PHYS851 Quantum Mechanics I, Fall 2009

FINAL EXAM

NAME:

1. A particle of mass M and wave vector $k > \sqrt{2MV_0}/\hbar$ is scattered by the potential $V(x) = V_1(x) + V_2(x)$, where

$$V_1(x) = \begin{cases} 0; & x < 0 \\ V_0 > 0; & x > 0 \end{cases}$$
(1)

$$V_2(x) = g\delta(x) \tag{2}$$

- (a) Compute the reflection and transmission amplitudes, r and t.
- (b) Compute the reflection and transmission probabilities, R and T.
- (c) Show that $|r|^2 + |t|^2 \neq 1$, and explain why probability conservation is not violated.

2. Consider a three-state quantum system, with energy eigenvalues 0, $\hbar\omega_0$, and $4\hbar\omega_0$. The first two normalized energy eigenstates are:

$$|\omega_1\rangle = \frac{1}{\sqrt{2}} (|1\rangle + |2\rangle) \tag{3}$$

$$|\omega_2\rangle = \frac{1}{\sqrt{3}} \left(|1\rangle - |2\rangle + |3\rangle\right) \tag{4}$$

For the following questions, each answer must be given in Dirac notation.

(a) What is the third normalized energy eigenstate?

The initial state of the system is $|\psi(t=0)\rangle = \frac{1}{\sqrt{2}} (|1\rangle - |2\rangle).$

- (b) If the energy of the system were measured at t = 0, what are the possible results?
- (c) For each possible result, what are the associated probabilities?
- (d) For each possible result, give the state of the system at an arbitrary time t > 0, assuming no further measurements are made on the system.
- (e) Assuming that no measurement was performed at t = 0, give the state of the system, $|\psi(t)\rangle$, at an arbitrary time t > 0.

In the basis $\{|1\rangle, |2\rangle, |3\rangle\}$, the observable, U, has the matrix representation:

$$U = u_0 \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{pmatrix}$$
(5)

- (f) What are the possible results of a measurement of U?
- (g) For the state, $|\psi(t)\rangle$, computed in part (e), what are the probabilities to obtain each possible result?

3. A particle with mass M, charge q, and spin s = 1/2, is confined between two concentric spherical shells. The inner shell has a radius r_0 , and the outer shell has radius $r_0 + \epsilon$, where $\epsilon \ll r_0$. The shells act as infinite potential barriers for the particle, so that

$$V(\vec{r}) = V(r) = \begin{cases} \infty; & r < r_0 \\ 0; & r_0 < r < r_0 + \epsilon \\ \infty; & r_0 + \epsilon < r \end{cases}$$
(6)

- (a) Write the radial wave equation for the particle in the absence of external electromagnetic fields.
- (b) For the angular momentum term in the radial wave equation, make the approximation $\frac{1}{r^2} \approx \frac{1}{r_0^2}$. Within this approximation, solve the radial wave equation and determine the energy levels of the system.
- (c) For each energy level, give the corresponding degeneracy factor.

Now assume a uniform magnetic field of strength B_0 is applied. The field is very weak, so that the Zeeman splittings are very small compared the zero-field energy-level spacings.

- (a) What term must be added to the Hamiltonian to account for the effects of the weak magnetic field?
- (b) Assuming that g = 2, where g is the magnetic g-factor, what are the energy levels and degeneracies in the presence of the field?

- 4. A spin-1/2 particle is initially prepared in the state $|\uparrow_z\rangle$. It is passed through a Stern-Gerlach apparatus aligned along the direction $\vec{e}_a(\theta) = \cos(\theta)\vec{e}_z + \sin(\theta)\vec{e}_x$, where θ is an adjustable parameter.
 - (a) Write a 2×2 matrix representation of the observable being measured by the device.
 - (b) For an arbitrary θ , compute the probabilities for the particle to exit in either the $|\uparrow_a\rangle$ or $|\downarrow_a\rangle$ output channels, where $|\uparrow_a\rangle$ and $|\downarrow_a\rangle$ are the spin-up and spin-down states relative to $\vec{e}_a(\theta)$, respectively.
 - (c) The $|\uparrow_a\rangle$ output channel is fed into a second Stern-Gerlach apparatus, aligned along \vec{e}_z , and the $|\downarrow_a\rangle$ output channel is fed into a third Stern-Gerlach apparatus, also aligned along \vec{e}_z . Four particle detectors (100% efficiency) are arranged so that one is placed at each output channel of both the second and third devices. What are the detection probabilities for each detector?