
PHYS852 Quantum Mechanics II, Spring 2010
HOMEWORK ASSIGNMENT 11: Solutions

Topics covered: Scattering amplitude, differential cross-section, scattering probabilities.

1. [5 pts] Using only the definition, G0 = (E −H0 + iε)−1, show that the free-space Green’s function is
the solution to [

E +
~2

2M
∇2
~r

]
G0(~r, ~r

′) = δ3(~r − ~r′). (1)

The purpose of this problem is just to establish the equivalence between our operator-based approach,
and the standard Green’s function formalism encountered, e.g., in classical EM.
According to it’s definition, we must have:

[E −H0 + iε]G0 = I. (2)

Hitting from the left with < ~r| and from the right with |~r′〉 then gives:

〈~r|[E −H0 + iε]G0|~r′〉 = 〈~r|~r′〉. (3)

Using H0 = 1
2MP

2 and taking ε→ 0 then gives[
E +

~2

2M
∇2
~r

]
G0(~r, ~r

′) = δ3(~r − ~r′). (4)
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2. If we define the operator F via f(~k′,~k) = 〈~k′|F |~k〉, then it follows that F = − (2π)2M
~2 T , where T

is the T-matrix operator. In principle, one would like to deduce the form of the potential V from
scattering data.

First, derive an expression for the operator V in terms of the operators G0 and T only.

In preparation for problem 11.4, use this expression for V to prove that the full Green’s function,
G = (E −H0 − V + iε)−1 is related to the background Green’s function, G0 via the simple relation:

G = G0 +G0TG0. (5)

(Hint: don’t forget that order matters in operator inversion (AB)−1 = B−1A−1.)
The relationship between T , V , and G0 is

T = (1− V G0)
−1V. (6)

Operating from the left with (1− V G0) then gives

(1− V G0)T = V. (7)

Multiply out the l.h.s. to get
T − V G0T = V (8)

Putting all terms containing V on the r.h.s. gives

T = V + V G0T

= V (1 +G0T ). (9)

Operate from the right with (1 +G0T )−1 to find

V = T (1 +G0T )−1. (10)

Note that if you started from T = V (1 − G0V )−1, you would arrive at the equivalent expression
V = (1 + TG0)

−1T .

The definition of the full Green’s function is:

G = (E −H0 − V + iε)−1 (11)

Inserting the definition of G0 and our expression for V then gives

G = (G−10 − T (1 +G0T )−1)−1. (12)

Using the fact that G−10 G0 = I, we can then write this as

G = (G−10 −G
−1
0 G0T (1 +G0T )−1)−1. (13)

Pulling the common factor G−10 out of the inverse via (AB)−1 = B−1A−1 gives

G = (1−G0T (1 +G0T )−1)−1G0. (14)

Using a similar trick for the (1 +G0T )−1 term gives

G = ((1 +G0T )(1 +G0T )−1 −G0T (1 +G0T )−1)−1G0

= (1 +G0T )(1 +G0T −G0T )−1G0

= (1 +G0T )G0

= G0 +G0TG0. (15)
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3. Consider a system described by H0 that has no bound states, but has a continuum of states for
E > 0. This means that

G0(E) =

∫ ∞
0

dE′
|E′(0)〉〈E′(0)|
E − E′ + iε

, (16)

where we have assumed that the bare states |E(0)〉 are non-degenerate. Incorporating any degeneracy
is accomplished by adding additional quantum numbers and summing/integrating over them.

Now consider a different system, described by H = H0 +V , that in addition to a continuum of states
for E > 0, may have a set of negative energy bound states, {En}, . In this case, it follows from the
definition G = (E −H + iε)−1, that

G =
∑
n

|En〉〈En|
E − En + iε

+

∫ ∞
0

dE′
|E′〉〈E′|

E − E′ + iε
. (17)

Show that for E < 0, as ε → 0, G remains finite unless E matches the energy of one of the bound
states. Thus the negative energy singularities of a system’s Green’s function correspond to the
energies of the bound states of the potential V . Show that the bound-state wavefunction is given by
the formula

ψn(~r) =
√
〈~r| lim

E→En

(E − En)G|~r〉. (18)

For E < 0 and En < 0, we see that for ε→ 0,

G =
∑
n

|En〉〈En|
−|E|+ |En|

+

∫ ∞
0

dE′
|E′〉〈E′|
−|E| − |E|′

= −
∑
n

|En〉〈En|
|E| − |En|

−
∫ ∞
0

dE′
|E′〉〈E′|
|E|+ |E′|

. (19)

This shows that the first terms blows up only if E = En, while the second term has no singularity.

Based on Eq. (17), we have

lim
E→En

(E − En)G = lim
E→En

(∑
n′

E − En
E − En′

|En′〉〈En′ |+
∫ ∞
0

E − En
E − E′

|E′〉〈E′|

)
= |En〉〈En| (20)

Taking the diagonal matrix element with respect to coordinate then gives

〈~r| lim
E→En

(E − En)G|~r〉 = |〈~r|En〉|2. (21)

With ψn(~r) := 〈~r|En〉, which can also be chosen as real-valued, we arrive at the desired result:

ψn(~r) =
√
〈~r| lim

E→En

(E − En)G|~r〉. (22)
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4. Based on Eq. (2), it follows that if G0 has no negative energy singularities, then the singularities in

G must come from the T-matrix. Consider the case of a particle in one dimension with H0 = P 2

2M and
V = gδ(X), where g < 0. Compute the T-matrix, and find it’s negative energy singularity, then use
Eq. (5) to find the bound-state wavefunction. Does this procedure give the true bound-state energy
and wavefunction? Is it necessary to normalize the resulting state by hand, or is it automatically
normalized?
Starting from G = G0 +G0TG0, we have

|φn(x)|2 = 〈x| lim
E→En

(E − En)G|x〉

= 〈x| lim
E→En

(E − En)(G0 −G0TG0)|x〉

= lim
E→En

(E − En)〈x|G0TG0|x〉 (23)

where we obtain the last line due to the fact that G0 is finite in the limit E → En < 0, and 〈x| is
independent of E. Inserting the projector onto coordinate basis twice then gives,

|φn(x)|2 = lim
E→En

(E − En)

∫
dx′dx′′ 〈x|G0|x′〉T (x′, x′′)〈x′′|G0|x〉. (24)

From the lecture notes, Eq. (48), we have

T (x, x′) =
gδ(x)δ(x′)

1 + igM~2k
, (25)

which gives

|φn(x)|2 = lim
E→En

(E − En)

∫
dx′dx′′G0(x, x

′)
gδ(x)δ(x′)

1 + igM~2k
G0(x

′′, x)

= −|g| lim
E→En

G0(x, 0)G0(0, x)
E − En

1− i |g|M~2k

= −i ~
2

M
lim

E→En

k G0(x, 0)G0(0, x)
E − En
1 + ika

(26)

where we have introduced a = ~2
M |g| . We see that the T-matrix has only one singularity at kb = i

a , so

that there is only a single bound-state at Eb =
~2k2b
2M = − ~2

2Ma2
. With E = ~2k2

2M , and

G0(x, x
′) = −i M

~2k
eik|x−x

′|, (27)

Eq. (26) becomes

|φb(x)|2 =
i

2a2
lim
k→ i

a

e2ik|x|

k

1 + k2a2

1− ika

=
i

2a2
lim
k→ i

a

e2ik|x|

k
(1− ika)

=
1

a
e−2

|x|
a (28)
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From which we find the bound-state wavefunction to be

φb(x) =
1√
a
e−

|x|
a . (29)

Checking the normalization, we find∫ ∞
−∞

dx |φb(x)|2 =
1

a

∫ ∞
−∞

dx e−2
|x|
a

=
2

a

∫ ∞
0

dx e−2
x
a

=

∫ ∞
0

due−u

= 1 (30)

So in fact, the procedure gives the properly normalized bound-state, so that it is not necessary to
normalize it by hand.
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5. Follow the same steps as in the previous problem, but for the three-dimensional Huang-Fermi pseudo-
potential, defined by 〈~r|V |ψ〉 = gδ3(~r) ddrrψ(r). Show that a single bound state exists only for the
repulsive case g > 0, and find the bound-state energy and wavefunction.
From HW10.3b, the T-matrix for the Huang-Fermi pseudo-potential is

T =
VHF

1 + ika
(31)

where

a =
Mg

2π~2
(32)

The singularity in the T-matrix occurs for k = i
a , corresponding to a binding energy of Eb = − ~2

2Ma2
.

Using

G0(~r, ~r
′) = − M

2π~2
eik|~r−~r

′|

|~r − ~r′|
(33)

the bound-state formula gives

|ψb(~r)|2 = lim
k→ i

a

~2

2M

(
k2 +

1

a2

)
〈~r|G0TG0|~r〉

= lim
k→ i

a

~2g
2Ma2

G0(~r, 0)
1 + k2a2

1 + ika
G0(0, ~r)

= lim
k→ i

a

Mg

8π2~2a2
(1− ika)

e−2r/a

r2

=
1

2πa

e−2r/a

r2
(34)

First, we note that this state is physical (i.e. normalizable) only for a > 0, which corresponds to
g > 0. Checking normalization, we then have∫

d3r |ψb(~r)|2 = 4π

∫ ∞
0

r2dr
e−2r/a

2πar2

=
2

a

∫ ∞
0

dr e−2r/a

=

∫ ∞
0

du e−u

= 1 (35)
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