PHYS852 Quantum Mechanics II, Spring 2010
HOMEWORK ASSIGNMENT 10
Topics covered: Green's function, Lippman-Schwinger Eq., T-matrix, Born Series.

1. T-matrix approach to one-dimensional scattering: In this problem, you will use the LippmanSchwinger equation

$$
\begin{equation*}
|\psi\rangle=\left|\psi_{0}\right\rangle+G V|\psi\rangle, \tag{1}
\end{equation*}
$$

to solve the one-dimensional problem of tunneling through delta potentials. Take $\psi_{0}(z)=e^{i k z}$, and let

$$
\begin{equation*}
V(z)=g \delta(z)+g \delta(z-L) . \tag{2}
\end{equation*}
$$

(a) Express Eq. (1) as an integral equation for $\psi(z)$, and then use the delta-functions to perform the integral. It might be helpful to introduce the dimensionless parameter $\alpha=\frac{M g}{\hbar^{2} k}$. To solve for the two unknown constants, generate two equations by evaluating your solution at $z=0$, and $z=L$.
Hit with a $\langle z|$ from the left, and insert $I=\int d z^{\prime}\left|z^{\prime}\right\rangle\left\langle z^{\prime}\right|$ after the G to get the integral equation

$$
\begin{equation*}
\psi(z)=\psi_{0}(z)+\int d z^{\prime} G_{0}\left(z, z^{\prime}\right) V\left(z^{\prime}\right) \psi\left(z^{\prime}\right) \tag{3}
\end{equation*}
$$

Use $V\left(z^{\prime}\right)=g \delta\left(z^{\prime}\right)+g \delta\left(z^{\prime}-L\right)$ to handle the integrals, giving:

$$
\begin{equation*}
\psi(z)=\psi_{0}(z)+g G_{0}(z, 0) \psi(0)+g G_{0}(z, L) \psi(L) . \tag{4}
\end{equation*}
$$

To find the unknowns, $\psi(0)$ and $\psi(L)$, we set first $z=0$, and then $z=L$, giving

$$
\begin{align*}
\psi(0) & =\psi_{0}(0)+g G_{0}(0,0) \psi(0)+g G_{0}(0, L) \psi(L) \tag{5}\\
\psi(L) & =\psi_{0}(L)+g G_{0}(L, 0) \psi(0)+g G_{0}(L, L) \psi(L) \tag{6}
\end{align*}
$$

Solving simultaneously for $\psi(0)$ and $\psi(L)$ and taking $G_{0}\left(z, z^{\prime}\right) \rightarrow G_{0}\left(\left|z-z^{\prime}\right|\right)$ gives

$$
\begin{align*}
& \psi(0)=\frac{1+i \alpha\left(1-e^{i 2 k L}\right)}{1+2 i \alpha-\alpha^{2}\left(1-e^{i 2 k L}\right)} \tag{7}\\
& \psi(L)=\frac{e^{i k L}}{1+2 i \alpha-\alpha^{2}\left(1-e^{i 2 k L}\right)} \tag{8}
\end{align*}
$$

This gives as the solution:

$$
\begin{equation*}
\psi(z)=e^{i k z}-i \alpha \frac{e^{i k(L+|z-L|}+e^{i k|z|}\left(1+i \alpha\left(1-e^{i 2 k L}\right)\right)}{1+2 i \alpha-\alpha^{2}\left(1-e^{i 2 k L}\right)} . \tag{9}
\end{equation*}
$$

(b) Compute the transmission probability $T=|t|^{2}$, with t defined via

$$
\begin{equation*}
\lim _{z \rightarrow \infty} \psi(z)=t e^{i k z} \tag{10}
\end{equation*}
$$

For $z>L$, this becomes

$$
\begin{equation*}
\psi(z)=t e^{i k z} \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
t=\frac{1}{1+2 i \alpha-\alpha^{2}\left(1-e^{i 2 k L}\right)} \tag{12}
\end{equation*}
$$

So that the transmission probability is

$$
\begin{equation*}
T=|t|^{2}=\frac{1}{\left(1-2 \alpha^{2} \sin ^{2}(k L)\right)^{2}+4 \alpha^{2}(1+\alpha \cos (k L) \sin (k L))^{2}} \tag{13}
\end{equation*}
$$

(c) In the strong-scatterer limit $\alpha \gg 1$, at what k-values is the transmission maximized?

In the limit $\alpha \gg 1$, we can keep only the α^{4} term in the denominator, giving

$$
\begin{equation*}
T=\frac{1}{4 \alpha^{2} \sin ^{2}(k L)} \tag{14}
\end{equation*}
$$

which blows up at $k=n \pi / L$, where n is any integer.
(d) Consider an infinite square-well of length L. What are the k-values for each bound-state? How do these compare with the transmission resonances in the strong-scatterer limit?
The bound states correspond to $k=n \pi / L$, which matches the transmission resonances of the double-delta potential.
2. The first Born-approximation: In the first Born-approximation, find the scattering amplitude, $f(\theta, \phi \mid k)$, for a Gaussian scattering potential,

$$
\begin{equation*}
V(r)=V_{0} e^{\left(-r / r_{0}\right)^{2}} \tag{15}
\end{equation*}
$$

Still within the first Born-approximation, what is the differential cross-section, $\frac{d \sigma}{d \Omega}$, and total crosssection, $\sigma_{t o t}$? First try the integral in spherical coordinates, then when you reach the peak of frustration, try switching to Cartesian coordinates.
In the first-Born approximation, we have

$$
\begin{aligned}
& f\left(\vec{k}^{\prime}, \vec{k}\right)=-\frac{(2 \pi)^{2} M}{\hbar^{2}}\left\langle\vec{k}^{\prime}\right| V|\vec{k}\rangle \\
&\left\langle\vec{k}^{\prime}\right| V|\vec{k}\rangle= \int d^{3} r\left\langle\vec{k}^{\prime} \mid \vec{r}\right\rangle V(\vec{r})\langle\vec{r} \mid \vec{k}\rangle \\
&= \frac{1}{(2 \pi)^{3}} \int d^{3} r e^{i\left(\vec{k}-\vec{k}^{\prime}\right) \cdot \vec{r}} V_{0} e^{-\left(r / r_{0}\right)^{2}} \\
&= \frac{V_{0}}{(2 \pi)^{3}} \int_{-\infty}^{\infty} d x e^{i k_{x}^{\prime} x-\left(\frac{x}{r_{0}}\right)^{2}} \int_{-\infty}^{\infty} d y e^{i k_{y}^{\prime} y-\left(\frac{y}{r_{0}}\right)^{2}} \int_{-\infty}^{\infty} d z e^{i\left(k_{z}^{\prime}-k\right) z-\left(\frac{z}{r_{0}}\right)^{2}} \\
&= \frac{V_{0}}{8 \pi^{3 / 2}} r_{0}^{3} e^{-\frac{1}{4}\left(\left(\overrightarrow{k^{\prime}}-\vec{k}\right)^{2} r_{0}^{2}\right)}
\end{aligned}
$$

Now $\left(\vec{k}^{\prime}-\vec{k}\right)^{2}=\left(\vec{k}^{\prime}-k \vec{e}_{z}\right) \cdot\left(\vec{k}^{\prime}-k \vec{e}_{z}\right)=k^{\prime 2}-2 k_{z}^{\prime} k+k^{2}$.
With $k^{\prime}=k$ and $k_{z}^{\prime}=k \cos \theta$, this gives

$$
f(\theta \mid k)=-\frac{\sqrt{\pi} V_{0} M r_{0}^{2}}{2 \hbar^{2}} r_{0} e^{-\frac{k^{2}}{2}(1-\cos \theta)}
$$

The differential cross section is then

$$
\frac{d \sigma}{d \Omega}=|f(\theta \mid k)|^{2}=\frac{\pi V_{0}^{2} M^{2} r_{0}^{4}}{4 \hbar^{4}} r_{0}^{2} e^{-k^{2} r_{0}^{2}(1-\cos \theta)}
$$

The total cross section is then

$$
\begin{aligned}
\sigma_{t o t} & =\int d \Omega \frac{d \sigma}{d \Omega} \\
& =\int_{0}^{2 \pi} d \phi \int_{0}^{\infty} d(\cos \theta) \frac{\pi V_{0}^{2} M^{2} r_{0}^{4}}{4 \hbar^{4}} r_{0}^{2} e^{-k^{2} r_{0}^{2}(1-\cos \theta)} \\
& =\frac{\pi^{2} V_{0}^{2} M^{2} r_{0}^{4}}{2 \hbar^{4}} r_{0}^{2} \int_{-1}^{1} d u e^{-k^{2} r_{0}^{2}(1-u)} \\
& =\frac{\pi^{2} V_{0}^{2} M^{2} r_{0}^{4}}{2 \hbar^{4}} r_{0}^{2} \frac{1-e^{-2 k^{2} r_{0}^{2}}}{k^{2} r_{0}^{2}}
\end{aligned}
$$

3. The Huang-Fermi pseudopotential: First, try to compute the T-matrix in three dimensions for a three-dimensional delta-function scatter, $V(\vec{r})=g \delta^{3}(\vec{r})$. What happens?
A workable zero-range potential in three-dimensions is called the Huang-Fermi pseudo-potential, $V_{H F}$, defined via

$$
\begin{equation*}
\langle\vec{r}| V_{H F}|\psi\rangle=g \delta^{3}(\vec{r}) \psi_{\text {reg }}(\vec{r}), \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi_{r e g}(\vec{r})=\frac{d}{d r} r \psi(\vec{r}) . \tag{17}
\end{equation*}
$$

This potential is also referred to as a "regularized delta-function".
(a) By expanding $\psi(\vec{r})$ in powers of r, starting with r^{-1}, show that the effect of the regularization operator, $\frac{d}{d r} r$ is to remove the $1 / r$ term in the expansion. Thus $\psi_{r e g}(\vec{r})$, is always non-singular at $r=0$.

$$
\begin{equation*}
\psi(\vec{r})=c_{-1}(\theta, \phi) \frac{1}{r}+c_{0}(\theta, \phi)+c_{1}(\theta, \phi) r+\ldots, \tag{18}
\end{equation*}
$$

Then we have

$$
\begin{align*}
\frac{d}{d r} r \psi(\vec{r}) & =\frac{d}{d r}\left[c_{-1}(\theta, \phi)+c_{0}(\theta, \phi) r+c_{1}(\theta, \phi) r^{2}+\ldots\right] \\
& =c_{0}(\theta, \phi)+2 c_{1}(\theta, \phi) r+\ldots \tag{19}
\end{align*}
$$

so we see that the singular term has been removed. Thus $\psi_{\text {reg }}(\vec{r})$ is non-singular at $r=0$. In fact, we can use the sifting property of the delta function to give

$$
\begin{equation*}
\langle\vec{r}| V_{H F}|\psi\rangle=\delta^{3}(\vec{r}) \psi_{\text {reg }}(0) \tag{20}
\end{equation*}
$$

(b) Compute the T-matrix for $V_{H F}$, using the regularization property to solve the singularity problem encountered with the simple delta-function.
We start from the Born-series expansion

$$
\left.\begin{array}{rl}
& T=V+V G_{0} V+V G_{0} V G_{0} V+\ldots \\
\langle\vec{r}| T|\psi\rangle= & g \delta^{3}(\vec{r}) \psi_{\text {reg }}(0)+g^{2} \delta^{3}(\vec{r}) \frac{d}{d r} r \int d^{3} r^{\prime} G_{0}\left(\vec{r}, \vec{r}^{\prime}\right) \delta^{3}\left(\vec{r}^{\prime}\right) \psi_{\text {reg }}(0) \\
+ & g^{3} \delta^{3}(\vec{r}) \frac{d}{d r} r \int d^{3} r^{\prime} d^{3} r^{\prime \prime} G_{0}\left(\vec{r}, \vec{r}^{\prime}\right) \delta^{3}\left(\vec{r}^{\prime}\right) \frac{d}{d r^{\prime}} r^{\prime} G_{0}\left(\vec{r}^{\prime}, \vec{r}^{\prime \prime}\right) \delta_{3}\left(\vec{r}^{\prime \prime}\right) \psi_{\text {reg }}(0)+\ldots \\
= & g \delta^{3}(\vec{r}) \psi_{\text {reg }}(0)\left[1+g \frac{d}{d r} r G_{0}(\vec{r}, 0)+g^{2} \frac{d}{d r} r \int d^{3} r^{\prime} G_{0}\left(\vec{r}, \vec{r}^{\prime}\right) \delta^{3}\left(\vec{r}^{\prime}\right) \frac{d}{d r^{\prime}} r^{\prime} G_{0}\left(\vec{r}^{\prime}, 0\right)+\ldots\right] \\
= & g \delta^{3}(\vec{r}) \psi_{\text {reg }}(0)\left[1+g G_{0, \text { reg }}(0,0)+g^{2} \frac{d}{d r} r G_{0}(\vec{r}, 0) G_{0, \text { reg }}(0,0)+\ldots\right] \\
= & g \delta^{3}(\vec{r}) \psi_{\text {reg }}(0)\left[1+g G_{0, \text { reg }}(0,0)+g^{2} G_{0, \text { reg }}^{2}(0,0)+\ldots\right] \\
= & g \delta^{3}(\vec{r}) \tag{22}\\
1-g G_{0, \text { reg }}(0,0)
\end{array} \psi_{\text {reg }}(0) \quad \text { (22) }\right)
$$

Expanding $G(\vec{r}, 0)$ in powers of r gives

$$
\begin{equation*}
G_{0}(\vec{r}, 0)=-\frac{M}{2 \pi \hbar^{2}}\left[\frac{1}{r}+i k-\frac{k^{2}}{2} r+\ldots\right] \tag{23}
\end{equation*}
$$

so that

$$
\begin{equation*}
G_{0, r e g}(0,0)=-i k a \tag{24}
\end{equation*}
$$

where

$$
\begin{equation*}
a=\frac{M g}{2 \pi \hbar^{2}} \tag{25}
\end{equation*}
$$

so that finally, we have

$$
\begin{equation*}
T=\frac{V_{H F}}{1+i k a} \tag{26}
\end{equation*}
$$

where

$$
\begin{equation*}
g^{\prime}=\frac{g}{1+i k a} \tag{27}
\end{equation*}
$$

is called the 're-normalized coupling constant'.
(c) Use your answer to part (b) to compute the differential cross-section, $\frac{d \sigma}{d \Omega}$, as well as the total cross-section, $\sigma_{t o t}$, for the Huang-Fermi pseudo-potential.
The Fourier transform of T is then

$$
\begin{aligned}
T\left(\vec{k}^{\prime}, \vec{k}\right) & =\frac{1}{(2 \pi)^{3}} \int d^{3} r^{\prime} d^{3} r e^{-i \vec{k}^{\prime} \cdot \vec{r}^{\prime}} T\left(\vec{r}^{\prime}, \vec{r}\right) e^{i \vec{k} \cdot \vec{r}} \\
& =\frac{g}{(2 \pi)^{3}(1+i k a)}
\end{aligned}
$$

from $f\left(\overrightarrow{k^{\prime}}, \vec{k}\right)=-\frac{(2 \pi)^{2} M}{\hbar^{2}} T\left(\vec{k}^{\prime}, \vec{k}\right)$, we find

$$
\begin{aligned}
f\left(\vec{k}^{\prime}, \vec{k}\right) & =-\frac{(2 \pi)^{2} M}{\hbar^{2}} \frac{g}{(2 \pi)^{3}(1+i k a)} \\
& =-\frac{a}{1+i k a}
\end{aligned}
$$

The differential cross-section is then

$$
\frac{d \sigma}{d \Omega}=\frac{a^{2}}{1+(k a)^{2}}
$$

As this doesn't depend on θ or ϕ, we have simply

$$
\sigma_{t o t}=\frac{4 \pi a^{2}}{1+(k a)^{2}}
$$

