PHYS852 Quantum Mechanics II, Spring 2010
HOMEWORK ASSIGNMENT 11: Solutions

Topics covered: Scattering amplitude, differential cross-section, scattering probabilities.

1. [5 pts] Using only the definition, Gy = (E — Hy + i€) !, show that the free-space Green’s function is
the solution to

hZ 2 — 3/= —
[E—FWV;] Go(7,7) = 0°(F—1). (1)

The purpose of this problem is just to establish the equivalence between our operator-based approach,
and the standard Green’s function formalism encountered, e.g., in classical EM.
According to it’s definition, we must have:

[E*H()JriG}G():I. (2)
Hitting from the left with < 7] and from the right with |7) then gives:
(FLE — Ho + ielGol) = (7I7). 3)

Using Hy = ﬁpz and taking € — 0 then gives

h? f
E \ve 7o) =837 = 7).



2. If we define the operator F via f(K, k) = (K'|F|k), then it follows that F = —%#T, where T'

is the T-matrix operator. In principle, one would like to deduce the form of the potential V' from
scattering data.

First, derive an expression for the operator V' in terms of the operators Go and 1" only.

In preparation for problem 11.4, use this expression for V' to prove that the full Green’s function,
G = (E — Hy—V +ie)~! is related to the background Green’s function, G via the simple relation:

G = Gy + GoTGo. (5)

(Hint: don’t forget that order matters in operator inversion (AB)~! = B~1A~1)
The relationship between T, V', and Gy is

T=(01-VGy) V. (6)
Operating from the left with (1 — V' Gp) then gives

(1-VG)T =V. (7)
Multiply out the l.h.s. to get

T - VG =V (8)

Putting all terms containing V' on the r.h.s. gives

T = V+VGT

= V(1 +GoT). (9)
Operate from the right with (1 4+ GoT)~! to find
V=T(1+GoI)™". (10)

Note that if you started from 7" = V(1 — GoV)~!, you would arrive at the equivalent expression
V=0+TGy)'T.

The definition of the full Green’s function is:

G=(E—Hy—V +ie) ! (11)
Inserting the definition of Gy and our expression for V' then gives
G = (Gy' —T(1+GoT) ™). (12)
Using the fact that GEIGO = I, we can then write this as
G = (Gy' —Gy'GoT(1+GoT)™ 1. (13)

Pulling the common factor G ' out of the inverse via (AB)™! = B~ A" gives
G=(1-GoT(1+GoT) H1a,. (14)
Using a similar trick for the (1 + GoT)~! term gives
G = (14 GoD)(1+GoT) ™' = GoT(1+ GoT)™")'Gy
= (14+GoT)(1+ GoT — GoT) Gy
= (1 + G()T)G()
= GO —+ GoTGo. (15)



3. Consider a system described by Hp that has no bound states, but has a continuum of states for

FE > 0. This means that )
E'ON(EO)|

Go(FE) = dEli‘ 16

o(E) /0 E—FE +ie’ (16)

where we have assumed that the bare states |E (0)) are non-degenerate. Incorporating any degeneracy
is accomplished by adding additional quantum numbers and summing/integrating over them.

Now consider a different system, described by H = Hp+ V, that in addition to a continuum of states
for E > 0, may have a set of negative energy bound states, {E,}, . In this case, it follows from the
definition G = (E — H +ie)~!, that

o0 El><El|
G = § dE’i‘ : 17
E E + 1€ /0 E—E' e (17)

Show that for £ < 0, as € — 0, G remains finite unless £ matches the energy of one of the bound
states. Thus the negative energy singularities of a system’s Green’s function correspond to the
energies of the bound states of the potential V. Show that the bound-state wavefunction is given by

the formula
o) =[G Jim (B = B,)GT. (18)

For £ < 0 and E,, < 0, we see that for ¢ — 0,

| En)(En] /” B (E
G = A A M) o A
Z —|E| +|En| . —|E| - BV

- BB BN
e / EE BT (19)

This shows that the first terms blows up only if F = F,,, while the second term has no singularity.

Based on Eq. (17), we have

. . E — En *FE - E / /
| EF—-F = 1 — |\ E ) (B, EYE
EEIEln( n)G ELHEI" <Z/ E— Eﬂ/’ " >< " ‘ - 0 E-F ’ >< ‘
n
- |En><En‘ (20)

Taking the diagonal matrix element with respect to coordinate then gives

(7 lim (E — Eq)G|7) = [(F1E)[*. (21)

E—E,

With 9, (7) := (7| Ey), which can also be chosen as real-valued, we arrive at the desired result:

n(F) = \/< rl lim (B — Ep)G|7). (22)

E—FE,




4. Based on Eq. (2), it follows that if Gy has no negative energy singularities, then the singularities in
G must come from the T-matrix. Consider the case of a particle in one dimension with Hy = % and
V = ¢§(X), where g < 0. Compute the T-matrix, and find it’s negative energy singularity, then use
Eq. (5) to find the bound-state wavefunction. Does this procedure give the true bound-state energy
and wavefunction? Is it necessary to normalize the resulting state by hand, or is it automatically
normalized?
Starting from G = Gy + GoT'Gy, we have

2 : o
u(@) = (of lim (B~ E,)Cl)
E—E),
= EthEl (E — E,){z|GoT'Gy|x) (23)

where we obtain the last line due to the fact that Gy is finite in the limit £ — E, < 0, and (z| is
independent of F. Inserting the projector onto coordinate basis twice then gives,

bn(@) = lim (E — By) / do’da” (2| Gol2 )T (&, ") (& | Gllr). (24)

E—FE,

From the lecture notes, Eq. (48), we have

O(x)o(x!
1+ i%5p
which gives
. d(x)d(x!
oula)? = i (BB, [ dtas” Goe.a) BT G
n m
. E — En
= —fnglggn GO(J?:O)GO(Oax)HW
%k
.ﬁ2 . E— En
= —igr EILI%L kGo(x,0)Go(0, ) T ika (26)

where we have introduced a = %. We see that the T-matrix has only one singularity at k, = %, SO

that there is only a single bound-state at Ej = % = —% With £ = %, and
Go(z,2") —z%eikw—x/‘, (27)
Eq. (26) becomes
)P = 5o tim S
= g o 1k
= 2672% (28)



From which we find the bound-state wavefunction to be

Checking the normalization, we find

| @il = 5[

_olzl
a

dzxe
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= / dre2%a
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oo
= / due™™
0
1

(30)

So in fact, the procedure gives the properly normalized bound-state, so that it is not necessary to

normalize it by hand.



5. Follow the same steps as in the previous problem, but for the three-dimensional Huang-Fermi pseudo-

potential, defined by (7V|y) = g6°(7) £ry(r). Show that a single bound state exists only for the

repulsive case g > 0, and find the bound-state energy and wavefunction.
From HW10.3b, the T-matrix for the Huang-Fermi pseudo-potential is

_ Vur
1+ ika

where
Mg

“= 2mh?

The singularity in the T-matrix occurs for k = g, corresponding to a binding energy of £} =

Using
. M eik|F7F’\
Golis7) = ~ 5 @ 7]

the bound-state formula gives

2

P = Jim g (4 ) GGGl

k—d 2M
th 1—1—]6‘2@2
= lim ——=Go(7,0)———Go(0,
kLH%QMaz o(™ )1—|—zka 0(0,7)
—2r/a
L g TG
B khig 87r2h2a2(1 ika) 72
1 6727‘/(1
T 2rma 12

(34)

First, we note that this state is physical (i.e. normalizable) only for a > 0, which corresponds to

g > 0. Checking normalization, we then have

5 o 00 ) e~ 2r/a
a°r |p(7))* = 4x redr ——
0

2mar?
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(35)



