PHYS851 Quantum Mechanics I, Fall 2009
FINAL EXAM
NAME:

1. A particle of mass M and wave vector $k>\sqrt{2 M V_{0}} / \hbar$ is scattered by the potential $V(x)=V_{1}(x)+$ $V_{2}(x)$, where

$$
\begin{align*}
V_{1}(x) & =\left\{\begin{array}{cl}
0 ; & x<0 \\
V_{0}>0 ; & x>0
\end{array}\right. \tag{1}\\
V_{2}(x) & =g \delta(x) \tag{2}
\end{align*}
$$

(a) Compute the reflection and transmission amplitudes, r and t.
(b) Compute the reflection and transmission probabilities, R and T.
(c) Show that $|r|^{2}+|t|^{2} \neq 1$, and explain why probability conservation is not violated.
2. Consider a three-state quantum system, with energy eigenvalues $0, \hbar \omega_{0}$, and $4 \hbar \omega_{0}$. The first two normalized energy eigenstates are:

$$
\begin{align*}
\left|\omega_{1}\right\rangle & =\frac{1}{\sqrt{2}}(|1\rangle+|2\rangle) \tag{3}\\
\left|\omega_{2}\right\rangle & =\frac{1}{\sqrt{3}}(|1\rangle-|2\rangle+|3\rangle) \tag{4}
\end{align*}
$$

For the following questions, each answer must be given in Dirac notation.
(a) What is the third normalized energy eigenstate?

The initial state of the system is $|\psi(t=0)\rangle=\frac{1}{\sqrt{2}}(|1\rangle-|2\rangle)$.
(b) If the energy of the system were measured at $t=0$, what are the possible results?
(c) For each possible result, what are the associated probabilities?
(d) For each possible result, give the state of the system at an arbitrary time $t>0$, assuming no further measurements are made on the system.
(e) Assuming that no measurement was performed at $t=0$, give the state of the system, $|\psi(t)\rangle$, at an arbitrary time $t>0$.

In the basis $\{|1\rangle,|2\rangle,|3\rangle\}$, the observable, U, has the matrix representation:

$$
U=u_{0}\left(\begin{array}{ccc}
2 & 0 & 0 \tag{5}\\
0 & 3 & 0 \\
0 & 0 & 5
\end{array}\right)
$$

(f) What are the possible results of a measurement of U ?
(g) For the state, $|\psi(t)\rangle$, computed in part (e), what are the probabilities to obtain each possible result?
3. A particle with mass M, charge q, and $\operatorname{spin} s=1 / 2$, is confined between two concentric spherical shells. The inner shell has a radius r_{0}, and the outer shell has radius $r_{0}+\epsilon$, where $\epsilon \ll r_{0}$. The shells act as infinite potential barriers for the particle, so that

$$
V(\vec{r})=V(r)=\left\{\begin{array}{cc}
\infty ; & r<r_{0} \tag{6}\\
0 ; & r_{0}<r<r_{0}+\epsilon \\
\infty ; & r_{0}+\epsilon<r
\end{array}\right.
$$

(a) Write the radial wave equation for the particle in the absence of external electromagnetic fields.
(b) For the angular momentum term in the radial wave equation, make the approximation $\frac{1}{r^{2}} \approx \frac{1}{r_{0}^{2}}$. Within this approximation, solve the radial wave equation and determine the energy levels of the system.
(c) For each energy level, give the corresponding degeneracy factor.

Now assume a uniform magnetic field of strength B_{0} is applied. The field is very weak, so that the Zeeman splittings are very small compared the zero-field energy-level spacings.
(a) What term must be added to the Hamiltonian to account for the effects of the weak magnetic field?
(b) Assuming that $g=2$, where g is the magnetic g-factor, what are the energy levels and degeneracies in the presence of the field?
4. A spin- $1 / 2$ particle is initially prepared in the state $\left|\uparrow_{z}\right\rangle$. It is passed through a Stern-Gerlach apparatus aligned along the direction $\vec{e}_{a}(\theta)=\cos (\theta) \vec{e}_{z}+\sin (\theta) \overrightarrow{e_{x}}$, where θ is an adjustable parameter.
(a) Write a 2×2 matrix representation of the observable being measured by the device.
(b) For an arbitrary θ, compute the probabilities for the particle to exit in either the $\left|\uparrow_{a}\right\rangle$ or $\left|\downarrow_{a}\right\rangle$ output channels, where $\left|\uparrow_{a}\right\rangle$ and $\left|\downarrow_{a}\right\rangle$ are the spin-up and spin-down states relative to $\vec{e}_{a}(\theta)$, respectively.
(c) The $\left|\uparrow_{a}\right\rangle$ output channel is fed into a second Stern-Gerlach apparatus, aligned along \vec{e}_{z}, and the $\left|\downarrow_{a}\right\rangle$ output channel is fed into a third Stern-Gerlach apparatus, also aligned along \vec{e}_{z}. Four particle detectors (100% efficiency) are arranged so that one is placed at each output channel of both the second and third devices. What are the detection probabilities for each detector?

