PHYS852 Quantum Mechanics II, Spring 2010
HOMEWORK ASSIGNMENT 12

Topics covered: Partial waves.

1. Consider S-wave scattering from a hard sphere of radius a. First, make the standard s-wave

scattering ansatz:
—ikr ikr

b(r,0,¢) = (14 2k fo(k))

Then, find the value of fy(k) that satisfies the boundary condition ¥ (a, 0, ) = 0. What is the
partial amplitude fy(k)? What is the s-wave phase-shift dy(k)?

(&

Satisfying the required boundary condition at r = a requires
0= e — (1 4+ 20k fo(k))e™, (1)
which gives the s-wave partial amplitude as

folk) = e 2h0) )

The phase-shift is related to the partial amplitude via Eqs. (137) or (138) in the lecture notes,
which give

So(k) = —ka (3)

From Eq. (137) in the notes, it then follows that the scattering length is a. Thus we can
interpret the scattering length of a particular scatterer as the radius of the hard-sphere whose
scattering amplitude matches that of the scatterer in the low energy (k — 0) limit.



2. For P-wave scattering from a hard sphere of radius a, make the ansatz

U(r,0) = K% — (ki)?) e 4 (14 2ik f1(k)) (% + (ki)Q) ek} Y2(6.

Verify that this is an eigenstate of the full Hamiltonian for » > a by showing that it is a linear
superposition of two spherical Bessel functions of the third-kind. Again solve for the partial
amplitude, fi(k), by imposing the boundary condition ¥ (a, 6, ¢) = 0. What is the phase-shift
51(k)? Show that it scales as (ka)® in the limit & — 0. This is a general result that for small k
we have d,(k) oc k2T, called ‘threshold behavior. Take the limit as k — 0 and show that d; (k)
is negligible compared to dg(k). This is an example of how higher partial waves are ‘frozen
out’ at low energy.

The spherical Bessel functions of the third-kind are defined via
1d\" e
hel(p) = —ip” (———) - 4
(0) )< (@
For ¢ =1 and p = kr, this gives

hy(kr) = — [% + (ki)Q] etk (5)

The other Bessel function of the third-kind is ki (kr), so that we have
(r,0) = = [ha(kr) + (1 + 2ik f1(k)) b (kr)] Yo (6) (6)

which is therefore a solution of the free-space Hamiltonian.

The boundary condition 1 (a, ) = 0 becomes

1— | emiha 4 (14 2k (k) |1+ — | et =0,
ka ka

Solving for (1 + 2ikfi(k)) gives
(1 —i/ka)e ke
(14 i/ka)etke

-

(1-2ikfi(k)) = —

For any complex number Z = z 4 1y we have

i0
A re 20

I _ 6i2 arctan(y/a:)‘
VA re—10

This shows that |
(1 — Qijfl(k)) — 62l(arctan(ka)_ka)
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from which we can read off the p-wave phase-shift
01(k) = arctan(ka) — ka.

Expanding the r.h.s. in power series gives

which verifies the ‘threshold behavior’.

In the limit ka — 0, we have

o1(k)  (ka)®  (ka)?

do(k)  3ka 3
which shows that d;(k) is negligible compared to do(k) as long as k < 1/a.



3. Consider S-wave scattering from a spherical potential-well of depth U, and radius R, i.e.
V(r) = —=Up for r < R, and zero for r > R. Make a suitable Ansatz, and determine the
s-wave scattering amplitude from the boundary conditions ar » = R. What the is the partial

amplitude fo(k)? What is the phase-shift dy(k)?

Expand do(k) in power-series in k. The s-wave scattering length a and effective range r. are
defined via:

1 1
cot(do(k)) = e + 5]{:7‘6 + O(k?).

Find the scattering length, and show that it is not bound by the radius R, but that all values
—00 < a < oo are possible.

For s-waves, our Ansatz should be

e — (14 2ik fo(k))e™*T; r> R
u(r) = { Asin Kr; r<R’ (8)

where K = \/k? + k3, with kg = v/2MU,/h. The boundary conditions are then

uw(R™) = u(RY) 9)
W(RT) = W(RT) (10)
which gives us
Asin(KR) = e ™ — (1 + 2ik fo(k))e™™", (11)
and
AK cos(KR) = —ik [e”™ + (1 + 2ik fo(k))e™] . (12)

we can divide the two equations to eliminate A, giving us

e + (14 2ik fo(k))ert
=R (11 2k fo(k))eh R

K cot(KR) = —ik (13)

solving for 1 + 2ik fo(k) gives us

| K +iktan(KR) _,,
L+ 2ikfolk) = 71 tanEKRie MR’ (1)

hence the s-wave partial amplitude is

1 [K+iktan(KR) _oup
k)= — | 1

Jolk) = 3; [K—iktan(KR)e (15)

The s-wave phase-shift is
ktan(K

6o(K) = —kR + tan™* <#) (16)

which has the expansion
1 1
k cot(do(k) = - + 57“6]{:2 +... (17)

4



where

and

re=1R (1  3(tan(

B tan(koR)

a = T
k2R? . 1 1
]{ZoR) — k0R>2 (tan(koR) — ]{ZoR) kO



4. Scattering resonances are the scattering analog of tunneling resonances. Consider scattering
from the delta-shell potential
V(r) = go(r —ro),

First determine the boundary conditions at r = 0 and r = ry, then make a suitable ansatz,
apply the necessary boundary conditions, and compute the s-wave scattering amplitude.

2Mg
2k

With the coupling strength governed by the dimensionless parameter pu = plot the s-wave

scattering phase-shift versus krq for = 0.1 ,1.0, and 10.

Determine the s-wave bound-states of an infinite spherical well of radius ro. Comment on
the relationship between the locations of the delta-barrier resonances and these bound-state
energies. What happens to the s-wave scattering length when the incident k-value sweeps
across the k corresponding to one of these quasi bound states?

We start by integrating the radial wave equation from ry — € to 7o + €,

ro+e h2 d2
[ dr(E—i—mW—i-g(S(r—rg))u(r):O

0—€
which becomes )

2¢EBu(ry) + ;—M(u’(rg +e)—u'(rg —€)) + gu(rg) =0

taking e — 0 then gives
hQ / /
— g7 (o) = ux(ro)) + gu(re) = 0,

where region 1 corresponds to r > ¢, and region 2 is the inner region. The boundary condition

is therefore Y
i (ro) = wh(ro) + =5 u(ro)

Now for the outer region, we must choose
ui(r) = e * — (1 + 2ikfy(k))e' .
while for the inner region, we need
us(r) = Asin(kr)
Note that in this case it is the same k in both regions.
From wy(rg) = us(rg), we get
Asin(krg) = e *70 — (1 4 2ik fo(k))e™*ro

while the delta-function boundary condition gives

2M , :
Ak cos(krg) + hQQAsin(kro) = —ik (e7™ + (1 + 2ik fo(k))e™™)




Dividing the second equation by the first gives

2Mg _ke—ikm + (1 + 2ik fo(k))etro

t N ' |
k cot(kry) + K2 W ik (1+ 2k fo(k))ettre

Solving for (1 + 2ik fo(k) gives

cot(kro) + p + z'e_mm

1424 =
+ 2ikfo(k) cot(kro) +p—1

Solving for fy(k) gives

1 cot(kro) + p+1

K = —— |1

fo(k) 2ik cot(kro) + pp— 1
1

k(cot(kro) 4+ p — 1)

Going back to
cot(kro) + p + z'e_mm

cot(kro) + p — i

1+ 2ik fo(k) =
we can see that the s-wave phase-shift is

) w
p + cot(kro) 0

Now if y = tan™* (1), it follows that tany = <. Since @ = cot y, we then have coty = z, or

So(k) = tan™* (

y = cot~!(z) Thus can express the phase-shift as
So(k) = cot™ (cot(kro) + p) — kro.

Now if we hold u fixed and vary rg, we can plot &y vs. krg. If we restrict ourselves to
—7 < 09 < m, the plot looks like The spherical infinite well, has solutions of the form

u(r) = Asin(kr)

it needs to vanish at r = ry, which leads to krg = nm as the bound-state condition. This
matches up with the resonances for large p



kro

Figure 1: The s-wave phase-shift, (k) versus krg for p = 0.1 (red), p = 1.0 (blue), and g = 10.0 (green).
We see that there are resonances, that start out broad, and get very narrow, whose locations are moving
towards integer multiples of 7 as p increases.



