
PHYS852 Quantum Mechanics II, Spring 2010
HOMEWORK ASSIGNMENT 2: SOLUTIONS

Topics covered: Entropy, thermal states

1. [20] Thermalized Free Particle: In a gas of N particles, the state of particle 1 can be described
by a reduced density matrix, defined in coordinate representation by

ρ1(r1, r
′

1) =

∫

d3r2 . . . d3rN 〈r1, r2, . . . , rN |ρ|r′1, r2, . . . , r
′

N 〉, (1)

where ρ is the full N -particle density operator. The full Hamiltonian separates as

H = H1 + H2 + . . . + HN + V1,2 + V1,3 + . . . + VN−1,N (2)

where Hn = P 2
n

2Mn
and Vn,n′ = V (rn − r′n) are the kinetic and short-range interaction terms, respec-

tively. We can assume that the interactions with the N − 1 other particles will thermalize the state
of particle 1, so that

ρ1(r1, r
′

1) =
1

Z
〈r1|e

−βH1 |r′1〉, (3)

(a) [10] In a given basis, the diagonal elements of ρ give the probabilities for the system to be in
the corresponding basis states. Show that the thermalized particle is equally likely to be at any
position.

(b) [10] The off-diagonal elements of ρ measure the ‘coherence’ between the corresponding basis
states. Show that there is a characteristic coherence length scale, λc, such that the coherence
between position states becomes negligible only for |r− r′| ≫ λc. Give the dependence of λc on
the temperature T .

The probability to find the thermalized particle at position r is:

P1(r) ∝ ρ1(r, r)

∝ 〈r|e
−

P2

2MnbT |r〉

∝

∫

d3p〈r|e
−

P2

2MkbT |p〉〈p|r〉

∝

∫

dpxdpydpze
−

p2
x+p2

y+p2
z

2MkbT eip·r/~e−ip·r/~

∝

∫

dpxdpydpze
−

p2
x+p2

y+p2
z

2MkbT (4)

at which point we see that it is independent of r, which indicates that the particle is equally likely to
be found anywhere. The question becomes, how much of this ’uncertainty’ is coherent superposition
and how much is just ignorance? To answer this, we look at the off-diagonal element, ρ1(r, r

′),

ρ1(r, r
′) ∝

∫

dpxdpydpze
−

p2
x+p2

y+p2
z

2MkbT e−ip·(r−r
′)/~ ∝ e−

MkbT (r−r
′)2

2 (5)

putting this in the form exp
[

− (r−r
′)2

λ2
c

]

shows that the coherence decays drops off rapidly for |r−r′| >

λc =
√

2
MkbT

. This shows that the coherence length increases as the temperature decreases, which

makes sense because a pure coherent superposition has zero entropy, and should therefore be obtained
in the T → 0 limit.
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2. [30] Thermalized Spin-1/2 System: Consider a rigid lattice of spin-1/2 particles, of mass m and
charge q, placed in a uniform magnetic field of magnitude B0. The spins interact with each-other
via magnetic dipole-dipole interactions, so that the reduced density operator of a single spin will be
thermalized. Because the particle has no motional degrees of freedom, its density operator has a 2×2
matrix representation.

(a) [10] Compute the single-particle thermal density operator for a given temperature T .

(b) [10] Compute the partition function, and use it to compute the mean energy of the particle as
a function of T .

(c) [5] What is the critical temperature Tc, below which the particle is effectively frozen in the
lowest energy level?

(d) [5] Show that as T → ∞, the thermal state goes to the maximum entropy state ρ = I
d , where I

is the identity operator, and d is the Hilbert space dimension.

Choosing the z-axis along the field directions gives

H = −~µ · ~B = −
~gqB0

4M
σz (6)

The thermal density operator is

ρT =
1

Z
e−βH =

1

Z
exp

[

β~gqB0

4M
σz

]

→
1

Z

(

eβ/β0 0

0 e−β/β0

)

(7)

where

β0 =
4M

~gqB0
(8)

The partition function is
Z = Tr{e−βH} = 2cosh(β/β0) (9)

The mean energy is then

ET = −
d

dβ
lnZ = −

1

Z

d

dβ
Z = −

tanh(β/β0)

β0
= − tanh(Tc/T )kbTc (10)

where

Tc =
~gqB0

4Mkb
(11)

is the temperature below which the system becomes frozen in the ground state. In the limit T → ∞,
we have β → 0, so that

ρ∞ =
1

2

(

1 0
0 1

)

=
I

d
(12)
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3. [30] Thermalized Spherical Oscillator: For the spherically symmetric 3D harmonic oscillator,
governed by

H =
P 2

2M
+

1

2
Mω2R2, (13)

compute the thermal energy distribution function, the partition function, and the thermal mean
energy, E(T ) = 〈H〉. What is the leading order term in E(T ) as T → ∞?

We can quantize using the principle quantum number, so that

H =

∞
∑

n=0

dn
∑

m=1

~ω(n + 1)|n,m〉〈n,m| (14)

where from 851/lecture 29, we recall that

dn =
1

2
(n2 + 3n + 2). (15)

The partition function is then

Z = Tr{e−βH} =
∞
∑

n=0

dn
∑

m=1

e−β~ω(n+1)

= e−β~ω
∞
∑

n=0

dne−β~ωn

=
1

2
e−β~ω

∞
∑

n=0

(n2 + 3n + 2)
(

e−β~ω
)n

(16)

now
∑

n

e−β~ωn =
1

1 − e−β~ω
(17)

and

∑

n

ne−β~ωn = −
1

~ω

d

dβ

∑

n

e−β~ωn

= −
1

~ω

d

dβ

1

1 − e−β~ω

=
e−β~ω

(1 − e−β~ω)2

=
1

2(cosh(β~ω) − 1)
(18)

likewise

∑

n

n2e−β~ω =
1

(~ω)2
d2

dβ2

1

1 − e−β~ω

=
1

4
coth(β~ω/2)csch(β~ω/2) (19)

Thus we find

Z =
1 − 2eβ~ω − e2β~ω

2(1 − eβ~ω)3
(20)
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The thermal Energy distribution is then

PT (E) =
1

Z

∞
∑

n=0

δ(E − ~ω(n + 1))

(

1 +
3n

2
+

n2

2

)

e−β~ω(n+1) (21)

The thermal mean energy is

ET = −
1

Z

d

dβ
Z

= ~ω
2e

2~ω
kbT

(

3 + sinh( ~ω
kbT

)

1 − 3e
~ω

kbT + e
2~ω
kbT + e

3~ω
kbT

(22)

The leading term in the series expansion around β = 0 gives

lim
T→∞

ET = 3kbT (23)

which is the standard classical result for a 3d oscillator.
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