1. **The Parity Operator:** [20 pts] Determine the matrix element \(\langle x | \Pi | x' \rangle \) and use it to simplify the identity \(\Pi = \int dx \, dx' |x\rangle \langle x| \Pi |x'\rangle \langle x'| \), then use this identity to compute \(\Pi^2 \), \(\Pi^3 \), and \(\Pi^n \).

From these results find an expression for \(S(u) = \exp[\Pi u] \) in the form \(f(u) + g(u) \Pi \).

What is \(\langle x | S(0) | \psi \rangle \)? Express your answer in terms of \(\psi_{\text{even}}(x) = \frac{1}{2}(\psi(x) + \psi(-x)) \) and \(\psi_{\text{odd}}(x) = \frac{1}{2}(\psi(x) - \psi(-x)) \).

Compute \(\langle x | S(0) | \psi \rangle \), \(\lim_{u \to \infty} \langle x | S(u) | \psi \rangle \), and \(\lim_{u \to -\infty} \langle x | S(u) | \psi \rangle \).

2. [15 pts] The coherent state \(|\alpha\rangle \) is defined by \(|\alpha\rangle = \frac{\exp[|\alpha|^2]}{\cosh u} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle \), where the states \(\{ |n\rangle \} \) are the harmonic oscillator energy eigenstates.

First, show that for \(\alpha = 0 \), the coherent state \(|\alpha=0\rangle \) is exactly equal to the harmonic oscillator ground-state, \(|0\rangle \).

Then show that any other coherent state can be created by acting on the ground-state, \(|0\rangle \), with the ‘displacement operator’ \(D(\alpha) \), i.e. show that \(|\alpha\rangle = D(\alpha)|0\rangle \), where

\[
D(\alpha) := e^{\alpha A^\dagger - \alpha^* A} \tag{1}
\]

You may need the Zassenhaus formula \(e^{B+C} = e^B e^C e^{-[B,C]/2} \), which is valid only when \([B, [B, C]] = [C, [B, C]] = 0 \).

What is \(D(\alpha_2)|\alpha_1\rangle \)?

3. [15 pts] Consider a system described by the Hamiltonian \(H = \hbar \kappa (A + A^\dagger) \). Use your results from the previous problem to determine \(|\psi(t)\rangle \) for a system initially in the ground-state, \(|\psi(0)\rangle = |0\rangle \).