PHYS852 Quantum Mechanics II, Spring 2010
HOMEWORK ASSIGNMENT 11: Solutions
Topics covered: Scattering amplitude, differential cross-section, scattering probabilities.

1. [5 pts] Using only the definition, $G_{0}=\left(E-H_{0}+i \epsilon\right)^{-1}$, show that the free-space Green's function is the solution to

$$
\begin{equation*}
\left[E+\frac{\hbar^{2}}{2 M} \nabla_{\vec{r}}^{2}\right] G_{0}\left(\vec{r}, \vec{r}^{\prime}\right)=\delta^{3}\left(\vec{r}-\vec{r}^{\prime}\right) . \tag{1}
\end{equation*}
$$

The purpose of this problem is just to establish the equivalence between our operator-based approach, and the standard Green's function formalism encountered, e.g., in classical EM.
According to it's definition, we must have:

$$
\begin{equation*}
\left[E-H_{0}+i \epsilon\right] G_{0}=I \tag{2}
\end{equation*}
$$

Hitting from the left with $<\vec{r} \mid$ and from the right with $|\vec{r}\rangle$ then gives:

$$
\begin{equation*}
\langle\vec{r}|\left[E-H_{0}+i \epsilon\right] G_{0}\left|\vec{r}^{\prime}\right\rangle=\left\langle\vec{r} \mid \vec{r}^{\prime}\right\rangle . \tag{3}
\end{equation*}
$$

Using $H_{0}=\frac{1}{2 M} P^{2}$ and taking $\epsilon \rightarrow 0$ then gives

$$
\begin{equation*}
\left[E+\frac{\hbar^{2}}{2 M} \nabla_{\vec{r}}^{2}\right] G_{0}\left(\vec{r}, \vec{r}^{\prime}\right)=\delta^{3}\left(\vec{r}-\vec{r}^{\prime}\right) \tag{4}
\end{equation*}
$$

2. If we define the operator $F$ via $f\left(\vec{k}^{\prime}, \vec{k}\right)=\left\langle\overrightarrow{k^{\prime}}\right| F|\vec{k}\rangle$, then it follows that $F=-\frac{(2 \pi)^{2} M}{\hbar^{2}} T$, where $T$ is the T-matrix operator. In principle, one would like to deduce the form of the potential $V$ from scattering data.
First, derive an expression for the operator $V$ in terms of the operators $G_{0}$ and $T$ only.
In preparation for problem 11.4, use this expression for $V$ to prove that the full Green's function, $G=\left(E-H_{0}-V+i \epsilon\right)^{-1}$ is related to the background Green's function, $G_{0}$ via the simple relation:

$$
\begin{equation*}
G=G_{0}+G_{0} T G_{0} \tag{5}
\end{equation*}
$$

(Hint: don't forget that order matters in operator inversion $(A B)^{-1}=B^{-1} A^{-1}$.) The relationship between $T, V$, and $G_{0}$ is

$$
\begin{equation*}
T=\left(1-V G_{0}\right)^{-1} V \tag{6}
\end{equation*}
$$

Operating from the left with $\left(1-V G_{0}\right)$ then gives

$$
\begin{equation*}
\left(1-V G_{0}\right) T=V \tag{7}
\end{equation*}
$$

Multiply out the l.h.s. to get

$$
\begin{equation*}
T-V G_{0} T=V \tag{8}
\end{equation*}
$$

Putting all terms containing $V$ on the r.h.s. gives

$$
\begin{align*}
T & =V+V G_{0} T \\
& =V\left(1+G_{0} T\right) . \tag{9}
\end{align*}
$$

Operate from the right with $\left(1+G_{0} T\right)^{-1}$ to find

$$
\begin{equation*}
V=T\left(1+G_{0} T\right)^{-1} \tag{10}
\end{equation*}
$$

Note that if you started from $T=V\left(1-G_{0} V\right)^{-1}$, you would arrive at the equivalent expression $V=\left(1+T G_{0}\right)^{-1} T$.

The definition of the full Green's function is:

$$
\begin{equation*}
G=\left(E-H_{0}-V+i \epsilon\right)^{-1} \tag{11}
\end{equation*}
$$

Inserting the definition of $G_{0}$ and our expression for $V$ then gives

$$
\begin{equation*}
G=\left(G_{0}^{-1}-T\left(1+G_{0} T\right)^{-1}\right)^{-1} \tag{12}
\end{equation*}
$$

Using the fact that $G_{0}^{-1} G_{0}=I$, we can then write this as

$$
\begin{equation*}
G=\left(G_{0}^{-1}-G_{0}^{-1} G_{0} T\left(1+G_{0} T\right)^{-1}\right)^{-1} \tag{13}
\end{equation*}
$$

Pulling the common factor $G_{0}^{-1}$ out of the inverse via $(A B)^{-1}=B^{-1} A^{-1}$ gives

$$
\begin{equation*}
G=\left(1-G_{0} T\left(1+G_{0} T\right)^{-1}\right)^{-1} G_{0} . \tag{14}
\end{equation*}
$$

Using a similar trick for the $\left(1+G_{0} T\right)^{-1}$ term gives

$$
\begin{align*}
G & =\left(\left(1+G_{0} T\right)\left(1+G_{0} T\right)^{-1}-G_{0} T\left(1+G_{0} T\right)^{-1}\right)^{-1} G_{0} \\
& =\left(1+G_{0} T\right)\left(1+G_{0} T-G_{0} T\right)^{-1} G_{0} \\
& =\left(1+G_{0} T\right) G_{0} \\
& =G_{0}+G_{0} T G_{0} . \tag{15}
\end{align*}
$$

3. Consider a system described by $H_{0}$ that has no bound states, but has a continuum of states for $E>0$. This means that

$$
\begin{equation*}
G_{0}(E)=\int_{0}^{\infty} d E^{\prime} \frac{\left|E^{\prime(0)}\right\rangle\left\langle E^{\prime(0)}\right|}{E-E^{\prime}+i \epsilon}, \tag{16}
\end{equation*}
$$

where we have assumed that the bare states $\left|E^{(0)}\right\rangle$ are non-degenerate. Incorporating any degeneracy is accomplished by adding additional quantum numbers and summing/integrating over them.
Now consider a different system, described by $H=H_{0}+V$, that in addition to a continuum of states for $E>0$, may have a set of negative energy bound states, $\left\{E_{n}\right\}$, . In this case, it follows from the definition $G=(E-H+i \epsilon)^{-1}$, that

$$
\begin{equation*}
G=\sum_{n} \frac{\left|E_{n}\right\rangle\left\langle E_{n}\right|}{E-E_{n}+i \epsilon}+\int_{0}^{\infty} d E^{\prime} \frac{\left|E^{\prime}\right\rangle\left\langle E^{\prime}\right|}{E-E^{\prime}+i \epsilon} . \tag{17}
\end{equation*}
$$

Show that for $E<0$, as $\epsilon \rightarrow 0, G$ remains finite unless $E$ matches the energy of one of the bound states. Thus the negative energy singularities of a system's Green's function correspond to the energies of the bound states of the potential $V$. Show that the bound-state wavefunction is given by the formula

$$
\begin{equation*}
\psi_{n}(\vec{r})=\sqrt{\langle\vec{r}|} \lim _{E \rightarrow E_{n}}\left(E-E_{n}\right) G|\vec{r}\rangle . \tag{18}
\end{equation*}
$$

For $E<0$ and $E_{n}<0$, we see that for $\epsilon \rightarrow 0$,

$$
\begin{align*}
G & =\sum_{n} \frac{\left|E_{n}\right\rangle\left\langle E_{n}\right|}{-|E|+\left|E_{n}\right|}+\int_{0}^{\infty} d E^{\prime} \frac{\left|E^{\prime}\right\rangle\left\langle E^{\prime}\right|}{-|E|-|E|^{\prime}} \\
& =-\sum_{n} \frac{\left|E_{n}\right\rangle\left\langle E_{n}\right|}{|E|-\left|E_{n}\right|}-\int_{0}^{\infty} d E^{\prime} \frac{\left|E^{\prime}\right\rangle\left\langle E^{\prime}\right|}{|E|+\left|E^{\prime}\right|} \tag{19}
\end{align*}
$$

This shows that the first terms blows up only if $E=E_{n}$, while the second term has no singularity.
Based on Eq. (17), we have

$$
\begin{align*}
\lim _{E \rightarrow E_{n}}\left(E-E_{n}\right) G & =\lim _{E \rightarrow E_{n}}\left(\sum_{n^{\prime}} \frac{E-E_{n}}{E-E_{n^{\prime}}}\left|E_{n^{\prime}}\right\rangle\left\langle E_{n^{\prime}}\right|+\int_{0}^{\infty} \frac{E-E_{n}}{E-E^{\prime}}\left|E^{\prime}\right\rangle\left\langle E^{\prime}\right|\right) \\
& =\left|E_{n}\right\rangle\left\langle E_{n}\right| \tag{20}
\end{align*}
$$

Taking the diagonal matrix element with respect to coordinate then gives

$$
\begin{equation*}
\langle\vec{r}| \lim _{E \rightarrow E_{n}}\left(E-E_{n}\right) G|\vec{r}\rangle=\left|\left\langle\vec{r} \mid E_{n}\right\rangle\right|^{2} \tag{21}
\end{equation*}
$$

With $\psi_{n}(\vec{r}):=\left\langle\vec{r} \mid E_{n}\right\rangle$, which can also be chosen as real-valued, we arrive at the desired result:

$$
\begin{equation*}
\psi_{n}(\vec{r})=\sqrt{\langle\vec{r}| \lim _{E \rightarrow E_{n}}\left(E-E_{n}\right) G|\vec{r}\rangle} . \tag{22}
\end{equation*}
$$

4. Based on Eq. (2), it follows that if $G_{0}$ has no negative energy singularities, then the singularities in $G$ must come from the T-matrix. Consider the case of a particle in one dimension with $H_{0}=\frac{P^{2}}{2 M}$ and $V=g \delta(X)$, where $g<0$. Compute the T-matrix, and find it's negative energy singularity, then use Eq. (5) to find the bound-state wavefunction. Does this procedure give the true bound-state energy and wavefunction? Is it necessary to normalize the resulting state by hand, or is it automatically normalized?
Starting from $G=G_{0}+G_{0} T G_{0}$, we have

$$
\begin{align*}
\left|\phi_{n}(x)\right|^{2} & =\langle x| \lim _{E \rightarrow E_{n}}\left(E-E_{n}\right) G|x\rangle \\
& =\langle x| \lim _{E \rightarrow E_{n}}\left(E-E_{n}\right)\left(G_{0}-G_{0} T G_{0}\right)|x\rangle \\
& =\lim _{E \rightarrow E_{n}}\left(E-E_{n}\right)\langle x| G_{0} T G_{0}|x\rangle \tag{23}
\end{align*}
$$

where we obtain the last line due to the fact that $G_{0}$ is finite in the limit $E \rightarrow E_{n}<0$, and $\langle x|$ is independent of $E$. Inserting the projector onto coordinate basis twice then gives,

$$
\begin{equation*}
\left|\phi_{n}(x)\right|^{2}=\lim _{E \rightarrow E_{n}}\left(E-E_{n}\right) \int d x^{\prime} d x^{\prime \prime}\langle x| G_{0}\left|x^{\prime}\right\rangle T\left(x^{\prime}, x^{\prime \prime}\right)\left\langle x^{\prime \prime}\right| G_{0}|x\rangle . \tag{24}
\end{equation*}
$$

From the lecture notes, Eq. (48), we have

$$
\begin{equation*}
T\left(x, x^{\prime}\right)=\frac{g \delta(x) \delta\left(x^{\prime}\right)}{1+i \frac{g M}{\hbar^{2} k}}, \tag{25}
\end{equation*}
$$

which gives

$$
\begin{align*}
\left|\phi_{n}(x)\right|^{2} & =\lim _{E \rightarrow E_{n}}\left(E-E_{n}\right) \int d x^{\prime} d x^{\prime \prime} G_{0}\left(x, x^{\prime}\right) \frac{g \delta(x) \delta\left(x^{\prime}\right)}{1+i \frac{g M}{\hbar^{2} k}} G_{0}\left(x^{\prime \prime}, x\right) \\
& =-|g| \lim _{E \rightarrow E_{n}} G_{0}(x, 0) G_{0}(0, x) \frac{E-E_{n}}{1-i \frac{|g| M}{\hbar^{2} k}} \\
& =-i \frac{\hbar^{2}}{M} \lim _{E \rightarrow E_{n}} k G_{0}(x, 0) G_{0}(0, x) \frac{E-E_{n}}{1+i k a} \tag{26}
\end{align*}
$$

where we have introduced $a=\frac{\hbar^{2}}{M|g|}$. We see that the T-matrix has only one singularity at $k_{b}=\frac{i}{a}$, so that there is only a single bound-state at $E_{b}=\frac{\hbar^{2} k_{b}^{2}}{2 M}=-\frac{\hbar^{2}}{2 M a^{2}}$. With $E=\frac{\hbar^{2} k^{2}}{2 M}$, and

$$
\begin{equation*}
G_{0}\left(x, x^{\prime}\right)=-i \frac{M}{\hbar^{2} k} e^{i k\left|x-x^{\prime}\right|} \tag{27}
\end{equation*}
$$

Eq. (26) becomes

$$
\begin{align*}
\left|\phi_{b}(x)\right|^{2} & =\frac{i}{2 a^{2}} \lim _{k \rightarrow \frac{i}{a}} \frac{e^{2 i k|x|}}{k} \frac{1+k^{2} a^{2}}{1-i k a} \\
& =\frac{i}{2 a^{2}} \lim _{k \rightarrow \frac{i}{a}} \frac{e^{2 i k|x|}}{k}(1-i k a) \\
& =\frac{1}{a} e^{-2 \frac{|x|}{a}} \tag{28}
\end{align*}
$$

From which we find the bound-state wavefunction to be

$$
\begin{equation*}
\phi_{b}(x)=\frac{1}{\sqrt{a}} e^{-\frac{|x|}{a}} . \tag{29}
\end{equation*}
$$

Checking the normalization, we find

$$
\begin{align*}
\int_{-\infty}^{\infty} d x\left|\phi_{b}(x)\right|^{2} & =\frac{1}{a} \int_{-\infty}^{\infty} d x e^{-2 \frac{|x|}{a}} \\
& =\frac{2}{a} \int_{0}^{\infty} d x e^{-2 \frac{x}{a}} \\
& =\int_{0}^{\infty} d u e^{-u} \\
& =1 \tag{30}
\end{align*}
$$

So in fact, the procedure gives the properly normalized bound-state, so that it is not necessary to normalize it by hand.
5. Follow the same steps as in the previous problem, but for the three-dimensional Huang-Fermi pseudopotential, defined by $\langle\vec{r}| V|\psi\rangle=g \delta^{3}(\vec{r}) \frac{d}{d r} r \psi(r)$. Show that a single bound state exists only for the repulsive case $g>0$, and find the bound-state energy and wavefunction.
From HW10.3b, the T-matrix for the Huang-Fermi pseudo-potential is

$$
\begin{equation*}
T=\frac{V_{H F}}{1+i k a} \tag{31}
\end{equation*}
$$

where

$$
\begin{equation*}
a=\frac{M g}{2 \pi \hbar^{2}} \tag{32}
\end{equation*}
$$

The singularity in the T-matrix occurs for $k=\frac{i}{a}$, corresponding to a binding energy of $E_{b}=-\frac{\hbar^{2}}{2 M a^{2}}$. Using

$$
\begin{equation*}
G_{0}\left(\vec{r}, \vec{r}^{\prime}\right)=-\frac{M}{2 \pi \hbar^{2}} \frac{e^{i k\left|\vec{r}-\vec{r}^{\prime}\right|}}{\left|\vec{r}-\vec{r}^{\prime}\right|} \tag{33}
\end{equation*}
$$

the bound-state formula gives

$$
\begin{align*}
\left|\psi_{b}(\vec{r})\right|^{2} & =\lim _{k \rightarrow \frac{i}{a}} \frac{\hbar^{2}}{2 M}\left(k^{2}+\frac{1}{a^{2}}\right)\langle\vec{r}| G_{0} T G_{0}|\vec{r}\rangle \\
& =\lim _{k \rightarrow \frac{i}{a}} \frac{\hbar^{2} g}{2 M a^{2}} G_{0}(\vec{r}, 0) \frac{1+k^{2} a^{2}}{1+i k a} G_{0}(0, \vec{r}) \\
& =\lim _{k \rightarrow \frac{i}{a}} \frac{M g}{8 \pi^{2} \hbar^{2} a^{2}}(1-i k a) \frac{e^{-2 r / a}}{r^{2}} \\
& =\frac{1}{2 \pi a} \frac{e^{-2 r / a}}{r^{2}} \tag{34}
\end{align*}
$$

First, we note that this state is physical (i.e. normalizable) only for $a>0$, which corresponds to $g>0$. Checking normalization, we then have

$$
\begin{align*}
\int d^{3} r\left|\psi_{b}(\vec{r})\right|^{2} & =4 \pi \int_{0}^{\infty} r^{2} d r \frac{e^{-2 r / a}}{2 \pi a r^{2}} \\
& =\frac{2}{a} \int_{0}^{\infty} d r e^{-2 r / a} \\
& =\int_{0}^{\infty} d u e^{-u} \\
& =1 \tag{35}
\end{align*}
$$

