Topics covered: Green's function, Lippman-Schwinger Eq., T-matrix, Born Series.

1. T-matrix approach to one-dimensional scattering: In this problem, you will use the LippmanSchwinger equation

$$
\begin{equation*}
|\psi\rangle=\left|\psi_{0}\right\rangle+G V|\psi\rangle, \tag{1}
\end{equation*}
$$

to solve the one-dimensional problem of tunneling through delta potentials. Take $\psi_{0}(z)=e^{i k z}$, and let

$$
\begin{equation*}
V(z)=g \delta(z)+g \delta(z-L) . \tag{2}
\end{equation*}
$$

(a) Express Eq. (1) as an integral equation for $\psi(z)$, and then use the delta-functions to perform the integral. It might be helpful to introduce the dimensionless parameter $\alpha=\frac{M g}{\hbar^{2} k}$. To solve for the two unknown constants, generate two equations by evaluating your solution at $z=0$, and $z=L$.
(b) Compute the transmission probability $T=|t|^{2}$, with t defined via

$$
\begin{equation*}
\lim _{z \rightarrow \infty} \psi(z)=t e^{i k z} \tag{3}
\end{equation*}
$$

(c) In the strong-scatterer limit $\alpha \gg 1$, at what k-values is the transmission maximized?
(d) Consider an infinite square-well of length L. What are the k-values for each bound-state? How do these compare with the transmission resonances in the strong-scatterer limit?
2. The first Born-approximation: In the first Born-approximation, find the scattering amplitude, $f(\theta, \phi \mid k)$, for a Gaussian scattering potential,

$$
\begin{equation*}
V(r)=V_{0} e^{\left(-r / r_{0}\right)^{2}} \tag{4}
\end{equation*}
$$

Still within the first Born-approximation, what is the differential cross-section, $\frac{d \sigma}{d \Omega}$, and total crosssection, $\sigma_{\text {tot }}$? First try the integral in spherical coordinates, then when you reach the peak of frustration, try switching to Cartesian coordinates.
3. The Huang-Fermi pseudopotential: First, try to compute the T-matrix in three dimensions for a three-dimensional delta-function scatter, $V(\vec{r})=g \delta^{3}(\vec{r})$. What happens?
A workable zero-range potential in three-dimensions is called the Huang-Fermi pseudo-potential, $V_{H F}$, defined via

$$
\begin{equation*}
\langle\vec{r}| V_{H F}|\psi\rangle=\delta^{3}(\vec{r}) \psi_{\text {reg }}(\vec{r}), \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi_{\text {reg }}(\vec{r})=\frac{d}{d r} r \psi(\vec{r}) . \tag{6}
\end{equation*}
$$

This potential is also referred to as a "regularized delta-function".
(a) By expanding $\psi(\vec{r})$ in powers of r, starting with r^{-1}, show that the effect of the regularization operator, $\frac{d}{d r} r$ is to remove the $1 / r$ term in the expansion. Thus $\psi_{r e g}(\vec{r})$, is always non-singular at $r=0$.
(b) Compute the T-matrix for $V_{H F}$, using the regularization property to solve the singularity problem encountered with the simple delta-function.
(c) Use your answer to part (b) to compute the differential cross-section, $\frac{d \sigma}{d \Omega}$, as well as the total cross-section, $\sigma_{t o t}$, for the Huang-Fermi pseudo-potential.

