PHYS852 Quantum Mechanics II, Spring 2010 HOMEWORK ASSIGNMENT 3

Topics covered: Unitary transformations, translation, rotation, vector operators

- 1. [25]**Symmetry**: A quantum system is said to posses a 'symmetry' if the Hamiltonian operator, H, is invariant under the associated transformation. In other words, if H' = H, where $H' := U^{\dagger}HU$.
 - (a) [5] Show that H' = H is equivalent to [H, U] = 0
 - (b) [5] Any hermitian operator can be used to generate a unitary operator via $U = e^{-iG\phi}$, where $G^{\dagger} = G$ is the 'generator' of the symmetry transformation, and ϕ is a free parameter. Show that [H, G] = 0 is necessary and sufficient for H to be symmetric under U.
 - (c) [5] Show that when [H, G] = 0, the probability distribution over the eigenvalues of G does not change in time. In QM this means that G is a 'constant of motion'. Must a QM constant of motion have a well-defined value?
 - (d) [5] What operator is the 'generator' of translation? If a system possesses 'translational symmetry' what operator is a constant of motion?
 - (e) [5] Consider a particle described by the Hamiltonian

$$H = \frac{P^2}{2M} + V(X). \tag{1}$$

What operator is the generator of translation? Show that H has translational symmetry only if $V(x) = V_0$.

2. [25] Consider a system described by the Hamiltonian

$$H = \frac{P^2}{2M} + \frac{1}{2}M\omega^2 X^2 + MgX,$$
(2)

where g has units of acceleration.

- (a) [5] Show that $U_T^{\dagger}(d)XU_T(d) = X + d$ and $U_T^{\dagger}(d)PU_T(d) = P$.
- (b) [5] Solve for d and E_0 such that $H' := U_T^{\dagger}(d)HU_T(d)$ satisfies

$$H' = E_0 + \frac{P^2}{2M} + \frac{1}{2}M\omega^2 X^2$$
(3)

- (c) [5] Let $|\phi'_n\rangle$, n = 0, 1, 2, ... be the n^{th} eigenstate of H', with corresponding eigenvalue E'_n . What are E'_n and $\phi'_n(x) = \langle x | \phi'_n \rangle$?
- (d) [5] Show that $|\phi_n\rangle := U_T(d)|\phi'_n\rangle$ is an eigenstate of H with eigenvalue E_n . What is the relationship between E_n and E'_n ?
- (e) [5] What is the relationship between $\phi_n(x) := \langle x | \phi_n \rangle$ and $\phi'_n(x)$? What is $\phi_n(x)$?
- 3. [10] Show explicitly that the momentum operator of a particle \vec{P} is a vector operator with respect to rotation. Show that the operator $P^2 = \vec{P} \cdot \vec{P}$ is invariant under rotation about any axis (hint: chose a coordinate system where the axis of rotation is the z-axis).

4. [40/35] Consider an infinitesimal rotation about an arbitrary axis, described by the unitary operator

$$U_R(\vec{\epsilon}) = e^{-\frac{i}{\hbar}\vec{L}\cdot\vec{\epsilon}} = 1 - \frac{i}{\hbar}L_1\epsilon_1 - \frac{i}{\hbar}L_2\epsilon_2 - \frac{i}{\hbar}L_3\epsilon_3.$$
(4)

where $\vec{L} = \sum_j L_j \vec{e}_j$ and $\vec{\epsilon} = \sum_j \epsilon_j \vec{e}_j$, with $\{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$ being a right-handed set of orthogonal unit vectors. Using this notation, the angular momentum components are given by $L_j = \sum_{k,\ell} \epsilon_{j,k,\ell} R_k P_\ell$, with $\epsilon_{j,k,\ell}$ being the totally antisymmetric Levi-Cevita tensor,

$$\epsilon_{jk\ell} = \begin{cases} 0; & \text{any index repeated} \\ 1; & \text{cyclic permutations of } \{j, k, \ell\} = \{1, 2, 3\} \\ -1; & \text{cyclic permutations of } \{j, k, \ell\} = \{3, 2, 1\} \end{cases}$$
(5)

The components of \vec{R} and \vec{P} satisfy the commutation relation $[R_j, P_k] = i\hbar \delta_{j,k}$.

- (a) [10] Evaluate $R'_j = U_R^{\dagger}(\vec{\epsilon})R_jU_R(\vec{\epsilon})$ for each component of the position operator $\vec{R} = \sum_j R_j \vec{e_j}$, and use this to deduce the 3×3 matrix, $M(\vec{\epsilon})$ that rotates an ordinary vector by the infinitesimal angle $\vec{\epsilon}$.
- (b) [5] Show that $M(-\vec{\epsilon}) = M^T(\vec{\epsilon})$, then show that $M^T(\vec{\epsilon}) = M^{-1}(\vec{\epsilon})$ by showing that $M^T(\vec{\epsilon})M(\vec{\epsilon}) = I$.
- (c) [5] Now consider a finite rotation by $\vec{\delta} = \sum_j \delta_j \vec{e}_j$, described by the 3×3 matrix $M(\vec{\delta})$. Clearly we must have $M(\vec{\delta}) = M^N(\vec{\delta}/N)$. Take the limit as $N \to \infty$, and use your result to part (a) to show that we can put $M(\vec{\delta})$ into the form:

$$M(\vec{\delta}) = \lim_{N \to \infty} \left(1 - \frac{1}{N} \Lambda(\vec{\delta}) \right)^N = e^{-\Lambda(\delta)}$$
(6)

where $\Lambda(\vec{\delta})$ is a 3×3 antisymmetric matrix, whose components are given by $\Lambda_{j,k}(\vec{\delta}) = \sum_{\ell} \epsilon_{j,k,\ell} \delta_{\ell}$.

- (d) [5] Show that the eigenvalues of $\Lambda(\vec{\delta})$ are $\omega_0 = 0$, and $\omega_{\pm} = \pm i\delta$, where $\delta = |\vec{\delta}|$.
- (e) Show that the eigenvectors of $\Lambda(\vec{\delta})$ are

$$\vec{u}_0 = \frac{\vec{\delta}}{\delta} \tag{7}$$

$$\vec{u}_{\pm} = \frac{(\delta_1 \delta_2 \pm i \delta \delta_3) \vec{e}_1 + (\delta_2^2 - \delta^2) \vec{e}_2 + (\delta_2 \delta_3 \mp i \delta \delta_1) \vec{e}_3}{\sqrt{2\delta^2 (\delta^2 - \delta_2^2)}}$$
(8)

(f) [5] Based on your result to part (e), show that

$$M(\vec{\delta})\vec{V} = \vec{u}_0(\vec{u}_0 \cdot \vec{V}) + \vec{u}_- e^{i\delta}(\vec{u}_+ \cdot \vec{V}) + \vec{u}_+ e^{-i\delta}(\vec{u}_- \cdot \vec{V})$$
(9)

where \vec{V} is an arbitrary vector.

(g) [5+5 bonus] Based on your results to parts (e) and (f), show that

$$\vec{V}' = U_R^{\dagger}(\vec{\delta})\vec{V}U_R(\vec{\delta}) = M(\vec{\delta})\vec{V} = \frac{\vec{\delta}(\vec{\delta}\cdot\vec{V})}{\delta^2} + \left[\vec{V} - \frac{\vec{\delta}(\vec{\delta}\cdot\vec{V})}{\delta^2}\right]\cos(\delta) + \frac{\vec{\delta}\times\vec{V}}{\delta}\sin(\delta)$$
(10)