PHYS852 Quantum Mechanics II, Spring 2010 HOMEWORK ASSIGNMENT 12

Topics covered: Partial waves.

1. Consider S-wave scattering from a hard sphere of radius *a*. First, make the standard s-wave scattering ansatz:

$$\psi(r,\theta,\phi) = \frac{e^{-ikr}}{r} - (1 + 2ikf_0(k))\frac{e^{ikr}}{r}$$

Then, find the value of $f_0(k)$ that satisfies the boundary condition $\psi(a, \theta, \phi) = 0$. What is the partial amplitude $f_0(k)$? What is the s-wave phase-shift $\delta_0(k)$?

2. For P-wave scattering from a hard sphere of radius a, make the ansatz

$$\psi(r,\theta) = \left[\left(\frac{1}{kr} - \frac{i}{(kr)^2} \right) e^{-ikr} + (1 + 2ikf_1(k)) \left(\frac{1}{kr} + \frac{i}{(kr)^2} \right) e^{ikr} \right] Y_1^0(\theta)$$

Verify that this is an eigenstate of the full Hamiltonian for r > a by showing that it is a linear superposition of two spherical Bessel functions of the third-kind. Again solve for the partial amplitude, $f_1(k)$, by imposing the boundary condition $\psi(a, \theta, \phi) = 0$. What is the phase-shift $\delta_1(k)$? Show that it scales as $(ka)^3$ in the limit $k \to 0$. This is a general result that for small kwe have $\delta_\ell(k) \propto k^{2\ell+1}$, called 'threshold behavior. Take the limit as $k \to 0$ and show that $\delta_1(k)$ is negligible compared to $\delta_0(k)$. This is an example of how higher partial waves are 'frozen out' at low energy.

3. Consider S-wave scattering from a spherical potential-well of depth U_0 and radius R, i.e. $V(r) = -U_0$ for r < R, and zero for r > R. Make a suitable Ansatz, and determine the s-wave scattering amplitude from the boundary conditions ar r = R. What the is the partial amplitude $f_0(k)$? What is the phase-shift $\delta_0(k)$?

Expand $\delta_0(k)$ in power-series in k. The s-wave scattering length a and effective range r_e are defined via:

$$\cot(\delta_0(k)) = -\frac{1}{ka} + \frac{1}{2}kr_e + O(k^2).$$

Find the scattering length, and show that it is not bound by the radius R, but that all values $-\infty < a < \infty$ are possible.

4. Scattering resonances are the scattering analog of tunneling resonances. Consider scattering from the delta-shell potential

$$V(r) = g\delta(r - r_0),$$

First determine the boundary conditions at r = 0 and $r = r_0$, then make a suitable ansatz, apply the necessary boundary conditions, and compute the s-wave scattering amplitude.

With the coupling strength governed by the dimensionless parameter $\mu = \frac{2Mg}{\hbar^2 k}$, plot the s-wave scattering phase-shift versus kr_0 for $\mu = 0.1$, 1.0, and 10.

Determine the s-wave bound-states of an infinite spherical well of radius r_0 . Comment on the relationship between the locations of the delta-barrier resonances and these bound-state energies. What happens to the s-wave scattering length when the incident k-value sweeps across the k corresponding to one of these quasi bound states?