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HOMEWORK ASSIGNMENT 10

Topics covered: Green’s function, Lippman-Schwinger Eq., T-matrix, Born Series.

1. T-matrix approach to one-dimensional scattering: In this problem, you will use the Lippman-
Schwinger equation

|ψ〉 = |ψ0〉 +GV |ψ〉, (1)

to solve the one-dimensional problem of tunneling through delta potentials. Take ψ0(z) = eikz, and
let

V (z) = gδ(z) + gδ(z − L). (2)

(a) Express Eq. (1) as an integral equation for ψ(z), and then use the delta-functions to perform
the integral. It might be helpful to introduce the dimensionless parameter α = Mg

~2k
. To solve

for the two unknown constants, generate two equations by evaluating your solution at z = 0,
and z = L.
Hit with a 〈z| from the left, and insert I =

∫

dz′|z′〉〈z′| after the G to get the integral equation

ψ(z) = ψ0(z) +

∫

dz′G0(z, z
′)V (z′)ψ(z′). (3)

Use V (z′) = gδ(z′) + gδ(z′ − L) to handle the integrals, giving:

ψ(z) = ψ0(z) + gG0(z, 0)ψ(0) + gG0(z, L)ψ(L). (4)

To find the unknowns, ψ(0) and ψ(L), we set first z = 0, and then z = L, giving

ψ(0) = ψ0(0) + gG0(0, 0)ψ(0) + gG0(0, L)ψ(L) (5)

ψ(L) = ψ0(L) + gG0(L, 0)ψ(0) + gG0(L,L)ψ(L) (6)

Solving simultaneously for ψ(0) and ψ(L) and taking G0(z, z
′) → G0(|z − z′|) gives

ψ(0) =
1 + iα(1 − ei2kL)

1 + 2iα− α2(1 − ei2kL)
(7)

ψ(L) =
eikL

1 + 2iα− α2(1 − ei2kL)
(8)

This gives as the solution:

ψ(z) = eikz − iα
eik(L+|z−L| + eik|z|

(

1 + iα(1 − ei2kL)
)

1 + 2iα − α2(1 − ei2kL)
. (9)

(b) Compute the transmission probability T = |t|2, with t defined via

lim
z→∞

ψ(z) = teikz. (10)

For z > L, this becomes
ψ(z) = teikz (11)
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where

t =
1

1 + 2iα− α2(1 − ei2kL)
(12)

So that the transmission probability is

T = |t|2 =
1

(1 − 2α2 sin2(kL))2 + 4α2(1 + α cos(kL) sin(kL))2
(13)

(c) In the strong-scatterer limit α≫ 1, at what k-values is the transmission maximized?
In the limit α≫ 1, we can keep only the α4 term in the denominator, giving

T =
1

4α2 sin2(kL)
(14)

which blows up at k = nπ/L, where n is any integer.

(d) Consider an infinite square-well of length L. What are the k-values for each bound-state? How
do these compare with the transmission resonances in the strong-scatterer limit?
The bound states correspond to k = nπ/L, which matches the transmission resonances of the
double-delta potential.
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2. The first Born-approximation: In the first Born-approximation, find the scattering amplitude,
f(θ, φ|k), for a Gaussian scattering potential,

V (r) = V0e
(−r/r0)2. (15)

Still within the first Born-approximation, what is the differential cross-section, dσ
dΩ , and total cross-

section, σtot? First try the integral in spherical coordinates, then when you reach the peak of
frustration, try switching to Cartesian coordinates.
In the first-Born approximation, we have

f(~k′, ~k) = −(2π)2M

~2
〈~k′|V |~k〉

〈~k′|V |~k〉 =

∫

d3r 〈~k′|~r〉V (~r)〈~r|~k〉

=
1

(2π)3

∫

d3rei(
~k−~k′)·~rV0e

−(r/r0)2

=
V0

(2π)3

∫ ∞

−∞
dxe

ik′

xx−
“

x
r0

”

2 ∫ ∞

−∞
dye

ik′

yy−
“

y

r0

”

2 ∫ ∞

−∞
dze

i(k′

z−k)z−
“

z
r0

”

2

=
V0

8π3/2
r30e

− 1

4
((~k′−~k)2r2

0
)

Now (~k′ − ~k)2 = (~k′ − k~ez) · (~k′ − k~ez) = k′2 − 2k′zk + k2.
With k′ = k and k′z = k cos θ, this gives

f(θ|k) = −
√
πV0Mr20
2~2

r0e
− k2

2
(1−cos θ)

The differential cross section is then

dσ

dΩ
= |f(θ|k)|2 =

πV 2
0 M

2r40
4~4

r20e
−k2r2

0
(1−cos θ)

The total cross section is then

σtot =

∫

dΩ
dσ

dΩ

=

∫ 2π

0
dφ

∫ ∞

0
d(cos θ)

πV 2
0 M

2r40
4~4

r20e
−k2r2

0
(1−cos θ)

=
π2V 2

0 M
2r40

2~4
r20

∫ 1

−1
du e−k2r2

0
(1−u)

=
π2V 2

0 M
2r40

2~4
r20

1 − e−2k2r2

0

k2r20
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3. The Huang-Fermi pseudopotential: First, try to compute the T-matrix in three dimensions for
a three-dimensional delta-function scatter, V (~r) = gδ3(~r). What happens?

A workable zero-range potential in three-dimensions is called the Huang-Fermi pseudo-potential,
VHF , defined via

〈~r|VHF |ψ〉 = gδ3(~r)ψreg(~r), (16)

where

ψreg(~r) =
d

dr
r ψ(~r). (17)

This potential is also referred to as a “regularized delta-function”.

(a) By expanding ψ(~r) in powers of r, starting with r−1, show that the effect of the regularization
operator, d

drr is to remove the 1/r term in the expansion. Thus ψreg(~r), is always non-singular
at r = 0.

ψ(~r) = c−1(θ, φ)
1

r
+ c0(θ, φ) + c1(θ, φ)r + . . . , (18)

Then we have

d

dr
rψ(~r) =

d

dr

[

c−1(θ, φ) + c0(θ, φ)r + c1(θ, φ)r2 + . . .
]

= c0(θ, φ) + 2c1(θ, φ)r + . . . (19)

so we see that the singular term has been removed. Thus ψreg(~r) is non-singular at r = 0. In
fact, we can use the sifting property of the delta function to give

〈~r|VHF |ψ〉 = δ3(~r)ψreg(0) (20)

(b) Compute the T-matrix for VHF , using the regularization property to solve the singularity prob-
lem encountered with the simple delta-function.
We start from the Born-series expansion

T = V + V G0V + V G0V G0V + . . . (21)

〈~r|T |ψ〉 = gδ3(~r)ψreg(0) + g2δ3(~r)
d

dr
r

∫

d3r′G0(~r,~r
′)δ3(~r′)ψreg(0)

+ g3δ3(~r)
d

dr
r

∫

d3r′d3r′′G0(~r,~r
′)δ3(~r′)

d

dr′
r′G0(~r

′, ~r′′)δ3(~r
′′)ψreg(0) + . . .

= gδ3(~r)ψreg(0)

[

1 + g
d

dr
rG0(~r, 0) + g2 d

dr
r

∫

d3r′G0(~r,~r
′)δ3(~r′)

d

dr′
r′G0(~r

′, 0) + . . .

]

= gδ3(~r)ψreg(0)

[

1 + gG0,reg(0, 0) + g2 d

dr
rG0(~r, 0)G0,reg(0, 0) + . . .

]

= gδ3(~r)ψreg(0)
[

1 + gG0,reg(0, 0) + g2G2
0,reg(0, 0) + . . .

]

=
gδ3(~r)

1 − gG0,reg(0, 0)
ψreg(0) (22)

Expanding G(~r, 0) in powers of r gives

G0(~r, 0) = − M

2π~2

[

1

r
+ ik − k2

2
r + . . .

]

(23)
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so that
G0,reg(0, 0) = −ika (24)

where

a =
Mg

2π~2
(25)

so that finally, we have

T =
VHF

1 + ika
(26)

where
g′ =

g

1 + ika
(27)

is called the ‘re-normalized coupling constant’.

(c) Use your answer to part (b) to compute the differential cross-section, dσ
dΩ , as well as the total

cross-section, σtot, for the Huang-Fermi pseudo-potential.
The Fourier transform of T is then

T (~k′, ~k) =
1

(2π)3

∫

d3r′d3r e−i~k′·~r′T (~r′, ~r)ei
~k·~r

=
g

(2π)3(1 + ika)

from f(~k′, ~k) = − (2π)2M
~2 T (~k′, ~k), we find

f(~k′, ~k) = −(2π)2M

~2

g

(2π)3(1 + ika)

= − a

1 + ika

The differential cross-section is then

dσ

dΩ
=

a2

1 + (ka)2

As this doesn’t depend on θ or φ, we have simply

σtot =
4πa2

1 + (ka)2
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