolute value of probability, but in the relative
strength of the different transitions we will use this definition of the probability

Pi =
Fi(0)∑
j Fj(0)

, (4.88)

where the summation runs over all transitions taken into account. We note that in the
case of a wave function of this form:

Ψ =
∑
ij

cijΨij, (4.89)

where Ψij are the wave functions of the direct and indirect exciton and cij are normal-
ized, the probability of the recombination takes form of:

P|Ψ〉−>|vac〉 =
1

2
(c2

11 + c2
22). (4.90)

We can now derive an expression for the intensity of luminescence knowing the relative
probability of recombination. Our interest will be focused on phonon assisted transition
to allow recombination of the k-space indirect excitons. We substitute δK,0 in eq. (4.86)
by probability of the phonon-exciton interaction and we neglect the dependence of
this probability on exciton momentum K [16]. Using this assumptions we can write
luminescence intensity in arbitrary units:

I ′(E) =
∑

i

Piδ(E − Ei) (4.91)

I(E) =

∫ +∞

−∞
I ′(E ′)exp(−βE ′)G(E − E ′)dE ′, (4.92)

where G(E) is a function responsible for the peak widening, usually Gaussian or
Lorentzian shape is used. β = 1

kBT
, kB is Boltzmann constant and T is tempera-

ture. This expression is valid if the main contribution to the widening of the spectral
line comes from the fluctuation of the gap. If the main contribution originates from
the dynamic disorder the luminescence intensity can be written as:

I(E) = exp(−βE)

∫ +∞

−∞
I ′(E ′)G(E − E ′)dE ′ (4.93)

The two expressions for I(E) (eq. (4.91, 4.93) give nearly the same results for sufficiently
large width of G(E).
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Numerical and analytical treatment

In this chapter we show how we have treated the Hamiltonian (4.59), using the ex-
pansion (4.61) and derived equations (4.74), (4.79). We show also how to choose the
phenomenological coefficients.

5.1 Analytical treatment

In this section we discuss solution of the Hamiltonian (4.59), whose theory is described
in section (4.3.5). We discuss how to set phenomenological parameters. For a particle
in the parabolic potential

V (r) =
1

2
mω2r2, (5.1)

we can write an equation for the mean radius for the lowest energy, which is

〈r〉 =
1

2

√
πh̄

mω
. (5.2)

Since for the phenomenological constants defined in eq. (4.49) we have C(in)d = 1
2
mω2

we rewrite eq. (5.2)

〈r〉 =
1

2

√
πh̄

2
√

C(in)dm
. (5.3)

We adjust phenomenological parameters C(in)d to have the same radius in the analytical
and numerical solution for both excitons (direct and indirect) without any fields. The
parameters S(in)d are adjusted to have the same energy in both solutions. Since the
radius of the direct exciton is smaller than for the indirect exciton, Cd > Cind. The
energy of the direct exciton is lower than that of the indirect exciton, which means
Sd > Sind.
The program for the solution of the Hamiltonian (4.59) is written in Fortran and for
searching the eigenvalues and eigenvectors of the matrix the Jacobi subroutine is used

31
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[17].
The accuracy of the solution could be better if we took into account higher levels of
the harmonic oscillator. Using the fact that the solution can be found by the same
procedure as in section (4.3.5), we can write the structure of the matrix for three lowest
levels with quantum numbers (nx = 0, my = 0), (1, 0), (0, 1):




H00,00 H00,10 H00,01

H∗
00,10 H10,10 H10,01

H∗
00,01 H∗

10,01 H01,01


 , (5.4)

where the off-diagonal matrices have these properties

H00,10(00,01)(−B⊥) = −H∗
00,10(00,01)(B⊥); H10,01(−B⊥) = H∗

10,01(B⊥) (5.5)

and where
Hi,j = 〈i|Ĥ|j〉 (5.6)

and Ĥ is determined in (4.59).

5.2 Numerical treatment

5.2.1 Choice of the tight-binding functions

In this section we discuss the choice of the tight-binding functions ϕj
e(h)(ze(h)) (4.25).

We choose

ϕj
e(h)(ze(h)) =

√
2

d
cos

[
(ze(h) − zj

e(h))
π

d

]
, (5.7)

where zj is the centre of the jth well and d is the width of the well (in this approximation
we take zero width of the barrier). Other choices of the basis functions are also possible,
we could use delta functions for example but as is shown in [4], this choice of basis
functions is good only for narrow wells . On the contrary, our basis is well applicable
even to wide wells.
In order to obtain tunnelling elements we can’t simply use (4.28), that’s why we adopt a
different approach. We take the energy separation of the two first levels of the electrons
(holes) in DQW for known barrier height and width. We get ∆e(h) = 2te(h). The details
and the dependence of te(h) on d can be found in [2].
We also have to compute the potential matrix elements

Cij =

∫
dzedzhϕ

2
i (ze)C(re − rh)ϕ

2
j(zh). (5.8)

Integral of the Coulomb potential used in numerical treatment takes form of

C22(r) =
4

d2

∫ d

0

∫ d

0

dzedzh
1

4πε
√

(ze − zh)2 + r2
cos2

[
(ze − d

2
)
π

d

]
cos2

[
(zh − d

2
)
π

d

]

(5.9)
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Input data

Output data

Lanczos method Subroutine OP

Figure 5.1: Schematic draw of the program structure.

for C22. If we introduce the following substitution

ze − zh = x

ze + zh = y (5.10)

we can integrate over y and reduce the double integral to a simple integral. Other
integrals Cij can be treated analogically.

5.2.2 Structure of the program

In this section we describe the code of the program which numerically solves (4.74),
(4.79). The program has two parts: the first part, written in C language, multiplies
a matrix by a vector and the second part, written in Fortran, is the Lanczos method
which computes eigenvalues and eigenvectors of large sparse symmetric matrices and
calls the procedure written in C language.
The scheme of the program is shown in Fig. 5.1. The Lanczos method is called from

the main program, the subroutine OP multiplies a matrix by a vector. Vector uProgram

consists of 8 basic functions, real and imaginary part of uij (4.41):

uProgram =

(
Re(u)
Im(u)

)
(5.11)

Since the Lanczos method is designed for real matrices, we use the following property
of the Hermitian matrices:

A = A∗; B ≡ Re(A); C ≡ Im(A) (5.12)

A′ =
(

B C
−CT B

)
, (5.13)
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where matrices A,A′ have the same eigenvalues and eigenvectors, but matrix A′ has
a twice degenerate spectrum of eigenvectors. We can see that if vector (u,v) is the
eigenvector of the matrix A′ belonging to the eigenvalue ε then also vector (v,−u)
belongs to ε. We have slightly modified the code of the Lanczos method in order to
eliminate computing twice the same.
Each vector component uR,I

ij consists of the block of functions according to (4.61),

where we cut the summation to
∑+l

k=−l, thus there are (2l + 1) functions fk(r)

uR,I
ij =




fR,I
−l,ij(r)

...

fR,I
0,ij (r)

...

fR,I
+l,ij(r)




(5.14)

and each function fR,I
k,ij (r) is computed in a given range R with a given step dr, thus

the program computes N = [R/dr] points for each fR,I
k,ij (r). The total dimension of the

vector (square matrix) is then (for the complex matrix):

Dim(u) = 8N(2l + 1). (5.15)

5.2.3 Boundary conditions and scalar product

We treat the boundary conditions in the following way. We start to compute at the
point dr/2, which enables us to avoid the singularity of ∆⊥ in the origin of coordinates.
For the second derivatives we use this boundary conditions:

fR,I
k,ij (dr/2) = fR,I

k,ij (dr/2) k even (5.16)

fR,I
k,ij (dr/2) = −fR,I

k,ij (dr/2) k odd (5.17)

fR,I
k,ij ((N + 1)(dr − dr/2)) = 0, (5.18)

which we have derived for r → 0 and r →∞.
We have two different versions of the program which differ in the way how the scalar
product of the vectors in the Lanczos method is treated. The scalar product takes form
of:

〈u(r)|v(r)〉 = 2π

∫ ∞

0

u∗(r)v(r)rdr (5.19)

in polar coordinates. We have chosen two ways how to cope with it. Our first approach
is the transformation of the function fR,I

k,ij (r):

fR,I
k,ij (r) =

f ′R,I
k,ij (r)√

r
. (5.20)
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New function f ′R,I
k,ij (r) has a singularity in the first derivative in the origin (for small r

and for the lowest energy this function has the same behaviour as the square root func-
tion). We also transform the operators in the Hamiltonian, namely ∆⊥(for simplicity
f ′R,I

k,ij (r) ≡ Φ′(r)):

∆⊥Φ(r) =

(
1

r

∂

∂r
r

∂

∂r
− k2

r2
δk,k0

)
Φ(r) =

=
1

(dr)2


 1 + dr

2r√
1 + dr

r

Φ′
+ − 2Φ′

0 +
1− dr

2r√
1− dr

r

Φ′
−


− k2

r2
δk,k0Φ

′
0. (5.21)

This operator is symmetric and treats well the singularity in the origin. Φ′
+, Φ′

0, Φ
′
− are

the function values in the points (jdr + dr/2, jdr− dr/2, jdr− 3dr/2; j = 1..[R/dr]).
Our second approach consists in the change of the scalar product in the Lanczos
method. Thus instead of:

〈V |U〉 =
∑

i

V [i] ∗ U [i] (5.22)

we modify the code of the Lanczos method in the following way:

〈V |U〉 =
∑

i

V [i] ∗ U [i] ∗ (i ∗ dr − dr/2). (5.23)

We also perform the reverse transformation of the wave function

Φ′ = Φ
√

r (5.24)

so that the operator ∆⊥ takes standard form of

∆⊥Φ′(r) =
1

(dr)2
(Φ+ − 2Φ0 + Φ−) +

1

2rdr
(Φ+ − Φ−)− k2

r2
δk,k0Φ0. (5.25)

We have modified the Lanczos method to compute the eigenvalues and eigenvectors
of special asymmetric matrices by changing the scalar product. We use the second
approach in our program and the results of both approaches are almost the same.
Generally we can say that the second approach gives slightly lower energies.
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Results

As was shown in section (4.3.7) the minimum of the energy is always found at Kx = 0
thus we do not discuss Kx in detail.
We use these parameters in our calculations:

me = 0.0421me0

mh = 0.34me0

εr = 12.5

and we assume that the masses are the same in the well and in the barrier. Our choice
of the parallel effective mass is discussed below.

6.1 Analytical results

In this section we use our analytical treatment described in sections (4.3.5) and (5.1)
to qualitatively show what we may expect. We will show in the next section that the
agreement can be very good between analytical and numerical results for some param-
eters and the energy of the ground state.

6.1.1 Phenomenological parameters

An appropriate estimation of the phenomenological parameters is required by the an-
alytical model to work properly and give acceptable results. These parameters are
obtained with the help of numerical results as energies and radii of exciton without
any field and tunnelling.
Various parameters of the exciton in DQW are found in Table 6.1. These parameters
are a function of the well width. We can notice that

∆Ed,ind = Ed − Eind (6.1)
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practically doesn’t depend on the width of the well (for the same M). In Table 6.2 cal-
culated parameters are presented, where Eω

(in)d is the energy of the harmonic oscillator.

Table 6.1: Radius and energy of the direct and indirect exciton as a function of the
well width.

d[nm] Rd[nm] Rind[nm] Ed[meV] Eind[meV] ∆Eind[meV]
5.00 10.7 15.9 -10.0 -5.75 -4.26
7.50 11.5 18.3 -9.08 -4.70 -4.38
10.0 12.2 19.6 -8.37 -4.37 -4.37
12.5 12.8 21.0 -7.81 -3.49 -4.32

Table 6.2: ω(in)d, Eω
(in)d and S(in)d as a function of the well width.

d[nm] ωd[1012s−1] ωind[1012s−1] Eω
d [meV] Eω

ind[meV] Sd[meV] Sind[meV]
5.00 21.8 9.9 14.3 6.5 24.3 12.3
7.50 18.9 7.7 12.4 5.1 21.5 9.8
10.0 16.8 6.5 11.0 4.3 19.4 8.3
12.5 15.3 5.7 10.0 3.7 17.8 7.2

6.1.2 Excitons in DQW without tunnelling

In this section we show the effect of the parallel magnetic field and electric field on
DQW without tunnelling. Our calculations are done for a quantum well 7.5 nm wide
and tunnelling elements te = 3 meV, th = 0.05 meV. These parameters are considered
to be standard values. The parabolic dispersion relation of the direct and indirect
exciton is shown in Fig. 6.1. In Fig. 6.2 the situation in the magnetic field B‖ = 10 T
is shown. As indicated in eq. (4.44) the minimum of the dispersion relation of the

indirect exciton is shifted from the origin by ±deB‖
h̄

= 1.14 nm−1. In Fig. 6.3 the
situation in the resonant electric field Fres = (Eind − Ed)/de = 5.6 kV/cm is shown
and we can see that the energy of the indirect exciton E12 has decreased by eF and
is nearly on the same level as the energy of the direct exciton. The indirect exciton
dispersion relation has its minimum lower than that of the direct exciton for an electric
field stronger than Fres. The energies of the indirect exciton in an electric field stronger
than Fres are always lower without magnetic field. The energy of the second indirect
exciton increases by eF . In Fig. 6.4 the situation in the electric and magnetic field
F = 20 kV/cm, B‖ = 10 T respectively is shown. We can see that one of the two
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Figure 6.1: Dispersion relation of direct and indirect exciton in separated QWs. E11(22)

(E12(21)) is energy of direct (indirect) exciton.
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Figure 6.2: Dispersion relation of direct and indirect excitons in separated QWs in
B‖ = 10 T.
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Figure 6.3: Dispersion relation of direct and indirect exciton in separated QWs in
Fres = (Eind − Ed)/de = 5.6 kV/cm.

indirect excitons has lower energy than direct excitons and the minimum of the energy

is found in −deB‖
h̄

= −1.14 nm−1. We can conclude that if we want to have the energy
minimum away off the origin, the electric and magnetic fields are both needed to be
present.

6.1.3 DQW in weak magnetic field

If the magnetic and electric fields are switched on together we distinguish two inter-
esting cases. In the first one we want to have maximal

E(0)− Emin(K) = ∆E(K) (6.2)

for maximal |K| in order to reach possible Bose-Einstein condensation. We have two
limits, a maximum magnetic field (12 T) accessible in the laboratory of the Institute
of Physics and a maximum electric field which does not destroy the sample (about
20 kV/cm [2]). We take these tunnelling elements

te = 3.0 meV

th = 0.05 meV

In Fig. 6.5 the dispersion relation is shown for parameters F = 20 kV/cm and B‖ =
9 T. It is evident that the curves differ only slightly in Fig. 6.5 and Fig. 6.4. We note
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Figure 6.4: Dispersion relation of direct and indirect exciton in separated QWs in
F = 20 kV/cm, B‖ = 10 T.
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Figure 6.5: Dispersion relation of exciton in DQW in F = 20 kV/cm and B‖ = 9 T.
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Table 6.3: Depth of the energy minimum and its position as a function of F for B‖ = 9 T
and B‖ = 12 T.

F [ kV/cm] ∆E9(K)[meV] ∆E12(K)[meV] Kmin,9
y [nm−1] Kmin,12

y [nm−1]

5.00 0.11 0.47 -0.038 -0.026
7.50 0.41 0.78 -0.074 -0.120
10.0 0.72 1.44 -0.090 -0.130
12.5 0.87 1.67 -0.096 -0.132
15.0 0.94 1.78 -0.098 -0.134
17.5 0.98 1.80 -0.100 -0.134
20.0 1.00 1.82 -0.100 -0.136
22.5 1.01 1.83 -0.102 -0.136

that the degeneracy of the direct exciton disappears due to tunnelling. The dependence
of the ∆E(K) on electric and magnetic field is shown in Table 6.3. The results can be
interpreted with the help of the figures from the previous section. The position of the

minimum approaches the value −deB‖
h̄

, which is −0.102 nm−1 for 9 T and −0.136 nm−1

for 12 T. The stronger the electric field the greater ∆E(K) is since we know that the
energy of the indirect exciton decreases by eF . The maximum ∆E(K) is reached when

the ground state is composed only of the indirect exciton and its value is h̄2 K2
y

2M
, which

is 1.03 meV for 9 T and 1.91 meV for 12 T. The dependence of ∆E(K) on tunnelling

Table 6.4: Depth of the energy minimum and its position as a function of Te for
B‖ = 9 T, F = 10 kV/cm and F = 20 kV/cm.

Te[meV] ∆E10(K)[meV] ∆E20(K)[meV] Kmin,10
y [nm−1] Kmin,20

y [nm−1]

0 1.04 1.04 -0.102 -0.102
1 0.98 1.04 -0.100 -0.102
2 0.84 1.02 -0.096 -0.102
3 0.72 1.00 -0.090 -0.100
4 0.62 0.97 -0.084 -0.098
5 0.55 0.93 -0.080 -0.098
6 0.50 0.89 -0.076 -0.096
7 0.47 0.85 -0.072 -0.094

is summarized in Table 6.4 and in Fig. 6.6 where the two lowest lying energy levels
are depicted. The tunnelling mixes the direct and indirect exciton, and so even if the
energy minimum shifts down with stronger tunnelling, the depth of the minimum is
reduced.
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Figure 6.6: Dispersion relations of exciton in DQW in F = 10 kV/cm, B‖ = 9 T,
Te = 0 meV and Te = 7 meV.

The dependence of ∆E(K) on the width of the well d is resumed in Tables 6.5 and 6.6.
The depth increases with the well width since a wider well is equivalent to a stronger
magnetic field. The validity of our model is limited by the condition

∆Eh
z = ∆Exy,

where ∆Eh
z is the difference between the first two levels in z direction for heavy holes

(assuming infinitely deep well) and ∆Exy is the ground energy of the exciton. We get
limiting width dlimit = 20 nm for our parameters. If we involved in our model higher
states in z direction our model could be applicable to greater widths. In principle the
width of the well and the whole structure is limited by the density of defects since
we want to avoid large fluctuations of potential. Thus we get the width of the well
dlimit = 25 nm for typical defect density 1015 cm−3.

6.1.4 DQW in strong magnetic field

In this section we suppose we are not limited by the strength of magnetic field. What
is interesting for us is shown in Fig. 6.7, where the second derivative of the energy
with respect to Ky is equal to zero for Ky = −0.12 nm−1 and thus we may expect
a singularity in the density of states. Such singularity exists in the electron density
of states, which is discussed in detail in [1], [2] and [3]. Our objective is to find such
parameters that the zero second derivative coincides with the minimum of the energy.
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Table 6.5: Depth of the energy minimum and its position as a function of d for B‖ =
12 T, F = 10 kV/cm and F = 20 kV/cm, Te = 3 meV.

d[nm] ∆E10[meV] ∆E20[meV] Kmin
y,10 [nm−1] Kmin

y,20 [nm−1]

5.00 0.25 0.68 -0.056 -0.084
7.50 1.44 1.82 -0.130 -0.136
10.0 3.20 3.30 -0.182 -0.182
12.5 5.16 5.17 -0.228 -0.228

Table 6.6: Depth of the energy minimum and its position as a function of d for B‖ =
12 T, F = 10 kV/cm and F = 20 kV/cm, Te = 6 meV.

d[nm] ∆E10[meV] ∆E20[meV] Kmin
y,10 [nm−1] Kmin

y,20 [nm−1] ∆E[meV] Kmin
y [nm−1]

5.00 0.23 0.51 -0.050 -0.074 0.84 -0.91
7.50 1.05 1.71 -0.116 -0.136 1.91 -0.136
10.0 3.08 3.28 -0.180 -0.182 3.34 -0.181
12.5 5.15 5.18 -0.228 -0.228 5.21 -0.226
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Figure 6.7: Dispersion relations of exciton in DQW in F = 5.8 kV/cm, B‖ = 20 T.
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Figure 6.8: Density of states of exciton in DQW in F = 5.8 kV/cm.

In Fig. 6.8 the density of states is shown for various B‖. Two dimensional density of
states is equal to:

g0 =
M

πh̄2 = 1.56× 10−3meV−1nm−2

for weak magnetic fields and has a step like behaviour. When the singularity in the
density of states is found in the minimum of the energy the corresponding magnetic field
is called critical BC

‖ . In our case the critical field is found in the interval < 15 T, 16 T >.
We can observe the development of the singularity. Nothing interesting happens up
to 10 T then the step like behaviour changes and the lowest step starts to decrease
and has a local maximum and minimum and thus a sharp spike is formed. The second
step develops a smoother spike. This behaviour continues to the moment when the
first step disappears and the singularity coincidences with the minimum of the second
step (which has become the first step). This situation is shown for 15 T. In Fig. 6.9
the dispersion relation is plotted for different strength of tunnelling. We can see that
critical magnetic field increases with stronger tunnelling.

6.1.5 DQW in B⊥
In this section we discuss the influence of B⊥ on the dispersion relation. Since we use
only an approximate model, whose limits exhibit for B⊥ 6= 0, the conclusions of this
section are only qualitative. In Table 6.7 the dependence of the total mass of the exciton
on B⊥ is shown. If B‖ = 0 T and F = 0 kV/cm then the minimum of the dispersion
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Figure 6.9: Dispersion relations of exciton in DQW in F = 5.8 kV/cm, B‖ = 20 T for
different strength of tunnelling.

relation is found at K = 0 and B⊥ only changes the curvature of the parabola. In

Table 6.7: Dependence of the total mass of the exciton on B⊥.
.

B⊥[T] 0 4 8 12 16 20
M[me0] 0.3821 0.3836 0.3889 0.3939 0.3975 0.4000

Fig. 6.10 the dispersion relation as a function of B⊥ is shown. The parabola of the
indirect exciton increases faster with B⊥ (due to lesser binding) than the parabola of
the direct exciton and we see that side minimum gradually disappears.

6.1.6 Different effective masses

In this section we show the dependence of ∆E(K) on electron effective mass. Param-
eters of direct and indirect exciton a function of effective mass are listed in Table 6.8.
The binding energy increases with the mass of the electron and thus the radius shrinks.
Depth of the energy minimum, BC and Fres as a function of me are shown in Table 6.9.
As we may expect the position of the minimum is not affected by the effective mass.
The depth of the minimum is proportional to 1/M and thus decreases with the mass.
Since Fres = (Ed − Eind)/de, Fres increases with the mass.
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Figure 6.10: Dispersion relation of exciton in DQW in F = 5.8 kV/cm, B‖ = 20 T as
a function of B⊥.

Table 6.8: Radius and energy of the direct and indirect exciton as a function of the
electron effective mass.

me[me0] Rd[nm] Rind[nm] Ed[meV] Eind[meV] ∆Eind[meV]
0.0421 11.5 18.3 -9.08 -4.70 -4.38
0.0670 8.3 14.8 -12.18 -5.69 -6.49
0.1000 6.5 12.5 -15.20 -6.48 -8.72

Table 6.9: Depth of the energy minimum, its position, an interval of critical magnetic
fields BC and Fres as a function of me.

me[me0] ∆E20[meV] Kmin
y,20 [nm−1] BC [T] Fres[kV/cm]

0.0421 1.82 -0.136 〈15.0;16.0〉 5.8
0.0670 1.59 -0.132 〈17.0;18.0〉 8.6
0.1000 1.32 -0.128 〈18.5;19.5〉 11.5
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Figure 6.11: Intensity of luminescence as a function of energy and magnetic field,
Γ = 0.4 meV.

6.1.7 Luminescence spectra

In this section we show luminescence spectra calculated using eq. (4.91). We calculate
only the contribution of the exciton recombination to the luminescence spectra, the gap
of GaAs and energy shift caused by energy quantization of electrons and heavy holes in
z direction should be added to obtain measurable values (only first subbands should be
taken into account). The luminescence spectra are shown in Fig. 6.11. These spectra
are calculated for T = 10 K and the width of the Gaussian function is Γ = 0.4 meV.
In Fig. 6.12 the luminescence spectra with the width Γ = 1.5 meV are shown. Electric
field is in resonance F = Fres = 5.8 kV/cm. The spectra are renormalized to the
maximum intensity. We can see two peaks for weak magnetic field which join together
in magnetic field B=12 T. In resonance (around 16 T) there is only one peak which
moves with the diamagnetic shift. If we measured the spectra we could multiply each
spectra by Boltzmann factor and we would get as a result the convolution of the density
of states, probability of recombination and Gaussian function. This is shown (derived
from Fig. 6.11) in Fig. 6.13 where the singularity can be seen clearly for B‖ = 18 T.
Finally Fig. 6.14 shows the probabilities of recombination for four levels of analytical
model as a function of the parallel magnetic field. The probabilities are calculated
using eq. (4.88) and eq. (4.90). The behaviour of the probabilities is as expected since
the parabola of the indirect exciton is shifted from the origin with parallel magnetic
field and thus the first two energies with K = 0 are mainly composed of direct exciton.



CHAPTER 6. RESULTS 48

E[meV]

-13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2

I(
E

)[
a.

u.
]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

B||=2T
B||=4T
B||=6T
B||=8T
B||=10T
B||=12T
B||=14T
B||=16T
B||=18T
B||=20T
B||=22T
B||=24T

Figure 6.12: Intensity of luminescence as a function of energy and magnetic field,
Γ = 1.5 meV.
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Figure 6.13: Convolution of the density of states with Gaussian function.
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Figure 6.14: Probability of recombination as a function of magnetic field.

6.2 Numerical results

In this section we discuss the numerical solution. We use these standard parameters
(tunnelling elements for electrons and holes, range of computation for r, step of r,
number of angular momentum eigenfunctions):

te = 3.0meV

th = 0.05meV

R = 70nm

dr = 1nm

l = 4.

6.2.1 Correspondence between numerical and analytical re-
sults

In this section we show limits of analytical calculations. The dispersion relation calcu-
lated numerically and analytically is shown in Fig. 6.15. As we can see only energies
of the lowest lying level agree as well as we expected. The agreement is at its best if
B⊥ = 0 T since the deviation in energies is induced only by tunnelling elements, which
is significant only in very strong magnetic field. Other disadvantage of the analytical
treatment is caused by the fact that for strong electric field the excited exciton levels
appear. This is significant mainly for the indirect exciton as we will see below since the
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Figure 6.15: Dispersion relation of exciton in DQW in F = 20 kV/cm, B‖ = 8.9 T and
B⊥ = 1.5 T calculated numerically (solid line) and analytically (dashed line).

second energy level of the indirect exciton has an approximate value of E1/9 (supposing
a behaviour similar to the two dimensional hydrogen atom).
In Fig. 6.16 a comparison of two dispersion relations is shown. The agreement is rela-
tively good for weak B⊥ but analytical results gradually start to be unreliable and they
preserve only qualitatively the properties of numerical solution, as is the growth of the
total mass of the exciton with B⊥. This increase is underestimated in analytical calcu-
lations. The disagreement has its physical reason since the mean electron-hole distance
increases with their momentum. This means that they feel a stronger potential, but
the growth of the parabolic potential is much faster than that of the Coulomb one. In
Fig. 6.17 the dispersion relation in strong perpendicular magnetic field is shown and
effective masses of the first and third energy level are
M1

eff = 0.48me0

M3
eff = 0.81me0.

Detailed comparison of three dispersion relations is shown in Fig. 6.18. We can con-
clude that analytical and numerical results are in a very good agreement (difference is
less than 5%) and this enables us to accept analytical results as valid and beneficial.
Therefore we can avoid numerical computing in the vicinity of the singularity where
the Lanczos method calculates very slowly.
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Figure 6.16: Dispersion relation of exciton in DQW in F = 20 kV/cm, B‖ = 8.9 (1.5) T
and B⊥ = 1.5 (8.9) T in black (red) calculated numerically (solid line) and analytically
(dashed line).
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Figure 6.17: Dispersion relation of exciton in DQW in B‖ = 1.5 T and B⊥ = 8.9 T
calculated numerically.
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Figure 6.18: Dispersion relation of exciton in DQW calculated numerically (solid line)
and analytically (dashed line) for various fields.

6.2.2 Charge density

In this section we show charge densities of the exciton. They are plotted in Fig. 6.19.
First we discuss charge densities calculated for parameters B⊥ = 0 T, B‖ = 17.5 T,
F = 5.9 kV/cm, Kx = 0 nm−1, a) Ky = −0.02 nm−1 and b) Ky = −0.18 nm−1.
Since we are close to the singularity in the density of states, charge density smoothly
proceeds from being predominantly composed of indirect exciton (b) to be composed
of direct exciton (a) and the energy does not almost change. The charge density of the
indirect exciton is less localized than that of the direct exciton.
Now we discuss charge densities calculated for parameters B⊥ = 8.9 T, B‖ = 1.5 T,
F = 20 kV/cm, Kx = 0 nm−1, c) Ky = 0.18 nm−1 and d) Ky = −0.18 nm−1. As we
can see the charge density of (d) is the same as the charge density of (c) if we exchange
x, y for −x,−y, which is equivalent to exchanging B‖ for −B‖ or Ky for −Ky. In other
words we may say that magnetic field turns opposite charges in opposite directions
perpendicular to their velocity. We can also note that B⊥ 6= 0 deforms the angular
symmetry of the charge density.
Last we discuss charge densities calculated for parameters B⊥ = 1.5 T; B‖ = 8.9 T;
F = 20 kV/cm; Kx = 0 nm−1, Ky = 0.2 nm−1. These densities are calculated for
different gauge of the magnetic field and thus should not differ. As we can see they are
almost identical.
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Figure 6.20: Z coordinate of the electron as a function of Ky for various parameters.

6.2.3 Properties of exciton in DQW

In this section we show the dependence of the mean value of Ze, Zh and of the radius
of exciton Rexc on Ky for various parameters and for the ground state. Z coordinate of
the electron is shown in Fig. 6.20, z coordinate of the hole in Fig. 6.21 and the radius
of the exciton in Fig. 6.22. As we can see, the black line (B⊥ = 8.9 T, B‖ = 1.5 T,
F = 20 kV/cm) depends on Ky the less since the ground state is bound only weakly
with other states and is mainly composed of the indirect exciton whose parameter
dependence on Ky is weak in strong B⊥ as is discussed in chapter 7. Electron and
hole are in different wells due to applied electric field. The radius is small for indirect
exciton as B⊥ shrinks the exciton and its dependence on Ky is small.
Ze corresponding to the green line (B⊥ = 2.2 T, B‖ = 8.7 T, F = 0 kV/cm) is nearly

symmetrical with respect to the origin. The asymmetry is caused mainly by numerical
precision. Energies are symmetric with a deviation lower than 1% and all mean values
are also symmetric with a deviation lower than 5% for |Ky| > 0.02 nm−1. The reason of
the asymmetry in the vicinity of |Ky| = 0 nm−1 is a rapid change of the wave function
from one well to the another one since the exciton in the left well with momentum Ky

must have the same energy as the exciton in the right well with momentum −Ky.
Ze corresponding to the blue line (B⊥ = 2.2 T, B‖ = 8.7 T, F = 20 kV/cm) is in

the left well and Zh in the right well due to the applied electric field, thus the ground
state is composed mainly of the indirect exciton. Ze increases as direct exciton is more
involved in the ground state. The radius of the exciton is smaller than for indirect
exciton without field because B⊥ shrinks the exciton. The radius does not decrease
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Figure 6.21: Z coordinate of the hole as a function of Ky for various parameters.

as we could expect due to increasing mixing with direct exciton but increases since
indirect exciton is less localized than direct exciton and it delocalizes faster with Ky

in B⊥, which is not compensated by tunnelling.
Ze corresponding to the red line (B⊥ = 0 T, B‖ = 20 T, F = 20 kV/cm) changes
the well (Zh does not change the well) when the parabolas of the indirect and direct
exciton intersect. We can observe the same behaviour for the radius which sharply
decreases.

6.2.4 Probability of recombination of exciton

In this section we show the dependence of the probability of exciton recombination as a
function of various parameters for the first four levels. The probabilities are calculated
using eq. (4.88). In Fig. 6.23 the probabilities and in Fig. 6.24 the energies of the
recombination as functions of electric field are shown. We can see that the probability
of exciton recombination of the first level decreases with the magnitude of the field
since indirect exciton is more involved in this level. The probability of recombination
of the third level increases, since the mixing of direct and indirect exciton is stronger, to
the point when this level is predominantly composed of excited indirect exciton level.
The fourth level is composed of the second ground indirect exciton level for a weak
electric field (Fz < 2 kV/cm), excited indirect exciton levels appear for stronger fields.
When Fz = 8 kV/cm the third and fourth level are formed only by excited indirect
exciton levels. These levels crossover the direct exciton level in Fz = 12 kV/cm.
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Figure 6.22: Radius of the exciton as a function of Ky for various parameters.

Only the fourth level is composed of direct exciton to the point when the intersection
between this level and the indirect exciton level with nearly zero binding energy occurs
in Fz = 14 kV/cm. Since we calculate only relative probabilities, we loose information
when the direct exciton level disappears.
In Fig. 6.25 the probabilities and in Fig. 6.26 the energies of the recombination as
functions of magnetic field are shown (magnetic field is constant, we only change its
direction) for F = 20 kV/cm. The first (second) level is mainly composed of the ground
(excited) indirect exciton level. The third level is composed of the second excited
indirect exciton level, whose energy increases very rapidly with B⊥, for B⊥ < 1.5 T.
The fourth level is composed of excited indirect exciton level with nearly zero binding
energy to the point where it intersects with the third level (1.5 T) then the role of
the third and fourth level is exchanged. In B⊥ = 2.5 T there is a crossover of the
second excited indirect exciton level (fourth level) with the ground direct exciton level.
The information about the probabilities is recovered as shows the sharp increase of
the fourth level probability. In B⊥ = 5.5 T the fourth level intersects with the third
one and the ground direct exciton level becomes the third level. The second ground
direct exciton level is continuously involved in the fourth level. These crossovers can
be observed in the probability peaks and dips.
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Figure 6.23: Probability of recombination as a function of Fz for the first four levels.
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Figure 6.24: Energy of the first four levels as a function of Fz.
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Figure 6.25: Probability of recombination as a function of B⊥ (|B| = 9 T being con-
stant) for the first four levels.
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Figure 6.26: Energy of the first four levels as a function of B⊥ (|B| = 9 T being
constant).
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Figure 6.27: Dispersion relation calculated for different l and for B⊥ = 9 T, B‖ = 0 T,
F = 20 kV/cm, l = 4 solid line, l = 6 dotted line, l = 8 dash-dotted line.

6.2.5 Numerical precision

In this section we show the influence of the parameter choice on the precision of the
results. The dispersion relations, which are shown in Fig. 6.27, are calculated for the
same parameters B⊥ = 9 T, B‖ = 0 T, F = 20 kV/cm only l (number of considered
angular momentum eigenfunctions) is varied, which changes the results. As we can see
only the second level differs visibly. Since we are dominantly interested in B‖ we can
conclude that l = 4 is sufficient. Larger l is convenient in the case of strong B⊥, in such
case l = 6 should be sufficient. The dispersion relations, which are shown in Fig. 6.28,
are calculated for the same parameters B⊥ = 1.5 T, B‖ = 8.9 T, F = 20 kV/cm but for
different gauges of the magnetic field. Symmetric (solid line) and asymmetric (dotted
line) gauges give nearly the same results. Calculated energies are shown in Table 6.10
for parameters: A (B⊥ = 10 T, B‖ = 7 T, F = 0 kV/cm, Kx = 0 nm−1, Ky = 0 nm−1),
B (B⊥ = 10 T, B‖ = 7 T, F = 0 kV/cm, Kx = 0.6 nm−1, Ky = 0.6 nm−1). We can
note that for larger Kx, Ky the agreement is not so good but this difference occurs in
the region where we usually do not calculate. We can consider this limited agreement
as a confirmation of the acceptable reliability of numerical results.
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Table 6.10: Energy levels calculated for asymmetric and symmetric gauge of the mag-
netic field, for parameters A, B see text on page 59.

As An Bs Bn

E1[meV] -3.59 -3.51 35.3 35.1
E2[meV] -3.53 -3.45 40.4 41.2
E3[meV] 5.80 5.89 42.0 42.3
E4[meV] 6.47 6.42 48.3 46.9
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Figure 6.28: Dispersion relation calculated for different gauge of the magnetic field
and for B⊥ = 1.5 T, B‖ = 8.9 T, F = 20 kV/cm, asymmetric gauge (solid line) and
symmetric gauge (dotted line).



Chapter 7

Discussion

First we interpret the asymmetry in the dispersion relation of the exciton in the mag-
netic and electric field. Exciton which is indirect in the r-space induces an elec-
tric dipole ed. This induced electric dipole when moving induces a magnetic dipole
edv = edh̄K/M perpendicular to the velocity, which interacts with the parallel mag-
netic field. This interaction contributes to the Hamiltonian by a term linear in K

(ĥ12(k̂,K− ey
deB‖

h̄
, r), eq. (4.44)) , which results in the symmetry breaking.

We may observe the luminescence quenching in the electric and magnetic field. As
was shown in chapter 6, the ground state of the exciton in DQW may become r and k
indirect in the presence of both electric and magnetic fields. The probability of recom-
bination is first determined by the overlap integral that describes the probability of
finding the electron and hole in the same location. Therefore the probability of recom-
bination substantially decreases for states composed mainly of r-space indirect exciton
in comparison with those composed of r-space direct exciton. Second the probability
of recombination is governed by the momentum conservation law. Thus the shift of
the energy minimum away off the origin in the dispersion relation sharply lowers the
probability of recombination of excitons with minimal energy whose consequence is the
luminescence quenching, which has already been measured and reported [18]. Due to
the discussed sharp drop in recombination probability phonon assisted recombination
and transitions between direct and indirect exciton can play a significant role, which
may be used for the saser development as is indicated at the end of this chapter and
in detail calculated [7].
The evidence of the Bose condensation of diluted exciton gas in AlAs/GaAs DQW was
reported by Butov [8] (for higher exciton concentrations Coopers pairs will appear).
Such condensation is possible only below the critical temperature Tc. This temperature
increases in 2D systems with magnetic field and can reach tens of K for a field of 10 T
(shown in Fig. 7.1), which is much better compared to bulk excitons (studied mainly
in Cu2O and Ge). Another important parameter for the condensation is the exciton
lifetime. The shift of the minimum of the dispersion relation induces low recombina-
tion rates and thus long lifetime. As the calculated results show the maximum depth
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Figure 7.1: Predicted Tc as a function of the exciton density and magnetic field (strong
field approximation is considered), taken from [8].

and shift of the energy minimum can be achieved in a sufficiently strong electric field
which is however usually stronger than the sample can endure ([2]). Assuming a strong
electric field the magnitude of the magnetic field is critical for the achievement of the
desired depth of the energy minimum, due to its quadratic dependence on the field. As
is discussed in chapter 6, a stronger magnetic field is equivalent to a wider quantum
well.
Nevertheless, wider quantum wells have some disadvantages which are not well de-
scribed by our model. As was estimated before, higher states in z direction should
be taken into account for wells wider than 20 nm. Also fluctuation of the potential
can play a significant role when more defects appear in the well. Such defects may
destroy the coherence of the excitonic liquid and thus instead of a macroscopic state
only isolated islands of liquid will appear. Finally excitons in wider DQWs are less
bounded which implies a need of very low temperatures.
The last question is the tunnelling. The deepest energy minimum would be achieved
with zero tunnelling matrix elements but electrons (holes) could not tunnel to the sec-
ond well and form the excitonic liquid. The longer the lifetime of the electrons (holes)
the smaller the tunnelling elements can be set since the electrons (holes) have enough
time to tunnel.
Now we discuss a new type of van Hove logarithmic singularity in the exciton density
of states. The density of states of electrons and holes respectively exhibits a singularity
in the magnetic field as was for the first time shown by Lyo [1]. This method was then
used by Soubusta [2], [19]. The densities of states were calculated for a symmetric
DQW in the magnetic field, which is shown in Fig. 7.2b. The critical magnetic field
for similar structures as we compute is around 7 T. Orlita [3] calculated the density of
states for an asymmetric DQW. The asymmetry was modelled by the DQW structure
or by applied electric field. The critical magnetic field for similar structures is in this
case slightly stronger (around 9 T), which is depicted in Fig. 7.2a. The photolumi-
nescence spectra were also calculated [20] and showed a reasonable agreement with
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Figure 7.2: Density of states of electrons in asymmetric (a, left) and symmetric (b,
right) DQW. Taken from [3] and [2].

measured data. N -type kink is present in the luminescence spectra of symmetric and
asymmetric DQW in strong B‖ and high electron density. Spectra of the symmetric
DQW (a) with a width Γ =0.5 meV and asymmetric DQW (b) with width a Γ =1 meV
are shown in Fig. 7.3.
The singularity in the exciton density of states appears only in presence of the resonant
electric field and sufficiently strong magnetic field. The value of the resonant field is
determined by the condition of the same energies of the direct and indirect exciton,
that is to say Fres = (Ed−Eind)/de. A cross section of the parabolas of the direct and
indirect exciton is required to observe the singularity. When the singularity coincides
with the minimum of the dispersion relation we call such field critical. If the critical
magnetic field and resonant electric field are applied, excitons occupy the minimum
energy which is now flat (has the second derivative equal to zero). This energy min-
imum is slightly shifted from the origin (order of 10−2 nm−1) and its depth is very
small (order of 10−2 meV), that’s why we would need an extremely low temperature
to observe the condensation of excitons. If a magnetic field stronger than the critical
one is applied, a region with negative effective mass of the exciton will appear in the
dispersion relation as is shown in figures of chapter 6.
The knowledge of the wave functions and dispersion relations enables us to calculate
theoretical luminescence spectra for the exciton recombination. Predominantly exci-
tonic luminescence can be seen mainly in undoped samples with low concentration of
the electrons and holes. The theoretical spectra calculated in chapter 6 show that
the singularity in the density of states manifests significantly. Two peaks composed
of the direct and indirect exciton are present for weak magnetic fields (assuming low
temperature). As we increase the magnitude of the parallel magnetic field the two en-
ergy levels come closer, since the parabola of the indirect exciton is being shifted away
off the origin and thus if the critical magnetic field is achieved, only one peak can be
observed. If such behaviour of the luminescence spectra was measured our predictions
would be verified. The very important question is the width of the Gaussian function
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Figure 7.3: Photoluminescence spectra of the free electron-hole recombination for var-
ious B‖ of the symmetric (a, left) and asymmetric (b, right) DQW, taken from [20].

used in the convolution (4.91). This width is determined by many factors, e.g. by the
fluctuation of the gap or by the dynamic disorder. Our choice of the width 0.4 meV lays
very strict requirements on the quality of the sample. Luminescence spectra measured
on the samples grown at the University of Erlangen and in the Academy of Sciences of
the Czech Republic [3] show a Gaussian width of order of meV. Excitonic spectra with
such widths would be smeared but some information could be retrieved from the shift
of the maxima and from the width of the peaks. It seems that the help of other labo-
ratories could be beneficial to reach a reasonably small width of the Gaussian function
to verify our predictions.
The choice of the effective mass of the electron also deserves a discussion. As was
shown in Table 2.1 the effective mass of the electron is 0.067me0 in bulk GaAs, but
since we deal with two-dimensional electron gas we may expect a different effective
mass in the xy plane than in the bulk as suggests Ben-Daniel Duke model. Three main
influences on the effective mass are discussed in the literature: the nonparabolicity of
the conduction band, exchange interaction and correlation effects of electrons, exciton
interaction. All of these mechanisms are responsible for the growth of the mass. Nev-
ertheless we use the lower value. The literature for the excitons discusses the value of
the parallel effective mass in detail, e.g. various samples were measured [11] and then
theoretical calculations were done to interpret the data. The resulting value of the
effective mass 0.0421me0 was then overtaken by [2]. Calculations done by Soubusta et
al. [2] also show reasonable agreement with experiment [19]. Unfortunately the latest
measurements done by Orlita [3] indicate that the parallel effective mass can be nearly
the same as in the bulk.
The influence of the effective mass on critical magnetic field and resonant electric field
is summerized in tables of chapter 6. The heavier particles are, the greater binding
energy is. This effect implies a stronger Fres. In some cases (e.g. meff > 0.1) Fres can
be so strong that it may damage the sample, thus increased caution is needed. As the
electron becomes heavier in the xy plane, its motion is reduced and the probability of
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Figure 7.4: Schematic draw of the dispersion relation (a, left) and calculated dispersion
relations of indirect (b, middle) and direct (c, right) exciton in various B⊥, taken from
[6].

tunnelling into the second well decreases and also the curvature of the dispersion rela-
tion decreases resulting in an effectively stronger tunnelling in the resonance. Stronger
tunnelling increases the critical magnetic field. In the resonance there is a flat energy
level, where a state composed mainly of indirect exciton with momentum |Ky|max con-
tinually transforms into a state composed mainly of direct exciton with momentum
|Ky|min ≈ 0. If tunnelling increases, electron alternates the left and right well more
frequently. Stronger magnetic field is required to separate such mixed states to get
nearly pure indirect exciton state (to localize an electron with a |Ky|max in the well
where is not a hole) in the flat energy level, so the plateau is wider with increasing
critical magnetic field.
The effect of the perpendicular magnetic field is well-known in the case where the
electron-hole interaction is not taken into account. The Landau levels that have the
harmonic oscillator structure and are highly degenerate appear. The motion of the elec-
tron can be interpreted as a rotation with the cyclotron frequency ωc = eB⊥

m
(assuming

a symmetric gauge). The mean radius of the rotation in the xy plane is proportional
to the momentum and inverse magnitude of the magnetic field, thus a stronger field
shrinks the radius. In the exciton case [6] the situation is more complicated. We can
distinguish two limiting cases: (i) weak B⊥, where the exciton is hydrogen like and the
magnetic field is considered as a perturbation, (ii) magnetic field B⊥ is so strong that
the Coulomb interaction is taken as a perturbation to the Landau levels and this kind
of behaviour is called magnetoexciton. The average distance of an electron and a hole is
〈r〉 ≈ Kh̄/eB⊥. The situation is schematically shown in Fig. 7.4a. This behaviour can
be understood with the help of ĥ(k̂,K, r) (4.47). This Hamiltonian has two potential
like terms with two minima, the first originating from the Coulomb interaction and
the second from the parabolic magnetic potential. The energy of the first minimum
can be written as Eelstat + Ekinetic while in the second minimum Landau levels, which
are independent of the exciton momentum, hold. Therefore a threshold momentum
exists for which the energy of the first minimum is higher than that of the second one
and consequently the transition from the hydrogen like exciton to the magnetoexciton
occurs. This transition is connected with an increase of the effective mass. A differ-



CHAPTER 7. DISCUSSION 66

Ky [nm-1]

-0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.25

E
[m

eV
]

-20

-15

-10

-5

0

5

10

15

20

E1

E2

E3

E4

Ky[nm-1]

-0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.25

E
[m

eV
]

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

E1

E2

E3

E4

Figure 7.5: Dispersion relation calculated for the same parameters analytically (a, left),
using [21] (b, right) and numerically (c, down).

ence between the direct and indirect exciton effective mass will thus exist, since the
Coulomb interaction of the indirect exciton is weaker than that of the direct exciton
and the Landau levels structure will manifest in a more intensive way. This difference
is shown in Fig. 7.4b, c.
As we were not particularly interested in B⊥, our results are not as abundant as we
would wish. The results presented in chapter 6 are in a good agreement with those
presented in [6]. As is discussed there, the increase of the effective mass of the indirect
exciton in the GaAs/AlGaAs DQW is 2.7× experimentally and 2.5× theoretically in
B⊥ = 4 T. In our case the increase is 2.1× in B⊥ = 8.9 T. The deviation is caused
mainly by different tunnelling and width of the well (their 11.5 nm and ours 7.5 nm).
Nevertheless the qualitative agreement is evident.
We can also discuss a disagreement between models with parabolic and Coulomb po-
tential. Since the parabolic potential increases with the radius more rapidly than the
Coulomb one we may expect that the transition between hydrogen like atom and the
magnetoexciton will appear in stronger magnetic fields and effective mass of exciton
will be lower. This suggestion can be illustrated by figures of chapter 6, where the
agreement between analytical and numerical results is good for relatively weak mag-
netic field B⊥ < 2 T and, on the contrary, the agreement is worse for stronger field
B⊥ = 8.9 T. So if the magnetic field can be treated as a perturbation, the agreement
is relatively good since the analytical treatment is adjusted in this way (energy and
radius of direct and indirect exciton).
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Figure 7.6: Energies of transitions (a, left) and their probabilities (b, right) as a function
of electric field in zero electric field, taken from [2].

We will now proceed with a brief discussion of numerical precision and reliability of
the results. We have performed many tests to verify if the results are correct and to
check that no fatal mistake is present. An older program [21] was used to compare the
results and a reasonable agreement was found. The dispersion relations calculated us-
ing program [21], and analytical and numerical treatments are plotted in Fig. 7.5. The
agreement of the first energy level is excellent. The second level, which corresponds to
an excited indirect exciton level for negative momentum, is nearly three times degen-
erate theoretically. Our analytical calculation does not include any excited levels at all
(see Fig. 7.5a). Results of program [21] don’t show any degeneracy because of addi-
tional demands on the symmetry used there (Fig. 7.5b). Practically twice degenerate
level and shifted third level (depicted as the fourth level) are computed numerically
(Fig. 7.5c). The energy of this level is higher due to used insufficient range of R, as
tests done for the exciton in one well show. The crossovers among excited indirect
exciton levels and ground direct exciton level occur for positive momentum and are
similar in both numerical calculations. We can conclude that the agreement is very
good if we realize that the program [21] is based on a different approach that doesn’t
work with the expansion of the wave function but the wave function is calculated on a
square grid.
We can also look again at figures of section (6.2.4) where the numerically calculated
exciton levels and probabilities are discussed. Energy level with zero binding energy
without electric field gives us an idea of the indirect exciton spectrum. If we were not
limited in the range of R the result could cover in principle the whole spectrum. So we
must be cautious in interpreting the results in section (6.2.4) because a more expanded
spectrum can be very hardly calculated numerically.
In Fig. 7.6 energies of transitions and their probabilities as a function of electric field
in zero magnetic filed are depicted. They are obtained within variation approach [2].
We can qualitatively compare these results with ours in Fig. 6.23 and Fig. 6.24. The
energy dependence of the first three levels is similar except from the crossing of levels
in Fig. 7.6a, which is caused by used variational method. The excited indirect exciton
levels are not considered in [2], which means that the fourth level is composed of the
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Figure 7.7: Principal scheme of energy levels, D (direct exciton) and I (indirect exciton),
taken from [7].

second indirect exciton in contrast with our results. Probabilities are also in good
agreement for weak electric field since probabilities of the first and fourth (second and
third) level are decreasing (increasing). The differences can be observed for stronger
electric field due to missing excited indirect exciton levels. The peak (dip) in the first
(second) energy probability is caused by mentioned crossing of levels.
We have found during performed tests that if the lowest energy level is degenerate, the
Lanczos method computes very slowly, which is significant in the case of Landau levels
and unfortunately also in the case of the singularity where two parabolas, for a certain
momentum, are so close that the ground energy is nearly degenerate. The absolute
numerical precision is very good since different gauges of the magnetic field give similar
results. The difference appears for extreme parameters and also electric field slightly
spoils the picture. As expected the stronger magnetic field the more terms of the wave
function expansion have to be involved. This expansion enables us to estimate how
much the magnetic field rotates the wave functions.
Finally we discuss one of the possible applications of the DQW i.e. the steady stim-
ulated phonon generator (saser or phonon laser). A detailed discussion can be found
in [7]. A schematic draw of energy levels is shown in Fig. 7.7. The wave vector of the
phonon is determined by the magnitude of the parallel magnetic field and electric field
is required to tune the transition direct exciton → indirect exciton + phonon into reso-
nance. Thus the magnitude of the electric field is a linear function of the magnitude of
the parallel magnetic field. There are several accesible resonances which are connected
with different phonon bands. The most suitable are those with a long lifetime. In a
typical semiconductor such as GaAs transverse acoustic phonons have the lowest en-
ergy and longest lifetime, but their interaction with electronic subsystem is weak and
therefore longitudinal acoustic phonons are considered in numerical calculations [7].
The numerical calculation is based on the interaction Hamiltonian in resonant approx-
imation where the laser field is taken into account classically. The master equation for
the density operator [22] is taken as a basic equation and is further solved.



Summary

Now we can summarize the results of diploma thesis:

• Hamiltonian for the exciton in the double quantum well in the magnetic and
electric field was derived. The tight-binding approximation and the expansion of
the wave function into the eigenfunctions of the angular momentum were used.
The validity of this approach is discussed.

• A code in C language for the solution of the Hamiltonian was written and the
Lanczos method was used to compute eigenvalues and eigenvectors. Various ver-
sions of the program were made differing in the treatment of the scalar product
and in the gauge of the magnetic field. The deviations between various versions
were sufficiently small to confirm a reasonable validity of the obtained results.
Additional programs were elaborated to calculate wave function onto square grid,
mean values etc.

• The parabolic potential was introduced, which enabled us to pursue further the
analytical solution and so to substantially increase the speed of the computations.
In the parallel magnetic field, due to the structure of the Hamiltonian matrix,
the analytical treatment is sufficient and gives results in a very good agreement
with the numerical treatment. The difference can only be seen in strong mag-
netic fields. Perpendicular magnetic field spoils the agreement but nevertheless
analytical treatment gives acceptable qualitative results. The solution of this
Hamiltonian was programmed in Fortran with other complementary subroutines
for calculations of the density of states and luminescence spectra.

• The calculated dispersion relations and wave functions were used to compute the
density of states of the exciton, probability of recombination and even the theoret-
ical luminescence spectra assuming phonon assisted transitions. Two interesting
results were discussed in detail: a possible appearance of excitonic liquid and
the singularity in the density of states. The calculated theoretical luminescence
spectra can be used for verifying the predicted singularity experimentally.
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Appendix A

Contents of attached CD-ROM

A CD-ROM with data and programs is attached to the diploma thesis. It has the
following structure of directories:

• C files Main program:
Three C files can be found in this directory. The version with the asymmetric
(symmetric) gauge of magnetic field is used in file NonsymG.c (SymG.c) respec-
tively. The Lanczos method, which can be found in the next directory, is modified
in the way the scalar product is computed and extended for the complex matri-
ces. The file Nonscalprod.c is an older version without B⊥ being programmed
which uses standard Lanczos method (lanz2NSP.obj, lanz2NSP.for).

• C project Main program:
The main program which is a Visual C++ 6.0 project is found here. The files
*.lib are used for the C and Fortran communication. Files lanz2.f and lanz2.obj
contain modified Lanczos method. The modification of the scalar product is done
by a new parameter BLOK of the subroutine. This parameter determines the
dimension of the subvector for which the the scalar product is calculated. The
modification for complex matrices is done by changing the initializing bloc where
already computed vectors are not initialized again randomly but are skipped.
The dimension of the already computed matrix is also changed. The calling
of the Fortran subroutines from C is done according to the Microsoft Power
Station manual and thus we write: extern void stdcall FORTRAN. The present
version 2dvodik.c is for the symmetric gauge. Executable version for symmetric
(nonsymmetric) gauge is found in the directory Symexe (Nonsymexe). The input
data of the program are found in the file vstup.txt and written in the form shown
in Table A.1a. Data should be in one column, but for clarity are divided into
three columns. The meanings of quantities are mentioned in text above. Basis
determines number of basis vectors, 4 for real matrix and 8 for Hermitian.
There are two kinds of output of the program. The file energie.txt contains
a table of energies. In the first two lines there are B⊥ and Lz and then for
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each B‖ there is a table E(Kx, Ky), which is schematically drawn in Table A.1b.
Wave functions are stored in output files, whose names consist of parameters of
calculation. The structure of the wave function output file is shown in Table A.2.
The first two rows should be one column. IECODE, MMAX, M are parameters
of the Lanczos method and will be described in Appendix B. Ei

A, Ei
B, Ei

C are
energies of ith energy level and EA is base energy plus diamagnetic shift, EB is
base energy with kinetic term and diamagnetic shift, EC is base energy of exciton
and P i is probability of recombination. F i

−l is the column of function f−l(r,K)
of ith energy level.
The program computes one set of the wave functions (for the first four levels)
about 30-60min on PC with 800MHz processor. If the level crossover occurs
computing time can be much longer, in extreme cases it can reach even 24hours.
We note that results may be degenerate if Basis = 8 and Hamiltonian (4.44) is
not complex. If the calculation for various momenta or magnetic fields is done,
wave functions are written into files continuously, energies are written in the end.

Table A.1: Structure of the files: vstup.txt (a, left) and energie.txt (b, right).
B⊥ Kmin

x te
Bmin
‖ Kmax

x th
Bmax
‖ Kstep

x Ez

Bstep
‖ dr me

Kmin
y R mh

Kmax
y l Lz

Kstep
y Basis εr

B⊥
Lz

B‖
Ky Kx Ei . . .
...

. . .

Table A.2: Structure of the output wave function file.

B⊥ B‖ Lz Ez IECODE R dr l
Baze MMAX M Te Th Kx Ky

Ei
A Ei

B Ei
C P i

...
. . .

F i
−l . . . F i

−l
...

. . .

• Data:
This directory has two subdirectories Nonsym and Sym, where calculated data
(energies and wave functions) for different gauges are stored.



APPENDIX A. CONTENTS OF ATTACHED CD-ROM 72

• Data processed:
This directory is a storage of processed data: wave functions were recalculated
onto the square grid and several mean quantities were figured out. The stored
wave functions belong to the ground energy level. The postfix ”SS” means that
data were calculated by older version of the program and the difference is accept-
able.

• Diploma thesis:
Diploma thesis in TEX and used pictures are stored here. Also pdf file can be
found here.

• Fortran Parabola:
The Program for the analytical solution is stored here. This program lacks any
input file since it computes very quickly and direct changes in the code are more
comfortable. The marking of the variables is similar to C code.

• Tools for analytical data:
The two programs can be found in this directory. First one computes the density
of states. The dispersion relations are the input data stored in files, which are
written in jmena.txt. The second one computes the luminescence spectra. The
density of states and the probabilities are its input data stored in files written in
jmena.txt and jmenaP.txt respectively. The parameters of the calculation should
be adjusted directly in the code of both programs. These programs can also be
used for data obtained numerically, but high density of the calculated points is
needed for smooth results.

• Tools for numerical data:
Two important tools for data processing are stored here. The input file of the
program Fcexy is a wave function computed numerically which is transformed
onto the square grid. Input parameters l, Baze, R, dr of the transformation
are found in the file param.txt. Program Prumery computes mean values of
Ze, Zh, Rexc and its input file is a wave function on the square grid. Parame-
ters Baze,R

√
2, dr, Lz, which are needed for the computation, are also stored in

param.txt. File jmena.txt has its traditional meaning (see above).

• Version for unix and linux:
This directory contains C code files of the main program and subroutines in
Fortran (lanz2.f, Sqrt.f ) which should be linked in Unix by C linker using the
command:
gcc SymG.c lanz2.f Sqrt.g -lm
Executable file a.out should be the result.



Appendix B

Lanczos method

The Lanczos method we use was programmed by R.R.Underwood in [23]. The key
subroutine called from C code has the following heading.

SUBROUTINE MINVAL(N,Q,PINIT,R,MMAX,EPS,M,D,X,IECODE,N)

Follows the description of parameters for the standard Lanczos method without our
modifications:

• N:
integer variable. The order of the symmetric matrix A whose eigenvalues and
eigenvectors are being computed. The value of N should be less than or equal to
1296 and greater than or equal to 2.

• Q:
integer variable. The number of vectors of length N contained in the array X.
The value of Q should be less than or equal to 25, at least one greater than the
value of R and less than or equal to N.

• PINIT:
integer variable. The initial block size to be used in the block lanczos method. If
PINIT is negative, then -PINIT is used for the block size and columns M+L,...,
M+(-PINIT) of the array X are assumed to be initialized to the initial matrix
used to start the block lanczos method. If the subroutine terminates with a value
of M less than R, then PINIT is assigned a value -P where P is the final block size
chosen. In this circumstance, columns M+1,...M+P will contain the most recent
set of eigenvector approximations which can be used to restart the subroutine if
desired.

• R:
integer variable. The number of eigenvalues and eigenvectors being computed.
That is, MINVAL attempts to compute accurate approximations to the R least
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eigenvalues and eigenvectors of the matrix A. The value of R should be greater
than zero and less than Q.

• MMAX:
integer variable. The maximum number of matrix-vector products A*X (where
X is a vector) that are allowed during one call of this subroutine to complete its
task of computing R eigenvalues and eigenvectors. Unless the problem indicates
otherwise, MMAX should be given a very large value.

• EPS:
REAL*8 variable. Initially, EPS should contain a value indicating the relative
precision to which MINVAL will attempt to compute the eigenvalues and eigen-
vectors of A. For eigenvalues less in modulus than 1, EPS will be an absolute
tolerance. Because of the way this method works, it may happen that the later
eigenvalues cannot be computed to the same relative precision as those less in
value.

• OP:
subroutine name. The actual argument corresponding to OP should be the name
of a subroutine used to define the matrix A. This subroutine should have three
arguments N, U, and V, say, where N is an integer variable giving the order of
A, and U and V are two one-dimensional C arrays of length N. If W denotes
the vector of order N stored in U, then the statement CALL OP(N,U,V) should
result in the vector A*W being computed and stored in V. The contents of U can
be modified by this call.

• M:
integer variable. M gives the number of eigenvalues and eigenvectors already com-
puted. Thus, initially, M should be zero. If M is greater than zero, then columns
one through M of the array X are assumed to contain the computed approxi-
mations to the M least eigenvalues and eigenvectors of A. On exit, M contains
a value equal to the total number of eigenvalues and eigenvectors computed in-
cluding any already computed when MINVAL was entered. Thus, on exit, the
first M elements of D and the first M columns of X will contain approximations
to the M least eigenvalues of A.

• D:
REAL*8 array. D contains the computed eigenvalues. D should be a one-
dimensional array with at least Q elements.

• X:
REAL*8 array. X contains the computed eigenvectors. X should be an array
containing at least N*Q elements. X is used not only to store the eigenvectors
computed by MINVAL, but also as working storage for the block lanczos method.
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On exit, the first N*M elements of X contain the eigenvector approximations -
the first vector in the first N elements, the second in the second N elements, etc...

• IECODE:
integer variable. The value of IECODE indicates whether MINVAL terminated
successfully, and if not, the reason why.
IECODE=0 :successful termination.
IECODE=1 : the value of N is less than 2.
IECODE=2 : the value of N exceeds 1296.
IECODE=3 : the value of R is less than 1.
IECODE=4 : the value of Q is less than or equal to R.
IECODE=5 : the value of Q is greater than 25.
IECODE=6 : the value of Q exceeds N.
IECODE=7 : the value of MMAX was exceeded before R eigenvalues and eigen-
vectors were computed.
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