PHYS852 Quantum Mechanics II, Spring 2010
HOMEWORK ASSIGNMENT 13
Topics covered: Hilbert-space Frame Transformations, Time-Dependent Perturbation Theory

1. The Hamiltonian for a driven two-level system is

$$
\begin{equation*}
H=\hbar \omega_{0}|2\rangle\langle 2|+\hbar \Omega \cos (\omega t)(|1\rangle\langle 2|+|2\rangle\langle 1|), \tag{1}
\end{equation*}
$$

where ω_{0} is the separation between the bare levels, and ω is the driving frequency.
(a) Make a frame transformation generated by the operator $G=\hbar \omega|2\rangle\langle 2|$, and determine the equation of motion for the state-vector in the new frame, defined by $\left|\psi_{G}(t)\right\rangle=U_{G}(t)|\psi(t)\rangle$.
(b) Make the rotating wave approximation (RWA) by assuming that $\omega \approx \omega_{0}$, and dropping any terms that oscillate at or near $2 \omega_{0}$. Write, in terms of the detuning $\Delta=\omega_{0}-\omega$, the effective time-independent Hamiltonian, H_{G}, that then governs the time evolution of $\left|\psi_{G}(t)\right\rangle$.
(c) Assume that the system begins at time $t=0$ in the ground-state of H_{G}, and calculate $\left|\psi_{G}(t)\right\rangle$. Is this a stationary state in the rotating frame? Now use $\left|\psi_{S}(t)\right\rangle=U_{G}^{\dagger}(t)\left|\psi_{G}(t)\right\rangle$ to see what this state looks like in the Scrödinger picture. Is it a stationary state in the Schrödinger picture?
(d) Assuming the system begins in the ground state of H_{G}, use second-order time-dependent perturbation theory to treat the fast-oscillating terms that were discarded in the RWA, and compute the probability to find the system in the excited state of H_{G}, at time $t>0$.
(e) Assume that at time $t=0$, we have $\Delta>0, \Omega=0$, and $\left|\psi_{G}(0)\right\rangle=|1\rangle$. If Ω is smoothly increased from zero to Ω_{0} on time-scale $T \gg 1 / \Delta$, what is the state of the system at time $t=T$?
2. Consider a system described by the Hamiltonian:

$$
\begin{equation*}
H=-\frac{\hbar \omega}{4}\left(A A+A^{\dagger} A^{\dagger}\right) \tag{2}
\end{equation*}
$$

where $\left[A, A^{\dagger}\right]=1$. Find and solve the Heisenberg equations of motion for $A_{H}(t)$ and $A_{H}^{\dagger}(t)$. Use these solutions to compute the expectation values of X and P, as well as the variances ΔX, and ΔP, as functions of time, for the case where the initial state satisfies $A\left|\psi_{S}(0)\right\rangle=\alpha\left|\psi_{S}(0)\right\rangle$, where α is an arbitrary complex number. For the case $\alpha=0$, show that $\langle X\rangle_{t}=\langle P\rangle_{t}=0$, but ΔX and ΔP grow rapidly in time.

Now re-express the Hamiltonian in terms of X and P. Do your previous answers make sense given this viewpoint?
3. The Hamiltonian for a hydrogen atom is

$$
\begin{equation*}
H=\frac{P_{r}^{2}}{2 \mu}+\frac{L^{2}}{2 \mu R^{2}}-\frac{e^{2}}{4 \pi \epsilon_{0} R} . \tag{3}
\end{equation*}
$$

First, use the properties

$$
\begin{equation*}
\langle\vec{r}| P_{r}^{2}|\psi\rangle=-\hbar^{2} \frac{1}{r^{2}} \frac{d}{d r} r^{2} \frac{d}{d r}\langle\vec{r} \mid \psi\rangle, \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\langle\vec{r}| P_{r}|\psi\rangle=-i \hbar \frac{d}{d r}\langle\vec{r} \mid \psi\rangle, \tag{5}
\end{equation*}
$$

to compute the commutators $\left[P_{r}^{2}, R\right]$ and $\left[R^{-s}, P_{r}\right]$, then use these commutators to derive the Heisenberg equations of motion for R and P_{r}.
4. Compute the density of states, $n(E)$, for a massive particle in a cubic volume of side length L. Then compute the density of states for a two-dimensional massive particle confined to a square area of side length L, and also for a one-dimensional massive particle in an infinite square-well of width L. Then do the same for a photon, whose energy is related to its wavevector by $E(\vec{k})=\hbar c|k|$.

To determine the density of states at energy E, first determine $N(E)$, which is the number of quantized k-values inside a sphere of radius $k(E)$. Do this by determining the volume in k-space occupied by a single state, and then divide the volume of the energy-sphere by the single-mode volume. Then compute the density of states via $n(E)=\frac{d}{d E} N(E)$.
5. Estimate the spontaneous photon-emission rate of an excited atom via Fermi's golden rule, use the density of states for a photon in a cube of volume V. To estimate the coupling matrix element, use the dipole energy operator $V=-\vec{d} \cdot \overrightarrow{\mathcal{E}}$, where $d=e a_{0}$ is the atomic dipole moment, and \mathcal{E} is the electric field of a single photon in a volume V. To get the value of \mathcal{E}, take the photons energy to be $\hbar \omega$, and use the standard energy density of an electromagnetic field $u=\frac{\epsilon_{0}}{2}\left(\mathcal{E}^{2}+c^{2} \mathcal{B}^{2}\right)$. Relate \mathcal{B}, the magnetic field of the photon, to its electric field via $\nabla \times \overrightarrow{\mathcal{E}}=-\frac{d}{d t} \overrightarrow{\mathcal{B}}$, which from dimensional analysis gives $k \mathcal{E} \approx \omega \mathcal{B}$. For frequencies in the visible spectrum, what is your estimate of Γ ?
6. Consider a harmonic oscillator described by $H^{(0)}=\hbar \Omega\left(A^{\dagger} A+1 / 2\right)$. Now consider two possible perturbations $V_{1}=b X^{4} \cos (\omega t)$, and $V_{2}=g \delta(X) e^{-\gamma t}$. Assume that the system begins at $t=0$, in the ground-state of $H^{(0)},|0\rangle$, and use time-dependent perturbation theory to compute the probability to second-order, for the system to be found in the the $n^{\text {th }}$ eigenstate of $H^{(0)}$ at time t. Consider both $n=0$ and $n \neq 0$ cases.

