PHYS852 Quantum Mechanics II, Spring 2010
HOMEWORK ASSIGNMENT 10

Topics covered: Green’s function, Lippman-Schwinger Eq., T-matrix, Born Series.

1. T-matrix approach to one-dimensional scattering: In this problem, you will use the Lippman-
Schwinger equation

1) = lvho) + GV[¢), (1)
to solve the one-dimensional problem of tunneling through delta potentials. Take vy(z) = ¢**, and
let

V(z) = 96(2) + 96(z — L). (2)

(a) Express Eq. (1) as an integral equation for ¢(z), and then use the delta-functions to perform
the integral. It might be helpful to introduce the dimensionless parameter o = %. To solve
for the two unknown constants, generate two equations by evaluating your solution at z = 0,
and z = L.

Hit with a (z| from the left, and insert I = [ dz’|2’) (2’| after the G to get the integral equation

v(2) =0l + [ & Gola V() ®)
Use V(2') = gd(2’) + gd(2' — L) to handle the integrals, giving:
9(2) = Uo(2) + 9Go(z, 0}0(0) + gGo(z, L)(L). ()
To find the unknowns, (0) and ¥ (L), we set first z = 0, and then z = L, giving
9(0) = wn(0) +9Go(0.0)6(0) + 9Co(0. L}iAL) )
UL) = Wo(L) +9Go(L0J(0) + gGo(L, L)¥(L) ()

Solving simultaneously for ¢(0) and (L) and taking Go(z,2") — Go(|z — 2'|) gives

1+ia(l — eiQkL)
1+ 2ic — a?(1 — kL)
kL

1+ 2ia — a2(1 — ei2kl)

This gives as the solution:

eik(L+|z=L| 4 iklz| (1 +ia(l - eiQkL))

_ ikz
ﬂ}(Z) =e o 14+ 2 — 042(1 _ eiQkL) (9)
(b) Compute the transmission probability 7" = [t|?, with ¢ defined via
lim (z) = te**. (10)
zZ— 00
For z > L, this becomes '
b(z) = tet* (11)



where
1

t= ‘ 12
1+ 2ia — a2(1 — ei2kl) (12)
So that the transmission probability is
1
T=t]= 13
g (1 —2a2sin?(kL))? 4 4a2(1 + acos(kL) sin(kL))2 (13)
In the strong-scatterer limit o > 1, at what k-values is the transmission maximized?
In the limit o > 1, we can keep only the a* term in the denominator, giving
1
T=——f——— 14
402 sin? (kL) (14)

which blows up at k = nw/L, where n is any integer.

Consider an infinite square-well of length L. What are the k-values for each bound-state? How
do these compare with the transmission resonances in the strong-scatterer limit?

The bound states correspond to k = nm/L, which matches the transmission resonances of the
double-delta potential.



2. The first Born-approximation: In the first Born-approximation, find the scattering amplitude,
f(0,¢|k), for a Gaussian scattering potential,

V(r) = Voel =7/ (15)

Still within the first Born-approximation, what is the differential cross-section, 3—6, and total cross-

section, oy? First try the integral in spherical coordinates, then when you reach the peak of
frustration, try switching to Cartesian coordinates.
In the first-Born approximation, we have

FVIE) = / & (F7V () (7R)

rel (k=R Ty o= (r/10)?

(27
= Vb‘ /OO clgveik;”gﬁ_(%>2 /OO dyelkyy (T0>2 /OO dze iz —k)z <T0>2

— 00

Now (K — k)2 = (K — ké.) - (K — ké.) = k'? — 2kLk + k2.
With &' = k and k, = k cos 0, this gives

\/_‘/OMT K2 —cos
F(61k) = ~ Y00 ey 1 eon0)
The differential cross section is then

do TVEM?rd 2,2(1cos
7q = [FOR)? = —C—trfetrolize?)

The total cross section is then

do
Otot — /dQ—

27 2772
_ / d¢/ COSH ﬂ-‘/OZl‘;:L\Z TO Oe—k2r(2)(1—cos€)

T2V2 M2
_ ‘/0 M 7nO 7,,8 du e—k r2(1—u)
21 1
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3. The Huang-Fermi pseudopotential: First, try to compute the T-matrix in three dimensions for
a three-dimensional delta-function scatter, V() = g6>(#). What happens?

A workable zero-range potential in three-dimensions is called the Huang-Fermi pseudo-potential,
Vi r, defined via

(FVip|v) = g8° (F)reg (7). (16)

where

reg(7) = U7 a7)

This potential is also referred to as a “regularized delta-function”.

(a)

By expanding (7) in powers of r, starting with 7—!, show that the effect of the regularization
operator, %r is to remove the 1/r term in the expansion. Thus 1.4 (7), is always non-singular
at r=0.

Y = e 1(6,6) 7+ col6,6) + a6, 0)r + .. (15)
Then we have
%7'1/}(7”) = dir [c—1(0, ¢) + co(6, @)1 + c1(0, o)+ .. ]
= ¢co(0,9)+2c1(0,0)r + ... (19)

so we see that the singular term has been removed. Thus 1),¢4(7) is non-singular at » = 0. In
fact, we can use the sifting property of the delta function to give

(FVap|$) = 6% (7)tbreg (0) (20)

Compute the T-matrix for Vg, using the regularization property to solve the singularity prob-
lem encountered with the simple delta-function.
We start from the Born-series expansion

T=V+VGV +VGVGeV +... (21)

LW = 98 reg0) + 205 [ P Golro)5° () 0

d d
+ 9353(77’)%7“/d37“'d37'” GO(F,7")53(F')WT'GO(T',7"’)53(7”’)%89(0) + ...
d

: d d ‘ ,
= g8 (7)breg(0) {1 +92-rGo(7,0) + 92570 / d37"G0(F,W)éS(F’)WT’GQ(F’,O) + .. }

. d B
= g6 (M)tbreq(0) [1 + 9Go,req(0,0) + 92%7“6?0(7“, 0)Go,reg(0,0) + .. }

= 90°(F)reg(0) [1 + 9Go,reg(0,0) + g°GF 1oy (0,0) + .. ]

B g6 (7)
= T 4G, .

Expanding G(7,0) in powers of r gives

. M 1 K
GO(770):_W ;‘FZk—?T‘F (23)



so that
Go,reg(0,0) = —ika

where
Mg
a=—>
2mh?
so that finally, we have
7= VHr
1+ ika
where
g/ _ g
1+ ika

is called the ‘re-normalized coupling constant’.

a

(26)

(27)

Use your answer to part (b) to compute the differential cross-section, g—Q, as well as the total

cross-section, oy, for the Huang-Fermi pseudo-potential.
The Fourier transform of 7" is then

T(FF) = R / &Br'dPr e~ F T T F)eF T
T

9
2m)3(1 + ika)

from f(K k) = —(27T)2JV[T(/_€", k), we find

ﬁ2
- 2m)2 M g
/ k — _(
fF(E, k) 2 (2m)3(1 + ika)
. a
a 1+ ika
The differential cross-section is then

do o
dQ 1+ (ka)?

As this doesn’t depend on  or ¢, we have simply

47ra?

tot = 771 (ka)?



