Topics covered: Unitary transformations, translation, rotation, vector operators

1. [25]Symmetry: A quantum system is said to posses a 'symmetry' if the Hamiltonian operator, H, is invariant under the associated transformation. In other words, if $H^{\prime}=H$, where $H^{\prime}:=U^{\dagger} H U$.
(a) [5] Show that $H^{\prime}=H$ is equivalent to $[H, U]=0$
(b) [5] Any hermitian operator can be used to generate a unitary operator via $U=e^{-i G \phi}$, where $G^{\dagger}=G$ is the 'generator' of the symmetry transformation, and ϕ is a free parameter. Show that $[H, G]=0$ is necessary and sufficient for H to be symmetric under U.
(c) [5] Show that when $[H, G]=0$, the probability distribution over the eigenvalues of G does not change in time. In QM this means that G is a 'constant of motion'. Must a QM constant of motion have a well-defined value?
(d) [5] What operator is the 'generator' of translation? If a system possesses 'translational symmetry' what operator is a constant of motion?
(e) [5] Consider a particle described by the Hamiltonian

$$
\begin{equation*}
H=\frac{P^{2}}{2 M}+V(X) \tag{1}
\end{equation*}
$$

What operator is the generator of translation? Show that H has translational symmetry only if $V(x)=V_{0}$.
2. [25] Consider a system described by the Hamiltonian

$$
\begin{equation*}
H=\frac{P^{2}}{2 M}+\frac{1}{2} M \omega^{2} X^{2}+M g X \tag{2}
\end{equation*}
$$

where g has units of acceleration.
(a) [5] Show that $U_{T}^{\dagger}(d) X U_{T}(d)=X+d$ and $U_{T}^{\dagger}(d) P U_{T}(d)=P$.
(b) [5] Solve for d and E_{0} such that $H^{\prime}:=U_{T}^{\dagger}(d) H U_{T}(d)$ satisfies

$$
\begin{equation*}
H^{\prime}=E_{0}+\frac{P^{2}}{2 M}+\frac{1}{2} M \omega^{2} X^{2} \tag{3}
\end{equation*}
$$

(c) [5] Let $\left|\phi_{n}^{\prime}\right\rangle, n=0,1,2, \ldots$ be the $n^{t h}$ eigenstate of H^{\prime}, with corresponding eigenvalue E_{n}^{\prime}. What are E_{n}^{\prime} and $\phi_{n}^{\prime}(x)=\left\langle x \mid \phi_{n}^{\prime}\right\rangle$?
(d) [5] Show that $\left|\phi_{n}\right\rangle:=U_{T}(d)\left|\phi_{n}^{\prime}\right\rangle$ is an eigenstate of H with eigenvalue E_{n}. What is the relationship between E_{n} and E_{n}^{\prime} ?
(e) [5] What is the relationship between $\phi_{n}(x):=\left\langle x \mid \phi_{n}\right\rangle$ and $\phi_{n}^{\prime}(x)$? What is $\phi_{n}(x)$?
3. [10] Show explicitly that the momentum operator of a particle \vec{P} is a vector operator with respect to rotation. Show that the operator $P^{2}=\vec{P} \cdot \vec{P}$ is invariant under rotation about any axis (hint: chose a coordinate system where the axis of rotation is the z-axis).
4. [40/35] Consider an infinitesimal rotation about an arbitrary axis, described by the unitary operator

$$
\begin{equation*}
U_{R}(\vec{\epsilon})=e^{-\frac{i}{\hbar} \vec{L} \cdot \vec{\epsilon}}=1-\frac{i}{\hbar} L_{1} \epsilon_{1}-\frac{i}{\hbar} L_{2} \epsilon_{2}-\frac{i}{\hbar} L_{3} \epsilon_{3} . \tag{4}
\end{equation*}
$$

where $\vec{L}=\sum_{j} L_{j} \vec{e}_{j}$ and $\vec{\epsilon}=\sum_{j} \epsilon_{j} \vec{e}_{j}$, with $\left\{\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}\right\}$ being a right-handed set of orthogonal unit vectors. Using this notation, the angular momentum components are given by $L_{j}=\sum_{k, \ell} \epsilon_{j, k, \ell} R_{k} P_{\ell}$, with $\epsilon_{j, k, \ell}$ being the totally antisymmetric Levi-Cevita tensor,

$$
\epsilon_{j k \ell}=\left\{\begin{array}{ll}
0 ; & \text { any index repeated } \tag{5}\\
1 ; & \text { cyclic permutations of }\{j, k, \ell\}=\{1,2,3\} \\
-1 ; & \text { cyclic permutations of }\{j, k, \ell\}=\{3,2,1\}
\end{array} .\right.
$$

The components of \vec{R} and \vec{P} satisfy the commutation relation $\left[R_{j}, P_{k}\right]=i \hbar \delta_{j, k}$.
(a) [10] Evaluate $R_{j}^{\prime}=U_{R}^{\dagger}(\vec{\epsilon}) R_{j} U_{R}(\vec{\epsilon})$ for each component of the position operator $\vec{R}=\sum_{j} R_{j} \vec{e}_{j}$, and use this to deduce the 3×3 matrix, $M(\vec{\epsilon})$ that rotates an ordinary vector by the infinitesimal angle $\vec{\epsilon}$.
(b) [5] Show that $M(-\vec{\epsilon})=M^{T}(\vec{\epsilon})$, then show that $M^{T}(\vec{\epsilon})=M^{-1}(\vec{\epsilon})$ by showing that $M^{T}(\vec{\epsilon}) M(\vec{\epsilon})=$ I.
(c) [5] Now consider a finite rotation by $\vec{\delta}=\sum_{j} \delta_{j} \vec{e}_{j}$, described by the 3×3 matrix $M(\vec{\delta})$. Clearly we must have $M(\vec{\delta})=M^{N}(\vec{\delta} / N)$. Take the limit as $N \rightarrow \infty$, and use your result to part (a) to show that we can put $M(\vec{\delta})$ into the form:

$$
\begin{equation*}
M(\vec{\delta})=\lim _{N \rightarrow \infty}\left(1-\frac{1}{N} \Lambda(\vec{\delta})\right)^{N}=e^{-\Lambda(\delta)} \tag{6}
\end{equation*}
$$

where $\Lambda(\vec{\delta})$ is a 3×3 antisymmetric matrix, whose components are given by $\Lambda_{j, k}(\vec{\delta})=\sum_{\ell} \epsilon_{j, k, \ell} \delta_{\ell}$.
(d) [5] Show that the eigenvalues of $\Lambda(\vec{\delta})$ are $\omega_{0}=0$, and $\omega_{ \pm}= \pm i \delta$, where $\delta=|\vec{\delta}|$.
(e) Show that the eigenvectors of $\Lambda(\vec{\delta})$ are

$$
\begin{align*}
\vec{u}_{0} & =\frac{\vec{\delta}}{\delta} \tag{7}\\
\vec{u}_{ \pm} & =\frac{\left(\delta_{1} \delta_{2} \pm i \delta \delta_{3}\right) \vec{e}_{1}+\left(\delta_{2}^{2}-\delta^{2}\right) \vec{e}_{2}+\left(\delta_{2} \delta_{3} \mp i \delta \delta_{1}\right) \vec{e}_{3}}{\sqrt{2 \delta^{2}\left(\delta^{2}-\delta_{2}^{2}\right)}} \tag{8}
\end{align*}
$$

(f) [5] Based on your result to part (e), show that

$$
\begin{equation*}
M(\vec{\delta}) \vec{V}=\vec{u}_{0}\left(\vec{u}_{0} \cdot \vec{V}\right)+\vec{u}_{-} e^{i \delta}\left(\vec{u}_{+} \cdot \vec{V}\right)+\vec{u}_{+} e^{-i \delta}\left(\vec{u}_{-} \cdot \vec{V}\right) \tag{9}
\end{equation*}
$$

where \vec{V} is an arbitrary vector.
(g) [5+5 bonus] Based on your results to parts (e) and (f), show that

$$
\begin{equation*}
\vec{V}^{\prime}=U_{R}^{\dagger}(\vec{\delta}) \vec{V} U_{R}(\vec{\delta})=M(\vec{\delta}) \vec{V}=\frac{\vec{\delta}(\vec{\delta} \cdot \vec{V})}{\delta^{2}}+\left[\vec{V}-\frac{\vec{\delta}(\vec{\delta} \cdot \vec{V})}{\delta^{2}}\right] \cos (\delta)+\frac{\vec{\delta} \times \vec{V}}{\delta} \sin (\delta) \tag{10}
\end{equation*}
$$

