Inter Calorimeter Scintillators(ICS)

- Optics and Mechanics
 - Michigan State University
 - University of Texas at Arlington
- PMT's
 - Clermont-Ferrand
 - University Illinois
 - University of Texas at Arlington
- Electronics/DAQ
 - University of Chicago
 - Stockholm University
 - University of Rio de Janeiro

ATLAS Luminosity Feb. 7,2000

Design Concept

- Phi/eta cells
 - Use same Phi cells as TileCal $(=\pi/32)$
 - Gap Scintillator: 2η cells
 - 1.0-1.1, 1.1-1.2
 - Crack Scintillator: 2 η cells
 1.2-1.4, 1.4-1.6
- Readout/Calibration
 - Use standard Tilecal PMT's/Readout (in Girder)
 - Calibrate with muons (+ Cs source for Gap Scintillator)
- Clear opticalfFiber is installed in Tilecal EB modules at same time as tiles/WLS fibers
 - Routed through the slots in ITC plug
 - Fiber cables plug into scintillator modules

Design Concept (cont.)

- Scintillators will be mounted to the Tilecal EB end plates after EB and LAr end calorimeters have been assembled.
 - Easy to handle, light-tight package
 - Assembled and tested at UTA/MSU

Gap Scinillator (UTA design)

ATLAS Luminosity Feb. 7,2000

Crack Scintillator (MSU design)

ATLAS Luminosity Feb. 7,2000

R. Miller MSU

Light Yield (Gap Scintillator)

2 (0.9 mm) WLS Fibers x 2 Ends Directly or

ITC Tile Yield tests

Feb. 7,2000

MSU

ITC Tile Yield tests

ATLAS Luminosity Feb. 7,2000

R. Miller MSU

Light Yield (cont.)

Mirrored 1 mm WLS Fibers Directly onto PM.

<u>Uniformity- Cryostat</u> <u>Scintillators</u>

Signal is constant (vs position) to ±10%

ATLAS Luminosity Feb. 7,2000

Signal/Noise

- Use pedestal events and non hit cells in Module 0's test beam runs
- Find average noise of 16 MeV/PMT
- Calibration from electron data in test beam gives:
 0.85 pC/GeV = 50 photo electrons/GeV
 - \Rightarrow 16 MeV/PMT = 0.8 pe/PMT
- Muon (MIP) Signal/Noise expected to be: Gap scintillator: 8 - 12 Crack Scintillator: 4 - 7
- These numbers will be measured using prototype scintillator modules and actual optics this summer in the test beam

Min Bias Rates vs Energy Deposited (from Krzysztof Piotrzdowski)

ATLAS Luminosity Feb. 7,2000

R. Miller MSU

Min Bias Rates vs Hit Multiplicity (from Krzysztof)

(Noise = < 0.25 MeV)

ATLAS Luminosity Feb. 7,2000

R. Miller MSU

<u>Min Bias Rates vs Total</u> <u>Energy (from Krzysztof Piotrzdowski)</u>

ATLAS Luminosity Feb. 7,2000

R. Miller MSU