Topics covered: Partial waves.

1. Consider S-wave scattering from a hard sphere of radius a. First, make the standard s-wave scattering ansatz:

$$
\psi(r, \theta, \phi)=\frac{e^{-i k r}}{r}-\left(1+2 i k f_{0}(k)\right) \frac{e^{i k r}}{r}
$$

Then, find the value of $f_{0}(k)$ that satisfies the boundary condition $\psi(a, \theta, \phi)=0$. What is the partial amplitude $f_{0}(k)$? What is the s-wave phase-shift $\delta_{0}(k)$?
2. For P-wave scattering from a hard sphere of radius a, make the ansatz

$$
\psi(r, \theta)=\left[\left(\frac{1}{k r}-\frac{i}{(k r)^{2}}\right) e^{-i k r}+\left(1+2 i k f_{1}(k)\right)\left(\frac{1}{k r}+\frac{i}{(k r)^{2}}\right) e^{i k r}\right] Y_{1}^{0}(\theta
$$

Verify that this is an eigenstate of the full Hamiltonian for $r>a$ by showing that it is a linear superposition of two spherical Bessel functions of the third-kind. Again solve for the partial amplitude, $f_{1}(k)$, by imposing the boundary condition $\psi(a, \theta, \phi)=0$. What is the phase-shift $\delta_{1}(k)$? Show that it scales as $(k a)^{3}$ in the limit $k \rightarrow 0$. This is a general result that for small k we have $\delta_{\ell}(k) \propto k^{2 \ell+1}$, called 'threshold behavior. Take the limit as $k \rightarrow 0$ and show that $\delta_{1}(k)$ is negligible compared to $\delta_{0}(k)$. This is an example of how higher partial waves are 'frozen out' at low energy.
3. Consider S -wave scattering from a spherical potential-well of depth U_{0} and radius R, i.e. $V(r)=-U_{0}$ for $r<R$, and zero for $r>R$. Make a suitable Ansatz, and determine the s -wave scattering amplitude from the boundary conditions ar $r=R$. What the is the partial amplitude $f_{0}(k)$? What is the phase-shift $\delta_{0}(k)$?
Expand $\delta_{0}(k)$ in power-series in k. The s-wave scattering length a and effective range r_{e} are defined via:

$$
\cot \left(\delta_{0}(k)\right)=-\frac{1}{k a}+\frac{1}{2} k r_{e}+O\left(k^{2}\right)
$$

Find the scattering length, and show that it is not bound by the radius R, but that all values $-\infty<a<\infty$ are possible.
4. Scattering resonances are the scattering analog of tunneling resonances. Consider scattering from the delta-shell potential

$$
V(r)=g \delta\left(r-r_{0}\right)
$$

First determine the boundary conditions at $r=0$ and $r=r_{0}$, then make a suitable ansatz, apply the necessary boundary conditions, and compute the s-wave scattering amplitude.
With the coupling strength governed by the dimensionless parameter $\mu=\frac{2 M g}{\hbar^{2} k}$, plot the s-wave scattering phase-shift versus $k r_{0}$ for $\mu=0.1,1.0$, and 10 .
Determine the s-wave bound-states of an infinite spherical well of radius r_{0}. Comment on the relationship between the locations of the delta-barrier resonances and these bound-state energies. What happens to the s-wave scattering length when the incident k-value sweeps across the k corresponding to one of these quasi bound states?

