NAME:

MIDTERM EXAM

PHYS852 Quantum Mechanics II, Spring 2009

1. [50 pts] Consider a system of two spin- $1 / 2$ particles, with corresponding spin operators, \vec{S}_{1}, and \vec{S}_{2}. They do not interact with each other, but they both interact with a spin-1 particle, with spin operator \vec{I}. Let the bare Hamiltonian for the system be

$$
H_{0}=2 \frac{\omega}{\hbar}\left[\vec{S}_{1} \cdot \vec{I}+\overrightarrow{S_{2}} \cdot \vec{I}\right]
$$

a.) [10 pts] Let $\vec{S}=\vec{S}_{1}+\vec{S}_{2}$. What are the allowed values of the quantum number s ? For each s what are the possible m_{s} values?
b.) $[10 \mathrm{pts}]$ Let the total angular momentum operator be $\vec{F}=\vec{S}+\vec{I}$. For each possible s-value, give the allowed values of the quantum number f. For each state with well-defined s and f, list the possible m_{f} values.
c.) [10 pts] What are the eigenvalues of H_{0} ? For each eigenvalue, give the degeneracy factor, and list the corresponding degenerate states.
d.) $[10 \mathrm{pts}]$ Now assume a magnetic field, $\vec{B}=B_{0} \vec{e}_{z}$, is applied. Assuming both spin- $1 / 2$ particles have charge q and mass m, and neglecting the magnetic moment of the spin- 1 particle, give the operator which describes the interaction between the system and the field?
e.) [10 pts + possible extra credit] In the limit of a very weak (but non-zero) field, describe as best you can what happens to each of the bare energy levels when the field is applied.
2. [50 pts] An exciton is a hydrogen-like bound-state of a conduction electron and a hole inside a semiconductor. Let $|g\rangle$ indicate the state with no excitons present, and let $|k\rangle$ indicate a one-exciton state with momentum $\hbar k$.

Single-photon absorption can create excitons from the $|g\rangle$ state. In the proper rotating frame, the effective Hamiltonian for a laser-driven semi-conductor is

$$
H=\hbar|\Delta| \sum_{k}|k\rangle\langle k|+\hbar \frac{\Omega}{2} \sum_{k}(|g\rangle\langle k|+|k\rangle\langle g|),
$$

where the exciton kinetic energy is neglected assuming $\hbar|\Delta| \gg \hbar^{2} k^{2} / 2 m_{x}$.
We can also assume that $\sum_{k} 1=M$, where $M \sim L^{3} / a_{0}^{3}$ is a very large integer (L being the system size and a_{0} the exciton Bohr radius).
a.) [10 pts$]$ Treat the Δ term as H_{0}, and the Ω term as a perturbation. List all of the bare energy levels, and their degeneracies. Do not forget to include $|g\rangle$.
b.) $[10 \mathrm{pts}]$ Determine the good eigenstates for perturbation theory.
c.) [10 pts$]$ Use perturbation theory to compute the energy levels of H to first-order in Ω.
d.) $[10 \mathrm{pts}]$ Use perturbation theory to compute the eigenstates of H to first-order in Ω.
e.) $[10 \mathrm{pts}]$ Use perturbation theory to compute the second-order correction to the energy levels.
f.) [10 pts extra credit] Find the exact eigenvalues and eigenstates of H.

