
PHYS852 Quantum Mechanics II, Spring 2010

HOMEWORK ASSIGNMENT 13: Solutions

Topics covered: Hilbert-space Frame Transformations, Time-Dependent Perturbation Theory

1. The Hamiltonian for a driven two-level system is

H = ~ω0|2〉〈2|+ ~Ω cos(ωt) (|1〉〈2|+ |2〉〈1|) , (1)

where ω0 is the separation between the bare levels, and ω is the driving frequency.

(a) Make a frame transformation generated by the operator G = ~ω|2〉〈2|, and determine the
equation of motion for the state-vector in the new frame, defined by |ψG(t)〉 = UG(t)|ψ(t)〉.

First, we note that
UGS(t) = eiGt/~ = |1〉〈1|+ eiωt|2〉〈2| (2)

(the |1〉〈1| term must be there in order to satisfy UGS(0) = I).

Following the general theory in the lecture notes, we have

HG(t) = UGS(t)HS(t)USG(t)−G
=

(
|1〉〈1|+ e−iωt|2〉〈2|

)
H
(
|1〉〈1|+ eiωt|2〉〈2|

)
− ~ω|2〉〈2|

= ~(ω0 − ω)|2〉〈2|+ ~Ω cos(ωt)
(
|eiωt|1〉〈2|+ e−iωt|2〉〈1|

)
= ~∆|2〉〈2|+ ~Ω

2
(|1〉〈2|+ |2〉〈1|) +

~Ω

2

(
ei2ωt|1〉〈2|+ e−i2ωt|2〉〈1|

)
. (3)

Hence the equation of motion for |ψG(t)〉 is:

d

dt
|ψG(t)〉 = − i

~
HG(t)|ψG(t)〉 (4)

(b) Make the rotating wave approximation (RWA) by assuming that ω ≈ ω0, and dropping
any terms that oscillate at or near 2ω0. Write, in terms of the detuning ∆ = ω0 − ω,
the effective time-independent Hamiltonian, HG, that then governs the time evolution of
|ψG(t)〉.

Dropping the terms rotating at ±2ω gives:

HG,RWA = ~∆|2〉〈2|+ ~Ω

2
(|1〉〈2|+ |2〉〈1|) , (5)

In terms of the Rabi Hamiltonian, HRabi = ∆Sz + ΩSx, we have

HG,RWA = HRabi +
~∆

2
. (6)
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(c) Assume that the system begins at time t = 0 in the ground-state of HG, and calculate
|ψG(t)〉. Is this a stationary state in the rotating frame? Now use |ψS(t)〉 = USG(t)|ψG(t)〉
to see what this state looks like in the Schrödinger picture. Is it a stationary state in the
Schrödinger picture?

The eigenstates of HG are those of HRabi, and the eigenvalues of HG, are those of HRabi

plus the constant shift ~∆
2

.

The ground state of HG is therefore

|ω−G〉 =

(
Ω +
√

Ω2 + ∆2
)
|1〉 −∆|2〉√

2
(
Ω2 + ∆2 + Ω

√
Ω2 + ∆2

) , (7)

which is a stationary state in the rotating frame (Recall that a stationary state evolves
as |φ(t)〉 = e−iωt|φ(0)〉).

In the Schrödinger picture, this state becomes

|ω−S〉 =

(
Ω +
√

Ω2 + ∆2
)
|1〉 −∆e−iωt|2〉√

(Ω +
√

Ω2 + ∆2)2 + ∆2

, (8)

which is not a stationary state. The point is the eigenstates of HG are not energy eigen-
states, but the problem can be solved in the rotating frame, and then transformed at
the end to get the solution in the Schrödinger picture. Note that for time-dependent V ,
energy is not a conserved quantity. Up to a tiny correction due to the dropped terms in
the RWA, HG,RWA is a constant of motion. This constant is often referred to as the ‘quasi
energy’.
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(d) Assuming the system begins in the ground state of HG, use second-order time-dependent
perturbation theory to treat the fast-oscillating terms that were discarded in the RWA,
and compute the probability to find the system in the excited state of HG, at time t > 0.

Here we will use the tools of TDPT applied within the rotating frame:
Thus we have

H0 = HG,RWA (9)

and

V =
~Ω

2

(
ei2ωt|1〉〈2|+ e−i2ωt|2〉〈1|

)
. (10)

The amplitude to be in state in |ω+,g〉 is given by

u+−(t) = − i
~

∫ t

0

dt1 e
−iω+G(t−t1)V+−(t1)e−iω−Gt1 ,

= − i
~
e−iω+Gt

∫ t

0

dt1 e
i(ω+G−ω−G)t1V+−(t1). (11)

We have
ω+G − ω−G =

√
Ω2 + ∆2, (12)

and

|ω+G〉 =
∆|1〉+

(
Ω +
√

Ω2 + ∆2
)
|2〉√

(Ω +
√

Ω2 + ∆2)2 + ∆2

, (13)

so that

V+−(t) =
~Ω

2

(
ei2ωt〈ω+G|1〉〈2|ω−G〉+ e−i2ωt〈ω+G|2〉〈1|ω−G〉

)
= −~Ω

2

∆2ei2ωt − (Ω +
√

Ω2 + ∆2)2e−i2ωt

∆2 + (Ω +
√

Ω2 + ∆2)2
(14)

Thus we have

u+−(t) = i
Ω

2
e−i
√

Ω2+∆2t/2

∫ t

0

dt1 e
i
√

Ω2+∆2t1
∆2ei2ωt1 − (Ω +

√
Ω2 + ∆2)2e−i2ωt1

∆2 + (Ω +
√

Ω2 + ∆2)2
(15)

The key approximation here is to assume ω �
√

Ω2 + ∆2, which gives

u+−(t) ≈ i
Ω

2
e−i
√

Ω2+∆2t/2

∫ t

0

dt1
∆2ei2ωt1 − (Ω +

√
Ω2 + ∆2)2e−i2ωt1

∆2 + (Ω +
√

Ω2 + ∆2)2

≈ i
Ω

2ω
e−i
√

Ω2+∆2t/2 sin(ωt)
∆2eiωt − (Ω +

√
Ω2 + ∆2)2e−iωt

∆2 + (Ω +
√

Ω2 + ∆2)2
(16)

The transition probability is then

P+−(t) ≈ |u+−(t)|2

≈ Ω2

4ω2
sin2(ωt)

∆4 − 2∆2(Ω +
√

Ω2 + ∆2) cos(2ωt) + (Ω +
√

Ω2 + ∆2)4

∆4 + 2∆2(Ω +
√

Ω2 + ∆2)2 + (Ω +
√

Ω2 + ∆2)4
(17)
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Time-averaging on a scale small compared to 1/
√

Ω2 + ∆2 but large compared to 1/ω
then gives

P+−(t) ≈
Ω2

8ω2

∆4 + (Ω +
√

Ω2 + ∆2)4

∆4 + 2∆2(Ω +
√

Ω2 + ∆2)2 + (Ω +
√

Ω2 + ∆2)4
(18)

The scaling as
(

Ω
ω

)2
is the reason why the rotating wave approximation is very accurate

for the case Ω� ω.

(e) Assume that at time t = 0, we have ∆ > 0, Ω = 0, and |ψG(0)〉 = |1〉. If Ω is smoothly
increased from zero to Ω0 on time-scale T >> 1/∆, what is the state of the system at
time t = T?

Assuming that the RWA valid, then for ∆ > 0 and Ω = 0 the ground state of HG is
|1〉, and the energy-gap is ~∆.
Thus if Ω is smoothly increased on a time-scale T � 1/∆ = ~/Egap, then according to
the Adiabatic theorem, the system will stay in the ground-state of HG, which changes as
Ω is varied. Thus the state of the system at time T is given in the rotating frame by Eq.
(7), and in the Schrödinger picture, by Eq. (8).

This is interesting, because the adiabatic following was in the rotating frame, so that
in the non-rotating frame, where V is oscillating in time, the system adiabatically follows
a non-stationary state.
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2. Consider a system described by the Hamiltonian:

H = −~ω
4

(
AA+ A†A†

)
, (19)

where [A,A†] = 1. Find and solve the Heisenberg equations of motion for AH(t) and A†H(t).
Use these solutions to compute the expectation values of X and P , as well as the variances ∆X,
and ∆P , as functions of time, for the case where the initial state satisfies A|ψS(0)〉 = α|ψS(0)〉,
where α is an arbitrary complex number. For the case α = 0, show that 〈X〉t = 〈P 〉t = 0, but
∆X and ∆P grow rapidly in time.

Now re-express the Hamiltonian in terms of X and P . Do your previous answers make sense
given this viewpoint?

We start from
d

dt
AH =

i

~
[HH , AH ] = −iω

4
[A†HA

†
H , AH ] = i

ω

2
A†H (20)

Taking the Hermitian Conjugate then gives

d

dt
A†H = −iω

2
AH (21)

Using these, we can compute the second derivative of AH ,

d2

dt2
AH =

ω2

4
AH (22)

The solution is therefore
AH(t) = Beωt/2 + Ce−ωt/2 (23)

or equivalently
AH(t) = B cosh(ωt/2) + C sinh(ωt/2) (24)

Choosing the later form, we have the initial conditions AH(0) = AS and A†H(0) = A†S, which
gives

B = AS (25)

To satisfy Eq. (20), we need

C = iA†S (26)

so we have
AH(t) = AS cosh(ωt/2) + iA†S sinh(ωt/2) (27)

A†H(t) = A†S cosh(ωt/2)− iAS sinh(ωt/2) (28)

Now 〈A†A〉 = 〈ψS(0)|A†H(t)AH(t)|ψS(0)〉 giving

〈A†A〉 = 〈A†SAS〉 cosh2(ωt/2) + 〈ASA†S〉 sinh2(ωt/2)

+ i
(
〈A†SA

†
S〉 − 〈ASAS〉

)
cosh(ωt/2) sinh(ωt/2) (29)

which with As|ψS(0)〉 = α|ψS(0)〉 and ASA
†
S = 1 + A†SAS, gives

〈A†A〉 = |α|2 cosh(ωt) + 2Im{α2} cosh(ωt/2) sinh(ωt/2) + sinh2(ωt/2) (30)
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The solution in terms of X and P are

XH(t) =
λ√
2

(
AH(t) + A†H(t)

)
=

λ√
2

[
(AS + A†S) cosh(ωt/2)− i(AS − A†S) sinh(ωt/2)

]
(31)

and

PH(t) =
~√
2iλ

(
AH(t)− A†H(t)

)
=

~√
2iλ

[
(AS − A†S) cosh(ωt/2) + i(AS + A†S) sinh(ωt/2)

]
(32)

So that for the coherent state, we have

〈X〉 =
√

2λ [Re{α} cosh(ωt/2) + Im{α} sinh(ωt/2)] (33)

and

〈P 〉 =
√

2
~
λ

[Im{α} cosh(ωt/2) + Re{α} sinh(ωt/2)] (34)

The variances are given for the coherence state by

∆X =
√
〈X2〉 − 〈X〉2

=
λ

2

√
cosh(ωt) (35)

and

∆P =
√
〈P 2〉 − 〈P 〉2

=
~
2λ

√
cosh(ωt) (36)

Thus for α = 0, we have 〈X〉 = 〈P 〉 = 0, but the variances still grow exponentially in time.

Using A = 1√
2

(
X̄ + iP̄

)
and A† = 1√

2

(
X̄ − iP̄

)
the Hamiltonian becomes:

H =
~ω
4

(
P̄ 2 − X̄2

)
which is essentially an inverted harmonic oscillator potential. Thus the exponential growth of
the operators is consistent with the unstable equilibrium. Even when the mean-values of X̄
and P̄ vanish, a wave-packet spreads exponentially due to the instability.
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3. The Hamiltonian for a hydrogen atom is

H =
P 2
r

2µ
+

L2

2µR2
− e2

4πε0R
. (37)

First, use the properties

〈~r|P 2
r |ψ〉 = −~2 1

r2

d

dr
r2 d

dr
〈~r|ψ〉, (38)

and

〈~r|Pr|ψ〉 = −i~ d
dr
〈~r|ψ〉, (39)

to compute the commutators [P 2
r , R] and [R−s, Pr], then use these commutators to derive the

Heisenberg equations of motion for R and Pr.

Since R commutes with L2 and Rs, we have

d

dt
R =

i

2µ~
[P 2
r , R] (40)

let [P 2
r , R] = M , then we have

〈r|M |ψ〉 = 〈r|P 2
rR|ψ〉 − 〈r|RP 2

r |ψ〉

= −~2 1

r2

∂

∂r
r2 ∂

∂r
〈r|R|ψ〉 − r〈r|P 2

r |ψ〉

= −~2

[
1

r2

∂

∂r
r2 ∂

∂r
r − 1

r

∂

∂r
r2 ∂

∂r

]
〈r|ψ〉

= −2~2

[
1

r
+

∂

∂r

]
〈r|ψ〉

= −2~2〈r|
(
R−1 +

i

~
Pr

)
|ψ〉 (41)

so we see that

M = −2~2

R
− 2i~Pr (42)

which gives
d

dt
R = −i~

µ

1

R
+

1

µ
Pr (43)

Let Ms = [R−s, Pr], then

〈r|Ms|ψ〉 = 〈r|R−sPr|ψ〉 − 〈r|PrR−s|ψ〉

= r−s〈r|Pr|ψ〉+ i~
∂

∂r
〈r|R−s|ψ〉

= −i~r−s ∂
∂r
〈r|ψ〉+ i~

∂

∂r
r−s〈r|ψ〉

= −sr−s−1i~〈r|ψ〉 (44)
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so we see that
Ms = i~(−sR−s−1), (45)

as expected. With this, we find:

d

dt
Pr =

iL2

2m~
[R−2, Pr]−

ie2

4πε0~
[R−1, Pr]

=
L2

m
R−3 − e2

4πε0
R−2 (46)

Something is wrong with this result, as the equation of motion for R is not real-valued. The
answer lies in our choice of Pr.

Obviously our definition of 〈r|P 2
r |ψ〉 is correct, because the radial component of the kinetic

energy is well known, so the problem must lie in our treatment of 〈r|Pr|ψ〉. Now the usual

radial component of the gradient is ∂
∂r

, so that if we define Pr = ~er · ~P = −i~~er · ~∇, we get the

result Pr = −i~ ∂
∂r

. This is encouraging because it leads to [R,Pr] = i~. However, as we see,
it gives non-sense in the Heisenberg picture.

Another possible definition is Pr = −i~1
r
∂
∂r
r. This is intriguing because it also satisfies

[R,Pr] = i~, as well as gives the same result for 〈r|P 2
r |ψ〉. Note that with this definition,

we have

〈r|Pr|ψ〉 = −i~1

r

∂

∂r
r〈r|ψ〉 = −i~

[
1

r
+

∂

∂r

]
〈r|ψ〉. (47)

Compare this to the second-to-last line in Eq. (10), and we see that with the new definition,
we have

d

dt
R =

1

µ
Pr (48)

as expected.

Recomputing the result [R−s, Pr], we find

〈r|[R−s, Pr]|ψ〉 = −i~
(
r−s−1 ∂

∂r
r − r−1 ∂

∂r
r−s+1

)
〈r|ψ〉

= −i~
(
r−s−1 + r−s

∂

∂r
− (−s+ 1)r−s−1 − r−s ∂

∂r

)
〈r|ψ〉

= i~(−sr−s−1)〈r|ψ〉 (49)

so that we have
[R−s, Pr] = i~(−sR−s−1) (50)

which is the same result as with our first definition, so that Eq. (15) is still correct.

Thus it is only by looking at the equation of motion that we discovered the correct form
of Pr. Both Pr → −i~ ∂

∂r
and Pr → −i~1

r
∂
∂r
r give the expectated commutation relation with

R, and match the known result for the radial kinetic energy.

8



4. Compute the density of states, n(E), for a massive particle in a cubic volume of side length L.
Then compute the density of states for a two-dimensional massive particle confined to a square
area of side length L, and also for a one-dimensional massive particle in an infinite square-well
of width L. Then do the same for a photon, whose energy is related to its wavevector by

E(~k) = ~c|k|.

To determine the density of states at energy E, first determine N(E), which is the num-
ber of quantized k-values inside a sphere of radius k(E). Do this by determining the volume
in k-space occupied by a single state, and then divide the volume of the energy-sphere by the
single-mode volume. Then compute the density of states via n(E) = d

dE
N(E).

For a massive particle, we have

k(E) =

√
2ME

~
(51)

while for a photon we have

k(E) =
E

~c
(52)

For both particles, we can use periodic boundary conditions, so that ~k =
∑d

j=1
2π
L
mj, where d

is the dimension of the system, and mj is any integer on (−∞,∞).
This gives a k-space volume per state of

Vs =

(
2π

L

)d
(53)

The volume of the energy-shell is given by

V (E) = cd (k(E))d , (54)

where c1 = 2, c2 = π, and c3 = 4
3
π. The total number of states with energy below E is then

given by

N(E) =
V (E)

Vs
= cd

(
L

2π

)d
(k(E))d . (55)

so that the density of states is

n(E) =
d

dE
N(E) = dcd

(
L

2π

)d
(k(E))d−1 dk(E)

dE
(56)

For massive (non-relativistic) particles, we have

dk(E)

dE
=

1

2E
k(E), (57)

so that

n(E) = dcd

(√
2ML

2π~

)d

E
d−2
2 (58)
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For d = 1, 2, 3, we have

n(E) =
2L

(2π)~

√
2M√
E
,

2πL2

(2π)2~2
(
√

2M)2,
4πL3

(2π)3~3
(
√

2M)3
√
E (59)

which shows that in 1d, the density of states decreases with increasing E, while in 2d it is
constant, and in 3d increases with E.

For a photon, we have
dk(E)

dE
=

1

~c
(60)

so that

n(E) = dcd

(
L

2π~c

)d
Ed−1 (61)

For d = 1, 2, 3, this gives

n(E) =
2L

(2π)~
1

c
,

2πL2

(2π)2~2

E

c2
,

4πL3

(2π)3~3

E2

c3
(62)

which is quite different from that of a massive particle.
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5. Estimate the spontaneous photon-emission rate of an excited atom via Fermi’s golden rule,
use the density of states for a photon in a cube of volume V . To estimate the coupling matrix

element, use the dipole energy operator V = −~d · ~E , where d = ea0 is the atomic dipole
moment, and E is the electric field of a single photon in a volume V . To get the value of E ,
take the photons energy to be ~ω, and use the standard energy density of an electromagnetic
field u = ε0

2
(E2 + c2B2). Relate B, the magnetic field of the photon, to its electric field via

∇× ~E = − d
dt
~B, which from dimensional analysis gives kE ≈ ωB. For frequencies in the visible

spectrum, what is your estimate of Γ?

Fermi’s Golden Rule tells us

Γ =
2π

~
|V |2n(E) (63)

We can estimate |V |2 as d2E2, where E is the electric field of a single-photon. The energy of
an electromagnetic field is

E =
1

2

(
ε0E2 +

1

µ0

B2

)
V, (64)

where V is the volume The energy of a photon is ~ω, while the magnetic field is related to the
E-field by ∇× E = − d

dt
B, which by units gives kE = ωB. With ω = ck, this gives

~ω =
1

2

(
ε0 +

1

µ0c2

)
E2 = ε0E2 (65)

which leads to

E =

√
~ω
ε0V

(66)

putting this in Fermi’s Golden rule, together with the density of states, n(E) = 4πω2V
(2π)3~c3 , gives

Γ =
2π

d2~
~ω
ε0V

4πω2V

(2π)3~c3
=

1

4πε0

4e2a2
0ω

3

~c3
(67)

Frequencies in the visible spectrum are on the order ω ∼ 1015, with e = 1.6 × 10−19C, a0 =
5.3× 10−11m, ~ = 1.0× 10−34J, and ε0 = 8.9× 10−12 C

Jm
, we find that Γ ∼ 107, which is what

is observed experimentally. To improve upon this estimate, we have to take into account that
there are two polarizations (doubles the density of states) and average over the dipole emission
pattern. This leads to a correction factor of 1/3.
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6. Consider a harmonic oscillator described by H(0) = ~Ω(A†A+1/2). Now consider two possible
perturbations V1 = bX4 cos(ωt), and V2 = gδ(X)e−γt. Assume that the system begins at t = 0,
in the ground-state of H(0), |0〉, and use time-dependent perturbation theory to compute the
probability to second-order, for the system to be found in the the nth eigenstate of H(0) at
time t. Consider both n = 0 and n 6= 0 cases.

The formula for the first-order transition amplitude is

ufi(t) = − i
~

∫ t

0

dt1e
−iωf (t−t1)Vfi(t1)eiωit1 . (68)

In the first example, we have

Vn0 = b
λ4

4
〈n|(A+ A†)4|0〉 cos(ωt) (69)

For the matrix-elements, we see that the only non-zero terms are n = 0, 2, 4, because there
are at most 4 creation operators, and to reach an odd state would require an odd number of
A†’s plus equal numbers of additional A’s and A†’s (which cancel each other), so that the total
number of terms would need to be odd, whereas we have always four terms. For n = 4 and
n = 2, we then have

〈4|(A+ A†)4|0〉 = 〈4|(A†)4|0〉 =
√

4! = 2
√

6. (70)

〈2|(A+ A†)4|0〉 = 〈2|A†A†A†A+ A†A†AA† + A†AA†A† + AA†A†A†|0〉
= 6〈2|A†A†|0〉
= 6

√
2 (71)

which gives us

u40(t) = −
√

3ibλ4

√
2~

e−9iΩt/2

∫ t

0

dt1 e
i4Ωt1 cos(ωt)

= −
√

3ibλ4

√
2~

e−9iΩt/2

[
ei(4Ω+ω)t/2 sin((4Ω + ω)t/2)

4Ω + ω
+ ei(4Ω−ω)t/2 sin((4Ω− ω)t/2)

4Ω− ω

]
(72)

and

u20(t) = −3ibλ4

√
2~

e−5iΩt/2

∫ t

0

dt1 e
i2Ωt1 cos(ωt)

= −3ibλ4

√
2~

e−5iΩt/2

[
ei(2Ω+ω)t/2 sin((2Ω + ω)t/2)

2Ω + ω
+ ei(2Ω−ω)t/2 sin((2Ω− ω)t/2)

2Ω− ω

]
(73)

Thus we have

P40(t) = |u40(t)|2

=
3b2λ8

2~2

[
sin2((4Ω + ω)t/2)

(4Ω + ω)2
+ 2 cos(ωt/2)

sin((4Ω + ω)t/2) sin((4Ω− ω)t/2)

(4Ω + ω)(4Ω− ω)

+
sin2((4Ω− ω)t/2

(4Ω− ω)2

]
(74)
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and

P20(t) = |u20(t)|2

=
9b2λ8

2~2

[
sin2((4Ω + ω)t/2)

(4Ω + ω)2
+ 2 cos(ωt/2)

sin((2Ω + ω)t/2) sin((2Ω− ω)t/2)

(2Ω + ω)(2Ω− ω)

+
sin2((2Ω− ω)t/2

(2Ω− ω)2

]
(75)

and we can then take
P00(t) = 1− P20(t)− P40(t) (76)

For the second problem, we have

Vn0 = g〈n|δ(X)|0〉e−γt = gφn(0)φ0(0)e−γt (77)

which gives

un0(t) = −igφn(0)φ0(0)

~
e−i(2n+1)Ωt/2

∫ t

0

dt2 e
inΩt1e−γt1

= −igφn(0)φ0(0)

~
e−i(2n+1)Ωt/2 e

(inΩ−γ)t − 1

inΩ− γ
(78)

and then

Pn0(t) =
|g|2|φn(0)|2|φ0(0)|2

~2

1− 2 cos(nΩt)e−γt + e−2γt

(nΩ)2 + γ2
(79)

with again

P00(t) = 1−
∑
n6=0

Pn0(t) (80)

For large enough γ, we can take the limit γt� 1, where we find

P00(t) = 1− |g|
2|φ0|2

~2

∑
n6=0

|φn(0)|2

(nΩ)2 + γ2
(81)
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