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HOMEWORK ASSIGNMENT 12

Topics covered: Partial waves.

1. Consider S-wave scattering from a hard sphere of radius a. First, make the standard s-wave
scattering ansatz:

ψ(r, θ, φ) =
e−ikr

r
− (1 + 2ikf0(k))

eikr

r

Then, find the value of f0(k) that satisfies the boundary condition ψ(a, θ, φ) = 0. What is the
partial amplitude f0(k)? What is the s-wave phase-shift δ0(k)?

Satisfying the required boundary condition at r = a requires

0 = e−ika − (1 + 2ikf0(k))e
ika, (1)

which gives the s-wave partial amplitude as

f0(k) = −e−ika sin(ka)

k
(2)

The phase-shift is related to the partial amplitude via Eqs. (137) or (138) in the lecture notes,
which give

δ0(k) = −ka (3)

From Eq. (137) in the notes, it then follows that the scattering length is a. Thus we can
interpret the scattering length of a particular scatterer as the radius of the hard-sphere whose
scattering amplitude matches that of the scatterer in the low energy (k → 0) limit.
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2. For P-wave scattering from a hard sphere of radius a, make the ansatz

ψ(r, θ) =

[(

1

kr
−

i

(kr)2

)

e−ikr + (1 + 2ikf1(k))

(

1

kr
+

i

(kr)2

)

eikr

]

Y 0
1 (θ.

Verify that this is an eigenstate of the full Hamiltonian for r > a by showing that it is a linear
superposition of two spherical Bessel functions of the third-kind. Again solve for the partial
amplitude, f1(k), by imposing the boundary condition ψ(a, θ, φ) = 0. What is the phase-shift
δ1(k)? Show that it scales as (ka)3 in the limit k → 0. This is a general result that for small k
we have δℓ(k) ∝ k2ℓ+1, called ‘threshold behavior. Take the limit as k → 0 and show that δ1(k)
is negligible compared to δ0(k). This is an example of how higher partial waves are ‘frozen
out’ at low energy.

The spherical Bessel functions of the third-kind are defined via

hℓ(ρ) = −iρℓ

(

−
1

ρ

d

dρ

)ℓ
eiρ

ρ
(4)

For ℓ = 1 and ρ = kr, this gives

h1(kr) = −
[

1

kr
+

i

(kr)2

]

eikr (5)

The other Bessel function of the third-kind is h∗1(kr), so that we have

ψ(r, θ) = − [h1(kr) + (1 + 2ikf1(k)) h
∗

1(kr)]Y
1
0 (θ) (6)

which is therefore a solution of the free-space Hamiltonian.

The boundary condition ψ(a, θ) = 0 becomes

[

1 −
i

ka

]

e−ika + (1 + 2ikf1(k))

[

1 +
i

ka

]

eika = 0,

Solving for (1 + 2ikf1(k)) gives

(1 − 2ikf1(k)) = −
(1 − i/ka)e−ika

(1 + i/ka)eika

=
(1 + ika)

(1 − ika)
e−i2ka. (7)

For any complex number Z = x+ iy we have

Z

Z∗
=

reiθ

re−iθ
= ei2θ = ei2 arctan(y/x).

This shows that
(1 − 2ikf1(k)) = e2i(arctan(ka)−ka)

2



from which we can read off the p-wave phase-shift

δ1(k) = arctan(ka) − ka.

Expanding the r.h.s. in power series gives

δ1(k) = −
(ka)3

3
+O(a5),

which verifies the ‘threshold behavior’.

In the limit ka→ 0, we have
δ1(k)

δ0(k)
=

(ka)3

3ka
=

(ka)2

3
,

which shows that δ1(k) is negligible compared to δ0(k) as long as k ≪ 1/a.
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3. Consider S-wave scattering from a spherical potential-well of depth U0 and radius R, i.e.
V (r) = −U0 for r < R, and zero for r > R. Make a suitable Ansatz, and determine the
s-wave scattering amplitude from the boundary conditions ar r = R. What the is the partial
amplitude f0(k)? What is the phase-shift δ0(k)?

Expand δ0(k) in power-series in k. The s-wave scattering length a and effective range re are
defined via:

cot(δ0(k)) = −
1

ka
+

1

2
kre +O(k2).

Find the scattering length, and show that it is not bound by the radius R, but that all values
−∞ < a <∞ are possible.

For s-waves, our Ansatz should be

u(r) =

{

e−ikr − (1 + 2ikf0(k))e
ikr; r > R

A sinKr; r < R
, (8)

where K =
√

k2 + k2
0, with k0 =

√
2MU0/~. The boundary conditions are then

u(R−) = u(R+) (9)

u′(R−) = u′(R+) (10)

which gives us
A sin(KR) = e−ikR − (1 + 2ikf0(k))e

ikR, (11)

and
AK cos(KR) = −ik

[

e−ikR + (1 + 2ikf0(k))e
ikR

]

. (12)

we can divide the two equations to eliminate A, giving us

K cot(KR) = −ik
e−ikR + (1 + 2ikf0(k))e

ikR

e−ikR − (1 + 2ikf0(k))eikR
. (13)

solving for 1 + 2ikf0(k) gives us

1 + 2ikf0(k) =
K + ik tan(KR)

K − ik tan(KR)
e−2ikR, (14)

hence the s-wave partial amplitude is

f0(k) =
1

2i

[

K + ik tan(KR)

K − ik tan(KR)
e−2ikR − 1

]

(15)

The s-wave phase-shift is

δ0(K) = −kR + tan−1

(

k tan(KR)

K

)

(16)

which has the expansion

k cot(δ0(k) = −
1

a
+

1

2
rek

2 + . . . (17)
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where

a = R −
tan(k0R)

k0
(18)

and

re = R

(

1 −
k2

0R
2

3(tan(k0R) − k0R)2

)

+
1

(tan(k0R) − k0R)

1

k0
(19)
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4. Scattering resonances are the scattering analog of tunneling resonances. Consider scattering
from the delta-shell potential

V (r) = gδ(r − r0),

First determine the boundary conditions at r = 0 and r = r0, then make a suitable ansatz,
apply the necessary boundary conditions, and compute the s-wave scattering amplitude.

With the coupling strength governed by the dimensionless parameter µ = 2Mg
~2k

, plot the s-wave
scattering phase-shift versus kr0 for µ = 0.1 ,1.0, and 10.

Determine the s-wave bound-states of an infinite spherical well of radius r0. Comment on
the relationship between the locations of the delta-barrier resonances and these bound-state
energies. What happens to the s-wave scattering length when the incident k-value sweeps
across the k corresponding to one of these quasi bound states?

We start by integrating the radial wave equation from r0 − ǫ to r0 + ǫ,

∫ r0+ǫ

r0−ǫ

dr

(

E +
~

2

2M

d2

dr2
+ gδ(r − r0)

)

u(r) = 0

which becomes

2ǫEu(r0) +
~

2

2M
(u′(r0 + ǫ) − u′(r0 − ǫ)) + gu(r0) = 0

taking ǫ→ 0 then gives

−
~

2

2M
(u′1(r0) − u′2(r0)) + gu(r0) = 0,

where region 1 corresponds to r > r0, and region 2 is the inner region. The boundary condition
is therefore

u′1(r0) = u′2(r0) +
2Mg

~2
u(r0)

Now for the outer region, we must choose

u1(r) = e−ikr − (1 + 2ikf0(k))e
ikr.

while for the inner region, we need

u2(r) = A sin(kr)

Note that in this case it is the same k in both regions.

From u1(r0) = u2(r0), we get

A sin(kr0) = e−ikr0 − (1 + 2ikf0(k))e
ikr0

while the delta-function boundary condition gives

Ak cos(kr0) +
2Mg

~2
A sin(kr0) = −ik

(

e−ikr0 + (1 + 2ikf0(k))e
ikr0

)
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Dividing the second equation by the first gives

k cot(kr0) +
2Mg

~2
= −ik

e−ikr0 + (1 + 2ikf0(k))e
ikr0

e−ikr0 − (1 + 2ikf0(k))eikr0

Solving for (1 + 2ikf0(k) gives

1 + 2ikf0(k) =
cot(kr0) + µ+ i

cot(kr0) + µ− i
e−i2kr0

Solving for f0(k) gives

f0(k) = −
1

2ik

[

1 −
cot(kr0) + µ+ i

cot(kr0) + µ− i

]

=
1

k(cot(kr0) + µ− i)

Going back to

1 + 2ikf0(k) =
cot(kr0) + µ+ i

cot(kr0) + µ− i
e−i2kr0

we can see that the s-wave phase-shift is

δ0(k) = tan−1

(

1

µ+ cot(kr0)

)

− kr0

Now if y = tan−1
(

1
x

)

, it follows that tan y = 1
x
. Since 1

tan y
= cot y, we then have cot y = x, or

y = cot−1(x) Thus can express the phase-shift as

δ0(k) = cot−1 (cot(kr0) + µ) − kr0.

Now if we hold µ fixed and vary r0, we can plot δ0 vs. kr0. If we restrict ourselves to
−π < δ0 ≤ π, the plot looks like The spherical infinite well, has solutions of the form

u(r) = A sin(kr)

it needs to vanish at r = r0, which leads to kr0 = nπ as the bound-state condition. This
matches up with the resonances for large µ
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Figure 1: The s-wave phase-shift, δ0(k) versus kr0 for µ = 0.1 (red), µ = 1.0 (blue), and µ = 10.0 (green).
We see that there are resonances, that start out broad, and get very narrow, whose locations are moving
towards integer multiples of π as µ increases.
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